Math Page 8 - 15

Waggas .G / Rajaa .A

On Differential Sandwich Theorems of Meromorphic Univalent Functions

Waggas Galib Atshan Rajaa Ali Hiress Department of Mathematics , College of Computer Science and Information Technology, University of AI- Qadisiyah , Diwaniyah-Iraq waggas.galib @ qu. edu.iq waggashnd@gmail.com

Recived : 15\4\2018	Revised : 26\4\2018	Accepted : 22\5\2018
Available online :	5 /8/2018	
DOI: 10.29304/jqcm	n.2018.10.3.399	

Abstract

By using of linear operator, we obtain some Subordinations and superordinations results for certain normalized meromorphic univalent analytic functions in the in the punctured open unit disk U^* . Also we derive some sandwich theorems.

Keywords :Analytic Function, Differential Subordination, Hadamard Product, Meromorphic Univalent Function.

Mathematics Subject Classification :30C45

1. Introduction

Let \mathcal{H} be the Linear space of all analytic functions in U. For a positive integer number n and $a \in \mathbb{C}$, we let

 $\mathcal{H}[a,n] = \{ f \in \mathcal{H} : f(z) = a + a_n z^n + a_{n+1} z^{n+1} + a_{n+2} z^{n+2} + \cdots \}.$

For two functions f and g analytic in U. We say that the function g is subordinate to f in U and write g(z) < f(z), if there exists a Schwarz function ω , which is analytic in U with $\omega(0) = 0$ and $|\omega(z)| < 1$ ($z \in U$), such that g(z) = $f(\omega(z)), (z \in U)$.

If the function f(z) is if the function f is univalent in U, then we have

$$g(z) \prec f(z) \Leftrightarrow g(0) = f(0) \text{ and } g(U) \subset$$

 $f(U)$,
 $f(z)$

$$= \frac{1}{z} + \sum_{k=0}^{\infty} a_k z^k , \qquad (1.1)$$

which are analytic and meromorphic univalent function in the punctured open unit disk $U^* = \{z: z \in \mathbb{C} \text{ and } 0 < |z| < 1\}.$

Let $p, h \in \mathcal{H}$, and $\emptyset(r, s, t; z) \colon \mathbb{C}^3 \times U \to \mathbb{C}$.

If p and $\emptyset(p(z), zp'(z), z^2p''(z); z)$ are univalent functions in U and if p satisfies the second- order superordination

 $h(z) \prec \emptyset(p(z), zp'(z), z^2p''(z); z), (z \in U),$ (1.2) then *p* is called a solution of the differential superordination (1.2), (if *f* subordinate to *g*, then *g* is superordinate to *f*).

An analytic function q is called a subordinate of the differential superordination if q < p for all p satisfying (1.2). A univalent subordinate \tilde{q} that satisfies $q < \tilde{q}$ for all subordinates q of (1.2) is said to be the best subordinate. Recently Miller and Mocnu [3] obtained sufficient conditions on the functions h, p and \emptyset for which the following implication holds :

$$\begin{split} h(z) \prec \emptyset(p(z), zp'(z), z^2p''(z); z) & \Longrightarrow q(z) \prec p(z), (z \in U). \end{split}$$
 (1.2)

If $f \in W$ is given by (1.1) and $g \in W$ given by

$$g(z) = \frac{1}{z} + \sum_{k=0}^{\infty} b_k z^k.$$

The Hadamard product (or convolution) of f and g is defined by

$$(f * g)(z) = \frac{1}{z} + \sum_{k=0}^{\infty} a_k b_k z^k = (g * f)(z).$$

Using the results, Bulboacă [4] considered certain classes of first order differential superordinations as well as superordination preserving integral operator [1]. Ali et al. [5], have used the results of Bulboacă [4] to obtain sufficient conditions for normalized analytic functions to satisfy:

$$q_1(z) \prec \frac{zf'(z)}{f(z)} \prec q_2(z),$$

where q_1 and q_2 are given univalent functions in U with $q_1(0) = q_2(0) = 1$. Also, Tuneski [6] obtained a sufficient conditions for starlikeness of f in terms of the quantity

$$\frac{f''(z)f(z)}{(f'(z))^2}.$$

Recently, Shanmugam et al. [7,8] and Goyal et al. [9] also obtained sandwich results for certain classes of analytic functions.

Ali et al. [10] introduced and investigated the linear operator

$$I_1(n,\lambda): W \to W$$

which is defined as follows:

$$I_{1}(n,\lambda)f(z) = \frac{1}{z} + \sum_{k=0}^{\infty} \left(\frac{k+\lambda}{\lambda-1}\right)^{n} a_{k} z^{k},$$

(z \in U*, \lambda > 1). (1.4)

The general Hurwitz-lerch zeta function

$$\Phi(z, s, r) = \sum_{k=0}^{\infty} \frac{z^k}{(r+k)^s} , r \in \mathbb{C} \setminus \mathbb{Z}_0^-, s \in \mathbb{C}$$

when $0 < |z| < 1$.

Definition 1.1. Let $f \in W, z \in U^*, r \in \mathbb{C} \setminus \mathbb{Z}_0^-$, $s \in \mathbb{C}$ and $\lambda > 1$, we define the operator $\mathcal{J}_{s,r,1}(n,\lambda)f(z) \colon W \longrightarrow W$, where

$$\mathcal{J}_{s,r,1}(n,\lambda)f(z) = \frac{\Phi(z,s,r)}{zr^{-s}} * I_1(n,\lambda)f(z)$$

$$= \frac{1}{z} + \sum_{k=0} \left(\frac{r}{1+k+r}\right)^s \left(\frac{k+\lambda}{\lambda-1}\right)^n a_k z^k \tag{1.5}$$

We note from (1.5) that, we have

$$\begin{split} \lambda \, \mathcal{J}_{s,r,1}(n,\lambda)f(z) &= z \left(\mathcal{J}_{s,r,1}(n,\lambda)f(z) \right)' - \\ (\lambda-1) \, \mathcal{J}_{s,r,1}(n+1,\lambda)f(z), & (1.6) \\ \mathcal{J}_{0,r,1}(n,\lambda)f(z) &= I_1(n,\lambda)f(z) \\ \text{and } \mathcal{J}_{0,r,1}(0,\lambda)f(z) &= f(z). \end{split}$$

The main object of this idea is to find sufficient conditions for certain normalized analytic functions f to satisfy:

$$\begin{split} q_1(z) \prec \\ & \left(\frac{(1-\beta) \, z \mathcal{J}_{s,r,1}(n,\lambda) f(z) + \beta z \, \mathcal{J}_{s,r,1}(n+1,\lambda) f(z)}{\beta + 1} \right)^{\delta} \prec q_2(z), \end{split}$$

and

$$q_1(z) \prec \left(z\mathcal{J}_{s,r,1}(n,\lambda)f(z)\right)^{\delta} \prec q_2(z),$$

where $q_1(z)$ and $q_2(z)$ are given us

where $q_1(z)$ and $q_2(z)$ are given uninvent functions in U with $q_1(0) = q_2(0) = 1$.

2. Preliminaries

In order to prove our subordinations and superordinations results, we need the following definition and lemmas.

Definition 2.1.[2]: Denote by *Q* the set of all functions *q* that are analytic and injective on $\overline{U} \setminus E(q)$, where $\overline{U} = U \cup \{z \in \partial U\}$, and

$$\mathcal{E}(q) = \left\{ \zeta \in \partial U : \lim_{z \to \zeta} q(z) = \infty \right\}$$
(1.7)

and are such that $q'(\zeta) \neq 0$ for $\zeta \in \partial U \setminus E(q)$. Further, let the subclass of Q for which q(0) = a be denoted by Q(a), $Q(0) \equiv Q_0$ and $Q(1) \equiv Q_1$. **Lemma 2.1.** [5] Let q(z) be convex univalent function in U, let $\alpha \in \mathbb{C}, \beta \in \mathbb{C} \setminus \{0\}$ and suppose that

$$\operatorname{Re}\left(1+\frac{zq^{\prime\prime}(z)}{q^{\prime}(z)}\right) > \max\left\{0,-\operatorname{Re}\left(\frac{\alpha}{\beta}\right)\right\}.$$

If p(z) is analytic in U and

 $\alpha p(z) + \beta z p'(z) < \alpha q(z) + \beta z q'(z),$

then $p(z) \prec q(z)$ and q is the best dominant.

Lemma 2.2.[1]

Let q be univalent in U and let \emptyset and θ be analytic in the domain D containing q(U) with $\emptyset(w) \neq 0$, when $w \in q(U)$. Set

$$Q(z) = zq'(z)\phi(q(z))$$
 and $h(z) = \theta(q(z)) + Q(z)$,

suppose that

1 - Q is starlike univalent in U,

$$2 - \operatorname{Re}\left(\frac{zh'(z)}{Q(z)}\right) > 0, z \in U.$$

If *p* is analytic in *U* with p(0) = q(0), $p(U) \subseteq D$ and

$$\begin{split} & \phi \big(p(z) \big) + z p'(z) \phi \big(p(z) \big) \\ & \prec \phi \big(q(z) \big) + z q'(z) \phi \big(q(z) \big), \end{split}$$

then $p \prec q$, and q is the best dominant.

Lemma 2.3. [3] Let q(z) be convex univalent in the unit disk U and let θ and ϕ be analytic in a domain D containing q(U). Suppose that

$$1 - \operatorname{Re}\left\{\frac{\theta'(q(z))}{\phi(q(z))}\right\} > 0 \text{ for } z \in U,$$

$$2 - zq'(z)\phi(q(z)) \text{ is starlike univaler}$$

$$2 - zq'(z)\phi(q(z))$$
 is starlike univalent in $z \in U$.

If
$$p \in \mathcal{H}[q(0), 1] \cap Q$$
, with $p(U) \subseteq D$, and
 $\theta(p(z)) + zp'(z)\phi(p(z))$ is univalent in U , and
 $\theta(q(z)) + zq'(z)\phi(q(z)) \prec$
 $\theta(p(z)) + zp'(z)\phi(p(z))$, (1.8)

then $q \prec p$, and q is the best subordinant

Lemma 2.4. [3]: Let q(z) be convex univalent in U and q(0) = 1. Let $\beta \in \mathbb{C}$, that $\operatorname{Re}\{\beta\} > 0$. If $p(z) \in \mathcal{H}[q(0), 1] \cap Q$ and $p(z) + \beta z p'(z)$ is univalent in U, then

 $q(z) + \beta z q'(z) \prec p(z) + \beta z p'(z),$ which implies that $q(z) \prec p(z)$ and q(z) is the

best subordinant.

3. Subordination Results

Theorem 3.1. Let q(z) be convex univalent in U

with $q(0) = 1, \eta, \delta \in \mathbb{C} \setminus \{0\}$. Suppose that

$$\operatorname{Re}\left(1+\frac{zq^{\prime\prime}(z)}{q^{\prime}(z)}\right) > \max\left\{0,\operatorname{Re}\left(\frac{\delta}{\eta}\right)\right\}.$$
(3.1)

If $f \in W$ is satisfies the Subordination G(z)

$$\prec q(z) + \frac{\eta}{\delta} z q'(z),$$
 (3.2)

where

$$G(z) = \left(\frac{(1-\beta) z \mathcal{J}_{s,r,1}(n,\lambda) f(z) + \beta z \mathcal{J}_{s,r,1}(n+1,\lambda) f(z)}{\beta+1}\right)^{\delta} \times (1+$$

 $\eta \times$

$$\binom{(\beta\lambda-\lambda+1-\beta)\mathcal{J}_{S,r,1}(n,\lambda)f(z)+(\lambda-1-2\lambda\beta+2\beta)\mathcal{J}_{S,r,1}(n+1,\lambda)f(z)+(\beta\lambda-\beta)\mathcal{J}_{S,r,1}(n+2,\lambda)f(z)}{(1-\beta)\mathcal{J}_{S,r,1}(n,\lambda)f(z)+\beta\mathcal{J}_{S,r,1}(n+1,\lambda)f(z)}),$$

then

$$\left(\frac{(1-\beta) z \mathcal{J}_{s,r,1}(n,\lambda) f(z) + \beta z \mathcal{J}_{s,r,1}(n+1,\lambda) f(z)}{\beta+1} \right)^{\delta} \prec q(z), \qquad (3.4)$$

and q(z) is the best dominant.

Proof. Define a function
$$g(z)$$
 by $g(z) = \left(\frac{(1-\beta) z \mathcal{J}_{s,r,1}(n,\lambda) f(z) + \beta z \mathcal{J}_{s,r,1}(n+1,\lambda) f(z)}{\beta+1}\right)^{\delta}$, (3.5)

then the function g(z) is analytic in U and q(0)=1, therefore, differentiating (3.5) logarithmically with respect to z and using the identity (1.6) in the resulting equation,

$$G(z) = \left(\frac{(1-\beta) z \mathcal{J}_{s,r,1}(n,\lambda) f(z) + \beta z \mathcal{J}_{s,r,1}(n+1,\lambda) f(z)}{\beta + 1}\right)^{\delta} \times (1 + \eta \times$$

$$\left(\frac{(\beta\lambda-\lambda+1-\beta)\mathcal{J}_{s,r,1}(n,\lambda)f(z)+(\lambda-1-2\lambda\beta+2\beta)\mathcal{J}_{s,r,1}(n+1,\lambda)f(z)+(\beta\lambda-\beta)\mathcal{J}_{s,r,1}(n+2,\lambda)f(z)}{(1-\beta)\mathcal{J}_{s,r,1}(n,\lambda)f(z)+\beta\mathcal{J}_{s,r,1}(n+1,\lambda)f(z)}\right)$$

 $=g(z)+\frac{\eta}{\delta}\,zg'(z).$

Thus the subordination (3.2) is equivalent to

$$g(z) + \frac{\eta}{\delta} zg'(z) < q(z) + \frac{\eta}{\delta} zq'(z).$$

An application of Lemma (2.1) with $\beta = \frac{\eta}{\delta}$ and $\alpha = 1$, we obtain (3.4).

Taking
$$q(z) = \frac{1+Az}{1+Bz} (-1 \le B < A \le 1)$$
, in

Theorem (3.1), we obtain the following Corollary.

Corollary3.2. Let
$$\eta, \delta \in \mathbb{C} \setminus \{0\}$$
 and $(-1 \le B \le A \le 1)$. Suppose that

$$\operatorname{Re}\left(\frac{1-Bz}{1+Bz}\right) > \max\left\{0, -\operatorname{Re}\left(\frac{\delta}{\eta}\right)\right\}.$$

If $f \in W$ is satisfy the following Subordination condition :

$$G(z) \prec \frac{1+Az}{1+Bz} + \frac{\eta}{\delta} \frac{(A-B)z}{(1+Bz)^2},$$

where G(z) given by (3.3), then

$$\left(\frac{(1-\beta) z \mathcal{J}_{s,r,1}(n,\lambda) f(z) + \beta z \mathcal{J}_{s,r,1}(n+1,\lambda) f(z)}{\beta+1} \right)^{\delta} \\ \prec \frac{1+Az}{1+Bz} ,$$

and $\frac{1+Az}{1+Bz}$ is best dominant.

Taking A = 1 and B = -1 in Corollary (3.2), we get following result.

Corollary 3.3. Let $\eta, \delta \in \mathbb{C} \setminus \{0\}$ and suppose that

$$\operatorname{Re}\left(\frac{1+z}{1-z}\right) > \max\left\{0, -\operatorname{Re}\left(\frac{\delta}{\eta}\right)\right\}.$$

If $f \in W$ is satisfy the following Subordination

$$G(z) < \frac{1+z}{1-z} + \frac{\eta}{\delta} \frac{2z}{(1-z)^2}$$

where G(z) given by (3.3), then

$$\left(\frac{(1-\beta) \, z \mathcal{J}_{s,r,1}(n,\lambda) f(z) + \beta z \, \mathcal{J}_{s,r,1}(n+1,\lambda) f(z)}{\beta+1} \right)^{\delta} < \frac{1+z}{1-z} ,$$

and $\frac{1+z}{1-z}$ is best dominant.

Theorem 3. 4. Let q(z) be convex univalent in unit disk U with q(0) = 1, let $\varsigma \eta, \delta \in \mathbb{C} \setminus \{0\}, \alpha, t, \mu, \tau \in \mathbb{C}, f \in W$ and suppose that f and q satisfy the following conditions $\operatorname{Re} \left\{ \frac{\mu}{\varsigma} q(z) + \frac{2\tau\alpha}{\varsigma} q^2(z) + 1 + z \frac{q''(z)}{q'(z)} - z \frac{q'(z)}{q(z)} \right\} > 0,$ (3.6)

and

$$z\mathcal{J}_{s,r,1}(n,\lambda)f(z) \neq 0.$$
(3.7)

If

$$r(z) < t + \mu q(z) + \tau \alpha q^2(z) + \varsigma \frac{zq'(z)}{q(z)},$$
 (3.8)

where

$$r(z) = (z\mathcal{J}_{s,r,1}(n,\lambda)f(z))^{\delta} \times ((\mu + \tau\alpha\left((z\mathcal{J}_{s,r,1}(n,\lambda)f(z))^{\delta}\right) + t\alpha\left((z\mathcal{J}_{s,r,1}(n+1,\lambda)f(z))^{\delta}\right) + t + \varsigma\delta(\lambda-1)\left(\frac{\mathcal{J}_{s,r,1}(n+1,\lambda)f(z)}{\mathcal{J}_{s,r,1}(n,\lambda)f(z)} - 1\right), \quad (3.9)$$

then

 $(z\mathcal{J}_{s,r,1}(n,\lambda)f(z))^{\delta} \prec q(z)$, and q(z) is best dominant.

Proof. Define analytic function g(z) by

$$g(z) = \left(z \mathcal{J}_{s,r,1}(n,\lambda) f(z) \right)^{\delta}.$$
 (3.10)

Then the function g(z) is analytic in *U* and g(0) = 1, differentiating (3.10) logarithmically with respect to *z*, we get

$$\frac{zg'(z)}{g(z)} = \delta(\lambda - 1) \left(\frac{\mathcal{J}_{s,r,1}(n+1,\lambda)f(z)}{\mathcal{J}_{s,r,1}(n,\lambda)f(z)} - 1 \right). \quad (3.11)$$

By setting $\theta(w) = t + \mu w + \tau \alpha w^2$ and $\phi(w) = \frac{\varsigma}{w}$, it can be easily observed that $\theta(w)$ is analytic in $\mathbb{C}, \phi(w)$ is analytic in $\mathbb{C} \setminus \{0\}$ and that $\phi(w) \neq 0, w \in \mathbb{C} \setminus \{0\}$.

Also, if we let

$$Q(z) = zq'(z)\phi(z) = \varsigma \frac{zq'(z)}{q(z)} \text{ and } h(z) =$$

$$\theta(q(z)) + Q(z)$$

$$= t + \mu q(z) + \tau \alpha q^{2}(z) + \varsigma \frac{zq'(z)}{q(z)},$$

we find that Q(z) is starlike univalent in U, we have

$$\begin{aligned} h'(z) &= \mu q'(z) + 2\tau \alpha q(z)q'(z) + \varsigma \frac{q'(z)}{q(z)} + \varsigma z \frac{q''(z)}{q(z)} \\ &- \varsigma z \, (\frac{q'(z)}{q(z)})^2, \end{aligned}$$

and

$$\frac{zh'(z)}{Q(z)} = \frac{\mu}{\varsigma}q(z) + \frac{2\tau\alpha}{\varsigma}q^2(z) + 1 + z\frac{q''(z)}{q'(z)} - z\frac{q'(z)}{q(z)},$$

hence that

$$\operatorname{Re}\left(\frac{zh'(z)}{Q(z)}\right) = \operatorname{Re}\left(\frac{\mu}{\varsigma}q(z) + \frac{2\tau\alpha}{\varsigma}q^2(z) + 1 + z\frac{q''(z)}{q'(z)} - z\frac{q'(z)}{q(z)}\right) > 0.$$

By using (3.11), we obtain

$$\begin{split} \mu g(z) &+ \tau \alpha g^2(z) + \frac{zg'(z)}{g(z)} = \left(z \mathcal{J}_{s,r,1}(n,\lambda) f(z) \right)^{\delta} \times \\ \left(\mu + \tau \alpha \left(z \mathcal{J}_{s,r,1}(n,\lambda) f(z) \right)^{\delta} \right) + t + \varsigma \delta(\lambda - 1) \left(\frac{\mathcal{J}_{s,r,1}(n+1,\lambda) f(z)}{\mathcal{J}_{s,r,1}(n+1,\lambda) f(z)} - 1 \right). \end{split}$$

By using (3.8), we have

$$\mu g(z) + \tau \alpha g^{2}(z) + \varsigma \frac{zg'(z)}{g(z)} < \mu q(z) + \tau \alpha q^{2}(z) + s \frac{zq'(z)}{q(z)}$$

and by using Lemma (2.2), we deduce that
subordination (3.8) implies that $g(z) < q(z)$ and the
function $q(z)$ is the best dominant.

Taking the function $q(z) = \frac{1+Az}{1+Bz}$ ($-1 \le B < A \le$ 1), in Theorem (3.4), the condition (3.6) becomes

$$\operatorname{Re}\left(\frac{\mu}{\varsigma}\frac{1+Az}{1+Bz} + \frac{2\tau\alpha}{\varsigma}\left(\frac{1+Az}{1+Bz}\right)^{2} + 1 + \frac{(A-B)z}{(1+Bz)(1+Az)} - \frac{2Bz}{1+Bz}\right) > 0(s \in \mathbb{C} \setminus \{0\}),$$
(3.12)

hence, we have the following Corollary.

Corollary 3.5. Let $(-1 \le B < A \le 1), s, \delta \in \mathbb{C} \setminus \{0\}, \alpha, t, \tau, \mu \in \mathbb{C}$. Assume that (3.12) holds. If $f \in W$ and

$$r(z) < t + \mu \frac{1+Az}{1+Bz} + \tau \alpha \left(\frac{1+Az}{1+Bz}\right)^2 + \varsigma \frac{(A-B)z}{(1+Bz)(1+Az)}$$

where r(z) is defined in (3.9), then

$$(z\mathcal{J}_{s,r,1}(n,\lambda)f(z))^{\delta} < \frac{1+Az}{1+Bz}$$
, and $\frac{1+Az}{1+Bz}$ is best

dominant.

Taking the function $q(z) = \left(\frac{1+z}{1-z}\right)^{\rho}$ (0 < $\rho \le 1$), in Theorem (3.4),the condition(3.6) becomes

$$\operatorname{Re}\left\{\frac{\mu}{\varsigma}\left(\frac{1+z}{1-z}\right)^{\rho} + \frac{2\tau\alpha}{\varsigma}\left(\frac{1+z}{1-z}\right)^{2\rho} + \frac{2z^{2}}{1-z^{2}}\right\} > 0,$$

($\varsigma \in \mathbb{C} \setminus \{0\}$), (3.13)

hence, we have the following Corollary.

Corollary 3.6. Let

 $0 < \rho \le 1, \varsigma, \delta \in \mathbb{C} \setminus \{0\}, \alpha, t, \tau, \mu \in \mathbb{C} \text{ . Assume}$ that

(3.13) holds.

If
$$f \in W$$
 and

$$r(z) \prec t + \mu \left(\frac{1+z}{1-z}\right)^{\rho} + \tau \alpha \left(\frac{1+z}{1-z}\right)^{2\rho} + \varsigma \frac{2\rho z}{1-z^2} ,$$

where r(z) is defined in (3.9), then

$$(z\mathcal{J}_{s,r,1}(n,\lambda)f(z))^{\delta} < \left(\frac{1+z}{1-z}\right)^{\rho}$$
, and $\left(\frac{1+z}{1-z}\right)^{\rho}$ is best

dominant.

4. Superordination Results

Theorem 4.1. Let q(z) be convex univalent in Uwith $q(0) = 1, , \delta \in \mathbb{C} \setminus \{0\}$, Re $\{\eta\} > 0$, if $f \in W$, such that

$$\frac{(1-\beta) \, z \mathcal{J}_{s,r,1}(n,\lambda) f(z) + \beta z \, \mathcal{J}_{s,r,1}(n+1,\lambda) f(z)}{\beta+1} \neq 0$$

and

$$\left(\frac{(1-\beta) z \mathcal{J}_{s,r,1}(n,\lambda) f(z) + \beta z \mathcal{J}_{s,r,1}(n+1,\lambda) f(z)}{\beta+1} \right)^{\delta} \\ \in \mathcal{H}[q(0),1] \cap Q.$$
(4.1)

If the function G(z) defined by (3.3) is univalent and the following superordination condition:

$$q(z) + \frac{\eta}{\delta} z q'(z) \prec G(z), \qquad (4.2)$$

holds, then

$$q(z) \prec \left(\frac{(1-\beta)\,z\mathcal{J}_{s,r,1}(n,\lambda)f(z) + \beta z\,\mathcal{J}_{s,r,1}(n+1,\lambda)f(z)}{\beta+1}\right)^{\delta} \ (4.3)$$

and q(z) is the best subordinant.

Proof. Define a function g(z) by

$$g(z) = \left(\frac{(1-\beta) z \mathcal{J}_{s,r,1}(n,\lambda) f(z) + \beta z \mathcal{J}_{s,r,1}(n+1,\lambda) f(z)}{\beta+1}\right)^{\delta}.$$
(4.4)

Differentiating (4.4) with respect to z logarithmically, we get

$$\frac{zg'(z)}{g(z)} = \delta\left(\frac{(1-\beta)z(\mathcal{J}_{s,r,1}(n,\lambda)f(z))'+\beta z(\mathcal{J}_{s,r,1}(n+1,\lambda)f(z))'}{(1-\beta)\mathcal{J}_{s,r,1}(n,\lambda)f(z)+\beta\mathcal{J}_{s,r,1}(n+1,\lambda)f(z)}\right). (4.5)$$

A simple computation and using (1.6), from (4.5) ,we get

$$G(z) = \left(\frac{(1-\beta) z \mathcal{J}_{s,r,1}(n,\lambda) f(z) + \beta z \mathcal{J}_{s,r,1}(n+1,\lambda) f(z)}{\beta+1}\right)^{\delta} \times \left((1+\eta) \left(\frac{(\beta\lambda-\lambda+1-\beta) \mathcal{J}_{s,r,1}(n,\lambda) f(z) + (\lambda-1-2\lambda\beta+2\beta) \mathcal{J}_{s,r,1}(n+1,\lambda) f(z) + (\beta\lambda-\beta) \mathcal{J}_{s,r,1}(n+2,\lambda) f(z)}{(1-\beta) \mathcal{J}_{s,r,1}(n,\lambda) f(z) + \beta \mathcal{J}_{s,r,1}(n+1,\lambda) f(z)}\right)\right)$$

$$=g(z)+\frac{\eta}{\delta}\,zg'(z),$$

now, by using Lemma(2.4), we get the desired result .

Taking
$$q(z) = \frac{1+Az}{1+Bz} \ (-1 \le B < A \le 1)$$
, in

Theorem (4.1), we get the following Corollary.

Corollary 4.2. Let $\operatorname{Re}\{\eta\} > 0, \delta \in \mathbb{C} \setminus \{0\}$ and $-1 \le B < A \le 1$, such that

$$\left(\frac{(1-\beta)\,z\mathcal{J}_{s,r,1}(n,\lambda)f(z)+\beta z\,\mathcal{J}_{s,r,1}(n+1,\lambda)f(z)}{\beta+1}\right)^{\delta}\in$$

 $\mathcal{H}[q(0),1]\cap Q$.

If the function G(z) given by (3.3) is univalent in U and $f \in W$ satisfies the following superordination condition :

$$\frac{1+Az}{1+Bz} + \frac{\eta}{\delta} \frac{(A-B)z}{(1+Bz)^2} < G(z),$$
then

$$\frac{1+Az}{1+Bz}$$
 $< \left(\frac{(1-Az)}{1+Bz}\right)$

$$\lesssim \left(\frac{(1-\beta)\,z\mathcal{J}_{s,r,1}(n,\lambda)f(z)+\beta z\,\mathcal{J}_{s,r,1}(n+1,\lambda)f(z)}{\beta+1}\right)^{\delta}$$

and the function $\frac{1+Az}{1+Bz}$ is the best subordinant.

Theorem 4.3. Let q(z) be convex univalent in unit disk U, let $\varsigma, \delta \in \mathbb{C} \setminus \{0\} \alpha, t, \mu, \tau \in \mathbb{C}, q(z) \neq 0$, and $f \in W$. Suppose that $\operatorname{Re} \left\{ \frac{q(z)}{s} (2\tau \alpha q(z) + \mu) \right\} q'(z) > 0$,

and satisfies the next conditions

$$(z\mathcal{J}_{s,r,1}(n,\lambda)f(z))^{\delta} \in \mathcal{H}[q(0),1] \cap Q,$$
 (4.6)
and

$$z\mathcal{J}_{s,r,1}(n,\lambda)f(z)\neq 0$$
 ,

If the function r(z) is given by (3.9) is univalent in U,

t +
$$\mu q(z)$$
 + $\tau \alpha q^2(z)$ + $\varsigma \frac{zq'(z)}{q(z)} < r(z)$, (4.7)

implies

 $q(z) \prec (z\mathcal{J}_{s,r,1}(n,\lambda)f(z))^{\delta}$, and q(z) is the best subordinant.

Proof. Let the function g(z) defined on U by (3.14). Then a computation show that

$$\frac{zg'(z)}{g(z)} = \delta(\lambda - 1) \left(\frac{\mathcal{J}_{s,r,1}(n+1,\lambda)f(z)}{\mathcal{J}_{s,r,1}(n,\lambda)f(z)} - 1 \right),$$
(4.8)

By setting $\theta(w) = t + \mu w + \tau \alpha w^2$ and $\phi(w) = \frac{\varsigma}{w}$, it can be easily observed that $\theta(w)$ is analytic in $\mathbb{C}, \phi(w)$ is analytic in $\mathbb{C} \setminus \{0\}$ and that $\phi(w) \neq$ $0 (w \in \mathbb{C} \setminus \{0\})$. Also, we get $Q(z) = zq'(z)\phi(q(z)) = \varsigma \frac{zq'(z)}{q(z)}$,

it observed that Q(z) is starlike univalent in U.

Since q(z) is convex, it follows that

$$\operatorname{Re}\left(\frac{z\theta'(q(z))}{\emptyset(q(z))}\right) = \operatorname{Re}\left\{\frac{q(z)}{\varsigma}(2\tau\alpha q(z) + \mu)\right\}q'(z)$$

> 0.

By making use of (4.8) the hypothesis (4.7) can be equivalently written as

 $\theta(q(z) + zq'(z)\phi(q(z)))$

$$= \theta(g(z) + zg'(z)\phi(g(z))),$$

thus, by applying Lemma (2.3), the proof is completed.

5. Sandwich Results

Combining Theorem (3.1) with Theorem (4.1), we obtain the following sandwich theorem .

Theorem 5.1. Let q_1 and q_2 be convex univalent in U with $q_1(0) = q_2(0) = 1$ and q_2 satisfies (3.1). Suppose that Re{ η } > 0, $\eta, \delta \in \mathbb{C} \setminus \{0\}$.

If $f \in W$, such that

$$\left(\frac{(1-\beta)\,z\mathcal{J}_{s,r,1}(n,\lambda)f(z)+\beta z\,\mathcal{J}_{s,r,1}(n+1,\lambda)f(z)}{\beta+1}\right)^{\delta} \in$$

 $\mathcal{H}[q(0),1]\cap Q,$

and the function G(z) defined by (3.3) is univalent and satisfies

$$\begin{aligned} q_1(z) + \frac{\eta}{\delta} \ z \ q_1'(z) \ \prec \mathcal{G}(z) \\ & \prec q_2(z) + \frac{\eta}{\delta} \ z \ q_2'(z), \end{aligned} \tag{5.1}$$

then

$$q_1(z) \prec \left(\frac{(1-\beta) \, z \mathcal{J}_{s,r,1}(n,\lambda) f(z) + \beta z \, \mathcal{J}_{s,r,1}(n+1,\lambda) f(z)}{\beta+1} \right)^{\delta} \prec q_2(z),$$

where q_1 and q_2 are, respectively, the subordinant and the best dominant of (5.1).

Combining Theorem (3.4) with Theorem (4.3), we obtain the following sandwich theorem .

Theorem 5.2. Let q_i be two convex univalent functions in *U*,such that $q_i(0) = 1$, $q_i(0) \neq 0$ (i = 1,2) .Suppose that q_1 and q_2 satisfies (4.8) and (3.8), respectively.

If $f \in W$ and suppose that f satisfies the next conditions :

$$(z\mathcal{J}_{s,r,1}(n,\lambda)f(z))^{\delta} \in \mathcal{H}[q(0),1] \cap Q$$
,

and

 $z\mathcal{J}_{s,r,1}(n,\lambda)f(z)\neq 0$,

and r(z) is univalent in U, then

$$t + \mu q_1(z) + \tau \alpha q_1^2(z) + \varsigma \frac{zq_1(z)}{q_1(z)} < r(z) < t + u q_1(z) +$$

$$\tau \alpha q_1^2(z) + \varsigma \frac{zq_1'(z)}{q_1(z)},$$
 (5.2)

implies

$$q_1(z) \prec \left(z \mathcal{J}_{s,r,1}(n,\lambda) f(z) \right)^{\delta} \prec q_2(z),$$

and q_1 and q_2 are the best subordinant and the best dominant respectively and r(z) is given by (3.9).

References

 T. Bulboaca, Differential Subordinations and Superordinations, Recent Results, House of Scientific Book Publ., Cluj-Napoca, (2005).

[2] S. S. Miller and P. T. Mocanu, Differential subordinations: Theory and Applications, Series on Monographs and Text Books in Pure and Applied Mathematics, 225, Marcel Dekker, New York and Basel, (2000).

[3] S. S. Miller and P. T. Mocanu, Subordinations of differential superordinations, Complex Variables , 48(10),815–826, (2003).

[4] T. Bulboacă, Classes of first order differential superordinations, Demonstration Math. ,
35(2), 287-292, (2002).

[5] R. M. Ali, V. Ravichandran, K. G. Subramanian, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci., 15, 87–94, (2004).

[6] N. Tuneski, on certain sufficient conditions for starlikeness, Internat. J. Math. Sci. 23(8), 521–527, (2000).

[7] T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differential Sandwich theorems for subclasses of analytic functions, Aust. J. Math. Anal. Appl., 3, Article 8, 1–11, (2006).

[8] T. N. Shanmugam, S. Shivasubramanian and H. Silverman, On sandwich theorems for some classes of analytic functions, Int. J. Math. Math. Sci., Article ID 29684, 1 - 13, (2006).

[9] S. P. Goyal, P. Goswami and H. Silverman, Subordination and superordination results for a class of analytic multivalent functions, Int. J. Math. Math. Sci., Article ID 561638, 1–12, (2008).

[10] R. M. Ali, V. Ravichandran and N. Seenivasagan ,On Subordination and superordination of the multiplier transformation for meromorphic functions ,Bull. Malays. Math. Sci. Soc., 33,311 – 324, (2010).

حول مبر هنات الساندوج التفاضلية لدوال احادية التكافؤ المير ومورفيه

وقاص غالب عطشان رجاء علي هريس قسم الرياضيات / كلية علوم الحاسوب وتكنولوجيا المعلومات / جامعة القادسية

المستخلص:

باستخدام المؤثر الخطي، حصلنا على بعض النتائج للتبعية التفاضلية والتبعية التفاضلية العليا للدوال التحليلية الاحادية التكافؤ الاكيدة في قرص الوحدة المثقوب*U. إيضا اشتقينا بعض مبر هنات الساندوج.