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Abstract: 
       In this paper, we deal with the basic concepts in topology on fuzzy normed algebra, such as the balls open and 

balls closed. Next, we study their properties. Furthermore, the concept of derived and closure are discussed.   
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1. Introduction  
      

     The Theory of Fuzzy sets is introduced 

by Lotfi Zadeh [1], and the fuzzy topology 

is defined by Chang [2]. Many 

mathematicians have tried to extend to 

fuzzy set theory the main notations of 

topologies, algebras and groups see ([3]-

[4]) and others as in ([5]-[6]-[7]-[8]-[9]-[10]) . 

The apprehensible of fuzzy fields and fuzzy vector 

spaces was defined first by S.Nanda [11] and 

redefined by R.Biswas [12] . Also introduced the 

apprehensible of fuzzy algebra over fuzzy field was  

defined first S,Nanda [13] and redefined by Gu and 

Lu [14]. Gu Wenxiang and Lu Tu [15] introduced 

the notions of fuzzy vector spaces. In this papers, we 

will present new definitions in topology is called a 

fuzzy normed algebra over fuzzy field. Moreover, 

some of their characteristics are given in this work. 
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2. Preliminaries: 

In this section, we will recall some 

definitions which are needed in this work. 

Definition (2.1): [15] 

Let    be a field . A fuzzy set   of    is called a 

fuzzy field of     If the subsequent prerequisites are 

gratifying : 

(1)  (   )     * ( )  ( )+   

              . 

(2)  (  )   ( )      . 

(3)  (  )     * ( )  ( )+   

               . 

(4)  (   )   ( )   (  )     

We dented by (   ).  

Definition (2.2): [15] 

Let (   ) be a fuzzy field in    A fuzzy set   in a 

vector space   over   is called fuzzy vector space in 

  and denoted by (   ). If the subsequent 

properties gratifying :  

(1)  (   )     * ( )  ( )+   

                

(2)  (  )   ( )        

(3)  (  )     * ( )  ( )+   

              and      

If   is an usual field then prerequisite (3) above will 

be fungible by the subsequent axiom : 

 (  )   ( )               . 

Definition (2.3): [14] 

Let (   ) be a fuzzy field in    A fuzzy set   in 

algebra  over   is called a fuzzy algebra (   )over 

fuzzy field (   )  If the subsequent prerequisites 

materialized : 

(1)  (   )     * ( )  ( )+   

              . 

(2)  (  )  min* ( )  ( )+      and 

      

 

(3)  (  )     * ( )  ( )+   

             . 

(4)  ( )   ( )        

Definition (2.4): [16] 

Let (   ) be a fuzzy field in     be vector space 

over    and let (   ) be a fuzzy vector space over 

(   ). A norm on (   ) is a function,       

   gratifying the subsequent prerequisites: 

(1)  (   )   ( )                

(2)         for all     . 

(3)          if and only if     . 

 (4)       | |      for all      

      and    .  

(5)                  

 for all        

The tuple (       ) is called a fuzzy 

 normed vector space . 

3. Fuzzy Normed Algebra 

In this section, we will introduced and study the 

concept of fuzzy normed algebra 

Definition (3.1): 

Let(   ) be a fuzzy field in    and let   be a fuzzy 

set in algebra   over   (       ) is said to be a 

fuzzy normed algebra over fuzzy field (   ) if: 

(1) (   )  is a fuzzy algebra .                    

( )     is a norm on (   )   

(3)               for all         

Definition (3.2):  

Let (       ) be a fuzzy normed algebra and for 

each           . the open ball   (   ) in   of 

radius   and amidst at     is defined by  

  (   )  *               

             * ( )  (   )} 

and closed ball   
̅̅ ̅(  ) in   of radius   and amidst at 

   is defined by  
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̅̅ ̅(   )   *               

             * ( )  (   )} 

Theorem (3.3):  

Every open and closed balls in fuzzy normed space 

are convex . 

Proof: 

Let (       ) be a fuzzy normed algebra . 

(1) Let a      (    ) and       

                        

We must to prove  

   (   )    (   )  

    (   )      

          (     )  (   )(     ) 

     (   )                                  

         (     )   (   )(     )   

      | |         |   |         

         (   )    . 

Inasmuch|   |     , | |    because 

       . 

And      (   )                 

           (   (   )     )   

          (   (   )  (    ))        

               * (   (   ) )  (    )+  

          * (   (   ) )  (   )+ 

(since  (    )   (   )) 

     (   )    (    )   

   (   ) is  a convex .    

(2) Now to prove   
̅̅ ̅(   ) is a convex . 

Let       
̅̅ ̅(  ) and       

                      

We must to prove 

   (   )    
̅̅ ̅(  )   

    (   )     

                 (    )  (   )(    )  

   (   )      

           (    )  (   )(    )   

         | |        |   |        

 

 

             (   )   . 

Inasmuch |   |     ,| |    because 

       . 

And      (   )      

            (   (   )    ) 

            (   (   )  (    ))        

               * (   (   ) )  (    )+  

          * (   (   ) )  (   )+ 

(since  (    )   (   )) 

    (   )    
̅̅ ̅(  )    

   
̅̅ ̅(  ) is a convex . 

Definition (3.4): 

Let (       ) be a fuzzy normed algebra and   

 .   is  said to be an open set in   if for any     

there exists     such that   (  )   . And   is 

called a closed set in   if    is an open set in   . 

Theorem (3.5):  

(1) Each open ball will be an open set. 

(2) Each closed ball will be a closed set. 

Proof: 

(1)Let (       ) be a fuzzy normed algebra and let 

    ,     (1) We must to prove   (  ) is an 

open set . 

Let     (  )            

                               

But                  , 

we must to prove    
(   )   (   ) . 

Let      
(  )            

                                    

                                      

Inasmuch        

                                           

             

And           (    ) 

                                 * ( )  (  )+ 

        (  ) 
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  (  ) is an open set . 

(2) We must to prove   
̅̅ ̅(  ) is a closed set . And let 

  (  
̅̅ ̅(  ))

  

Inasmuch  

   
̅̅ ̅(  )  *              

                          * ( )  (  )++ 

    *              

                           * ( )  (  )++ 

let               

But                  , 

we must to prove    
(  )      

Let      
(  )           

                                    

                     

Inasmuch        

                                 

                      

         . 

And           (    ) 

                                  * ( )  (  )+  

         
(  )    

   is an open set . 

Hence      
̅̅ ̅(  ) is a closed set. 

Theorem (3.6): 

In any a fuzzy normed algebra (       ) each 

single set is a closed and hence finite set is a closed .  

proof: 

Let    be a single set. 

Suppose   * +  we must to prove   is a closed.  

Let          

                             

                   

Since         

      ( )    ( )     

   ( )        is an open set 

   is a closed set . 

Now to prove each finite set is a closed . 

 

 

Let   be a finite subset of   if     the proof 

ends . 

Either if    . 

Suppose   *          + 

inasmuch *  + is a closed for each  

           

   ⋃ *  +
 
    is a closed set in     

Definition (3.7): 

Let (       ) be a fuzzy normed algebra and    . 

(1) The point     is  called a limit point to set   if 

for every      there exists  

                  and if  

          

           * ( )  ( )+ . Set all limit point 

of set   is called (Derived) of set   and denotes by  

   

   *                     if      

    

          * ( )  ( )+}. 

( )The point      is  called a closure point to set 

  if for all      there exist  

                        

          * ( )  ( )+ . The set whose 

elements all point closure of set   is called 

(Closure) of set   and denotes by   ̅ 

 ̅  *               

             

          * ( )  ( )+}. 

Theorem (3.8): 

Let (       )  a fuzzy normed algebra and let 

     

(1)     ̅ . 

(2)  ̅         
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Proof : 

(1)Let      for all     there exists 

    such that     and 

                  (   ) 

                                              * ( )  ( )+ 

 for all     there exists     such that     

and            

          (   ) 

       * ( )  ( )+ 

     ̅      ̅ 

(2) From (1) we consider that      ̅. This implies 

that         ̅. But 

    ̅   ̅ (since    ̅)  and hence       ̅. 

Conversely, suppose    ̅ there are two 

possibilities  

(a) If            

                       ̅        

(b) If     inasmuch    ̅   for all     there 

exists                   and 

                  (   ) 

                                              * ( )  ( )+ 

inasmuch               

          ̅        

Hence  ̅         

Theorem (3.9): 

Let   convex set in fuzzy normed algebra (       

), then  ̅ convex set . 

 

Proof : 

Let     ̅        . 

We must to prove that  

   (   )   ̅. 

Inasmuch       ̅     ̅ 

                       *  +                

                                 

        ̅                       *  +  

 

 

 

                        

Let         (   )   . 

Inasmuch         for all n  

     (   )      

and            

       (   )      (   )  

     (   )   ̅ 

   ̅ is a convex set . 

Theorem (3.10): 

Let   subalgebra of fuzzy normed algebra (       

), then  ̅ subalgebra in (   )  

Proof: 

Let     ̅            .  

We must to prove that        ̅ . 

Inasmuch      ̅     ̅                

          *  +                

               ̅              

           *  +               

         

Let             . 

Inasmuch         for all n  

            

and            

                . 

Hence         ̅, then  ̅ subalgebra 
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 تبولوجيا جبر المعياري الضبابي
 

 عباس مدلول نوري فرحان المياحي      سؤدد
 المعلومات / قسم الرياضيات جامعة القادسية / كلية علوم الحاسوب وتكنولوجيا 

 
 

 المستخلص:
فً هذا البحث تناولنا المفاهٌم الاساسٌة فً التبولوجٌا  على جبر المعٌاري الضبابً ,مثل الكرة المفتوحة والكرة المغلقة.         

 بعد ذلك, درسنا خصائصها. وعلاوة على ذلك, ناقشنا مفهوم الانغلاق والاشتقاق
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