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Abstract 

Space-time fractional differential equation with integral term (S-TFDE) has been considered. 

The finite difference method (implicit and explicit) combined with the trapezoidal integration formula has been 

used to 

find special formula to solve this equation. The stability and convergence have been discussed. The effect of 

adding an  

integral term to the common classical equation has been considered.  Graphical representation of the calculate 

solutions  

(obtained by the explicit and the implicit methods) for three numerical examples with their exact solution, are  

considered. All the calculations and graphs are designed with the help of MATLAB. 
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1 – Introduction 

Fractional order differential equations have excited, 

in recent years, a considerable interest both in 

mathematics and in applications. They were used in 

modeling of many physical, chemical processes and 

engineering. A physical mathematical approach to 

anomalous partial differential equations (PDE), may 

be based on generalized (PDE) containing 

derivatives of fractional order in one only (space or 

time), or in together space and time. It is well known 

that the differential equations represent local 

interactions in the mathematical models, while the 

representation of integral equation represent  the 

global interactions of the  phenomenon, see for 

examples [1, 2,3, 4and 5]. Many researchers used 

different methods to solve different models of the 

fractional order equations. Meerschaert and Tadiran 

[6] used the finite difference method to solve the 

space-fractional advection dispersion. R. Gorenflo, 

F. Mainardi [7] used Laplace transform to solve 

Fractional Order linear Integral and Differential 

Equations. J.P. Roop, [8], considered boundary 

value problems in R2 with the finite element 

method. Our main objective is studying the 

following fractional order equation:
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(1) 

where: 0 < α ≤ 1; 1< β ≤ 2; 0≤ x ≤ l; 0 ≤ t ≤T  

with initial and boundary conditions given 

respectively: 

u(x,0) = f(x)             0≤ x ≤ l 

u(0, t) = u(1, t) = 0  

Corresponding to the classical integro-differential 

parabolic form:  
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Considered by [9]. The effect of the integral term 

will be studied in both, implicit and explicit 

methods, when solving the class of initial boundary 

value space-time fractional equation (1). 

 

2-material and method 

The numerical treatment of fractional order partial 

differential equations has its importance because the 

limited use of the analytical methods In many cases 

there is no analytical treatment for different reasons 

concerning the domain under consideration or the 

regularity of the boundary or even the equation 

itself. Many authors have considered the numerical 

treatment of space or time fractional partial 

differential equations. Zhuang and Liu [10], implicit 

difference approximation for the time fractional 

diffusion equation has been considered. 

 

 

 

 Also they analyzed the stability and convergence. S. 

Shen and F. Liu [11] proposed an explicit difference 

approximation for the space fractional diffusion 

equation and gave an error analysis. M. Meerschaert 

and C. Tadjeran [12] proposed finite difference 

approximation for fractional advection dispersion 

flow equations. Mainardi [13] the fundamental 

solution of the space-time fractional diffusion 

equation was discussed, he deals with the Cauchy 

problem for the space-time fractional diffusion 

equation. Gorenflo [14], a discrete random walk 

model for space-time fractional diffusion was 

proposed .Diego A. Murio[15],developed an implicit 

unconditionally stable finite difference scheme to 

solve the linear one-dimensional diffusion equation 

with fractional time derivatives. F. Liu, S. Shen, V. 

Anh and I. Turner[18], an explicit finite difference 

scheme for time fractional differential equation is 

presented. Discrete models of a non-Markovian 

random walk are generated for simulating random 

processes whose spatial probability density evolves 

in time according to this fractional diffusion 

equation. In this work proposed fractional order 

implicit and explicit finite difference approximation 

for space-time fractional heat equation with integral 

term (1), (S-T FDE). Riemann-Liouvill fractional 

derivative of order 1< β ≤2, Caputo fractional 

derivative of order 0< α ≤1, are using, trapezoidal 

method has been used to approximate the integral 

term, studying of stability and convergence of both 

methods, that will be given through studying of 

different examples.  
 

3-Theory and basic definitions 
Riemann, Caputo and  Grunewald, fractional 

integral and fractional derivatives that be used for 

approximating derivatives, will be given. Also, 

trapezoidal rule will be used to approximate integral 

term, For more detail, see  [15,16,17].  
 

3-1 Riemann-Liouville  

 fractional Integral of order β > 0 given by the form 

[1-18], 
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3-2 Riemann-Liouville fractional derivative of 

order 

 let m denotes a positive integer such that m-1<β≤m, 

then fractional order derivative Riemann-Liouville 

of order β will be given by the form: 
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3-3 Caputo fractional derivate 

Let m denotes a positive integerm-1< α ≤m, then the 

Caputo’s fractional derivative of order α given by: 
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Some properties of fractional derivatives: 
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where a= -1; for a=1then tt
t eeD  by the same way 
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3-4 Grünwald formula 

 The fractional derivative can be written with the 

help of Grünwald formula as: 
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Where the normalized Grünwald’s weights 

function will be defined as: 

!
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Note: that these normalized weights depend only on 

the order   and the index k. 

M.M. Meerschaert, J. Mortensen and H.P, Scheffler, 

[18] developed an extension of the Grünwald 

formula for vector fractional derivatives. And use 

this result for numerical solution of fractional partial 

differential equations where the space variable is a 

vector. 
 

3-5 The trapezoidal rule 

To approximate the integral term appear in equation 

(1),  trapezoidal rule will be used as. 
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To preserve the accuracy of the overall 

approximation of the finite difference representation 

of equations (1) we use the composite form of the 

trapezoidal rule, suppose that the interval [a,b] is 

subdivided into m subintervals

mixx ii ,,2,1],,[ 1  of width
m

ab
h


 ; so that 

hiaxi  , the composite rule takes the form 
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subintervals ],[ 1 kk tt  of width
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where (k=0,1,2,…,n), nN
+
, then
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4- Numerical Solution: 

Consider equation (1) with the initial and boundary 

conditions, where the time fractional derivative is 

understood in the sense of Caputo and the space 

derivative appearing in the right hand side is 

understood in the sense of Riemann-Liouville.  

Let ),( ki
k
i txuu  for all i, k, let ihxi  , 

m
h

1
 and 

ktk  ;
n

T
 where mi ,,2,1,0  ;

nk ,,2,1,0  . 

Replace  the terms  in equation (1) by its 

approximation to obtain an algebraic relations which 

are satisfied some accuracy at each point. in these 

algebraic equations, The approximation will classify 

as explicit or implicit according to the appearance of 

the unknowns in each equation. The algebraic 

system or the approximation is termed explicit, if 

the system can be arranged , where that every 

equation contains only one unknown otherwise it is 

implicit.  

Let ui
k
= ),( txu ki ; (i=0,1,…,m; k=0,1,…,n) be the 

exact solution of  equation (1) at the mesh points 

(xi,tk). 

Let Ui
k
 be the numerical approximation to exact 

solution at the same mesh points ),( tx ki .  

4-1 Explicit Method 

Explicit finite difference method will be used in this 

section, to find approximation-solution of equation 

(1). 

Using the following approximations: 

The approximation of  Caputo’s fractional derivative 

of order α given as: 
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Let s= )( 1 zt k   then equation (10) becomes: 
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Now. Grünwald formula used to approximate 

Riemann-Liouville fractional derivative of order 1≤ 

β ≤ 2: 
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Where for i=0, 1, 2, …;  0< β ≤ 2 ;
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Now putting equations (9, 14 and 15) in equation 

(1), with some simple algebraic operations, the 

general system of equations has been written as: 
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This system of equations (17) has the forms at (k= 0 

and k ≥1) respectively: 
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By using matrix formula this system will be written 

as:        U
k+1

 = A U
k
    where  



























 














alvaluetheinitifU

ubbc

GUbcUAU

UAU

k
ij

k

j
j

k
ik

kk

0

1
1

1

1

01

01

)2(

)( 

                

(20) 

Where A =[Aij] is the matrix of coefficient, has 

form: 
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4-2 Implicit Method:  

By using the same approximation in section 4-1 to 

approximate the fractional derivatives in implicit 

formula one will get:  
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Let s= )( 1 zt k  we have: 

)()],(),([

)1(

),(

)1(

0
1

1
















o
s

dz
txutxu

t

txu

j

j

k

j
jkijki

ki

 















         

(23) 

)(])()1([)],(),([

)2(

),(

1

0
1

1















ojjtxutxu

t

txu

k

j
jkijki

ki

 
















(24) 

Let ])()1([
1

jjb j
 

 ; j=0, 1, 2,…           

(25) 

 

 

 

 

 

 

)()],(),([

)2(

),(

0
1

1












otxutxub

t

txu

k

j
jkijkij

ki

 














;0< α ≤ 1     

(26) 

Define this operator:  
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Let c and c1 are two constants, then: 
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Now, shifted Grünwald formula used to 

approximate Riemann-Liouville of order 1≤ β ≤ 2: 
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Where for i=0,1,2,… ;     0 < β ≤ 2     
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Put equations (9, 26 and 29) in equation (1), yield  
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Where i=1,2,…,m-1; k=1,2,…,n-1 further, the 

system of equations(33) written at k=0, k=1and k >1 

respectively:  
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System of equations (34, 35 and 36) will be written 

by matrix formula as: AU
k+1

 = U
k
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Where A= [Aij] is the matrix of coefficient, it has the 

form: 
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5-Stability and Convergence:  

There are three fundamental properties (consistency, 

convergence and stability), that every approximation 

of partial differential equations by finite differences, 

should possess it. The (Peter Lax theory), below, 

Will be shown the relation between these three 

properties. 

consistency  
implies that the finite difference equation is a good 

approximation of the partial differential equation, 

 

 

 
convergence 

 implies that the solution of the difference equation 

approaches the solution of the partial differential 

equation as the computational mesh is refined. 

Stability 

 implies that the solution of the difference equation 

is not too sensitive to small perturbations ( say,  

initial data), These properties are often difficult to 

verify for realistic problems, but they can be 

explained and illustrated quite easily using 

difference schemes for some simple model 

problems. Peter Lax, has made major contributions 

in areas including mathematical physics, in areas of 

numerical analysis. He gaves important theory, in 

this theory, to prove convergence one can work with 

the discrete scheme alone, providing it is consistent. 

5-1 Stability and Convergence of explicit finite 

differe-nce  method, equation (19). 

Theorem1 (Lax Equivalence Theorem) 

 If the finite difference method U
n+1 

= BU
n
 + kf

n
 is 

stable, then nn uU  ≤ CT m
nm

Tmax
1,,0  

for all n 

such that 

 nk = T.   Where:  

1- Un ,un denotes the vector of approximate and 

exact solutions(xj, tn) at mesh points(xj, tn) 

respectively, Tm dented a vector of local truncation 

errors T(xj, tm). 

2- So provided the method is consistent, the 

convergence rate is determined by how quickly the 

maximum over all local truncation errors (up to t = 

T) approaches 0 as 

k→0. So “consistency + stability=⇒ 

convergence”. For more detail of proof,  see 

[20,12].  

Theorem2 (Gerschgorin’s Theorem): 

 Let A be a coefficients matrix A=(aij), and let x =(x1, 

x2,…,xn), be an eigenvector of A corresponding to 

the Eigen value λ. Then for some i we have | xi | ≥ | 

xj| for all j≠i, and since x is an eigen-value, then 

| xi| ≥ 0 and Ax = λx or  (λI – A) x=0, Which 

represents n simultaneous equations for the i
th

 

equation as: 

0)( 


xaxa j
ij

ijiij  Then 0
 x

x
aa

i

j

ij
ijii  

These eigenvalue lies in one circles 
ij

ijii aa

 

This means there are n circles corresponding to 

i=1,2,…,n. 

Suppose that B(r), 0 ≤ r ≤ 1 is the (n by n) matrix 

given by bii = aii then bij =raij ;i≠ j then eigenvalues 

of b( r ) lie in the circles   
ij

ijii atat .  
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Since in this method a Grunewald formula is using 

to approximate Riemann fractional derivative and 

approximate Caputo fractional derivative, then the 

consistency proof for this case are facilitated by 

assuming zero Dirichlet boundary conditions, So 

that the solution may be zero-extended beyond the 

interval 0 ≤ x ≤ L. thus the Riemann,Grünwald and 

Caputo definitions for the discratization have been 

shown to be O (Δx) for 1≤ β ≤ 2 and O (Δt) for 0≤ α 

≤ 1.  See [14-15-16]. 

 In view of Lax’s equivalence theorem these 

methods converge if and only if these are stable. 

Since the system ofequation of explicit written by 

the matrix form as: FUAU
kkk 1  Where 

Tk
m

kkkTk
m

kk
k ffffuuuU ],...,,,[F;],...,,[ 1210

k
121  

and 

f
k
 = f (x,tk,u,g) at k time step this mean the term of 

function add to the stander heatequation, A is the 

matrix of coefficients, and is the sum of a lower 

triangular matrix and super-diagonal matrix. The 

matrix entries Aij for i=1,2,…,m-1 ; and  j=1,2,…,m-

1,defined by : 
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Am,j=0 for  j=0,1,2,…,m-1 with notes(a,b,c and d) 

at(2-1) ,and by the Greschgorin theorem the 

eigenvalue of matrix A lie in the union of the circles 

centered at Aii with radius 
ij
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=1+ r g1 = 1 – r β and for Ri we have:
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Therefore Aii+ Ri ≤ 1. We have Aii-Ri = 1 – r β – Ri 

≥ 1- 2rβ. So that we have for spectral radius of the 

matrix A to be at most one, it suffices to have (1- 

2rβ) ≥ -1.which yields the following condition of   r, 





 1


h
r  . 

Under this condition on  r the spectral radius of 

matrix  A is bounded by one ,with spectral radius so 

bounded, the numerical error do not grow , and the 

explicit method defined above is conditionally 

stable. Moreover the explicit method defined above 

is consistent with order O(Δt
n
) + O(Δh

m
)’ where n,m 

are integer numbers with   (n-1≤ α ≤ n ) and (m-1≤ β 

≤ m ).This mean explicit method consistent and 

conditionally stable then it is converging, the one of 

special case is; 

if α=1 and β=2 the condition become r ≤ 1/2, this 

condition of classical parabolic of PDE. 

 

 

 

5-2 Stability and Convergence of implicit finite 

difference approximate equation (33): 

5-2-1 Stability:  

           the following lemma will be proved for the 

system of equations, which are using to 

approximate solution of eq(1) by using implicit 

way,  the coefficients bk and gj , where (k=0,1,2,…); 

(j=1,2,…) satisfy the following: 

 bj> bj+1 for all j=1,2,… 

 b0=1; bj> 0 for all j =0,1,2,… 

 g1 = - β; gj ≥ 0 for all j ≠ 1; 0
0




j
jg  

 for any positive integer n; 0
0




n

j
jg  

Suppose that k
iU

~
; i=0, 1… m; k=0,1,…n is 

approximate solutions of equation (33). Define error 

as: uu
k
i

k
i

k
i  ~~  for all i; k, the error satisfies system  

equations then: 
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(41) 

Equations (33 and 34) written by using matrix form 

as: 
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Where ;],...,,[ 121
Tk

m
kkkE    

Now we use mathematical induction to prove  

EEk 0


 for all k=1, 2,…,so that the theorem 

will be done then fractional implicit difference 

method defined in equation (33) is unconditionally 

stable. 

Now when k=1 not that, and gj> 0, j≠ 1,then from 

equation (40 and 41) 
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 5-2-2Convergence: 

Let U
k
i be the numerical solution of equation (33) at 

mesh-points (xi, tk), where i=1,2,…,m; k=1,2,…,n, 

now, define error as: 

e
k
j= u(xi, tk) -U

k
i      for all i and k.  

sincee
k
 =(e

k
1,e

k
2,…,e

k
m-1)

T
,  

 

 

 

substitution e
k
j and e

0
 into equation (41) we have: 
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We have (i=1, 2, ... , m-1; k=1, 2,…, n) and 
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Then,  using of the mathematical induction to give 

the convergence analysis as follows: 
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Hence there is constant C such that: 

)( 1111 hbCe k
k    



 for k=0,1,2,… 

If kτ ≤ T is finite the convergence is given by the 

following theorem: 
 

Theorem3: let U
k
i be approximate value of u(xi, tk) 

computed by using equation (33), then there is a 

positive constant C such that: 

nkmihCtxuU ki
k
i ,...,2,1;1,...,2,1);(),(    

6- Numerical Examples:  

    Three examples with known exact solutions are 

considered. The examples are chosen such that the 

behavior of the solution has different 

characterizations with space and time ranging from 

polynomial, sinusoidal and exponentially decay. 

Example 1: consider equation (1), with  

)()6275.2()
)4(

)4(

)3(

)3(
()1)(sin())

4
(sin()(),(

32
3

2
32

xx
x

x
ttxxtxq


























 (43) 

 

 

 

 

 

 

 

 

the boundary conditions u(0,t) = u(1,t) = 0, t > 0 ; 

and  the initial condition (x,0)=(x
2
–x

3 
),  x  [0,1],  

where the exact solution  is  u(x, t)=(x
2
–x

3
) 

(sin(t)+1) 

Table 1 shows different choice of n, m, α and β, for 

two methods. 
cha α β n m τ1 τ2 err1 err2 

1 .8 1.3 10^4 10 .0001 .0007 .018 .013 

2 .5 1.5 50 50 .2 .06 .01 .0038 

3 .8 1.3 50 20 .2 .05 .01 .0038 

Table 1 
 

Figure1 illustrates the exact solution and the 

numerical solutions obtained by using explicit 

method table1 shone the choice of  n, m to achieve 

condition of stability, the large step of time gives 

small maximum error, with fixed α, β.    

 

 

 

 

 

 

 

 

 

 

Figure (2) illustrates the exact and the numerical 

solution by using implicit method, for α = and β = at 

two time-steps with different choice of (h, τ), 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure (3)illustrates the exact and the numerical 

solution by using implicit method, for α = and β = at 

two time-steps with different choice of (h, τ), 

 

 

 

 
         Figure1. numerical and anlaytic graph of soluthins 

               using explicit method of examble 1 

 

 
Figure2. numerical and anlaytic graph of soluthins 

using implicit method of examble 1 
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Example 2:consider equation (1), with 
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(44) 

the boundary conditions u(0,t) = u(1,t)=0, t>0 ; and 

the initial condition u(x,0) = (x
4
–x

3
),  x  [0,1], 

whose exact solution has the form u (x,t) = (x
4
–x

3
) 

(exp(-t)). 

 

Table 2 shone different choice of n, m, α and β, for 

two methods. 

cha α β n m τ1 τ2 err1 err2 

4 .5 1.5 16e4 20 St_2 St_9 .026 .0098 

5 .5 1.5 2500 50 St_2 St_9 .007 . 005 

6 .5 1.5 40 100 .01 .02 .027 .004 

                       Table 2 

Figure4 shows the exact and approximate solutions 

using explicit method; goes to exact solution with 

high time step, different in error with different 

choice of τ at table 2 shone that. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure5 and 6 show exact and approximate solutions 

by using implicit method, with different values of α 

and β. Both are choosing to show  how the 

approximate solution go to exact solution with large 

values of n and m. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 3: consider equation (1), where 

)sin())54.2()3((

)]
4

sin((x)sin()[(et)q(x, t-

x

x




 



                 (45) 

With boundary and initial conditions: u(0,t) = u(1,t) =0; 

t  [0,1] ;u (x,0) =sin(πx), x  [0,1]; with the exact 

solution  u (x,t) = sin(πx) ( exp(- t)), 

 

 

 

 

 

 

 

 

 

 
Figure3. numerical and anlaytic graph of soluthins 

using implicit method of examble 1. 

 

 
Figure4. numerical and anlaytic graph of soluthins 

using explicit method of examble 2 

 

 
Figure5. numerical and anlaytic graph of soluthins 

using implicit method of examble 2 

 

 
Figure6. numerical and anlaytic graph of soluthins 

using implicit method of examble 2 

 

 
Figure7. numerical and anlaytic graph of soluthins 

using explicit method of examble 3 
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Figure7 shows  how the approximate solution goes 

to the exact solution with choose the higher time 

step, with fixed (α = 0.8, β = 1.5) and choose (n = 

10^4; m = 10) to achieve the condition of stability. 

 

 

 

 

 

 

 

 

 

 

Figure 8 shows how the maximum error become 

small with high time step (τ = 0.075; τ = 0.25), with 

fixed (α = 0.5, β = 1.5) and choose (n = m = 40).   

 

 

 

 

 

 

 

 

 

 

 

Figure 9 shows how the maximum error become 

small with high time step (τ = 0.075; τ = 0.25), and 

with large choice of (n = 100; m = 40), fixed (α = 

0.5, β = 1.5).  

 

 

 

 

 

 

 

 

 

 

 

Figure 10 shows what happen to approximate 

solution with chosen values of n, m that didn’t 

achieve the condition of stability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11 shows that good approximation with 

chosen large n ,m with fixed n and m achieved 

condition of stability and fixed α and β.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12 shows the choice of n = 20, m = 32000 the 

condition of stability is done and with fixed α and β 

good approximation with chosen large n ,m.  

 

 

 

 

 

 

 

 

 
Figure8. numerical and anlaytic graph of soluthins 

using implicit method of examble 3 

 

 
Figure9. numerical and anlaytic graph of soluthins 

using implicit method of examble 3 

 

 
Figure10. where (m,n) are not satisfy condation 

 

 
Figure11. where (m,n) are satisfy condation 

 

 
Figure12. shown the same example with choice n,m large 
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Conclusion 

in this work implicit method gives approximate 

solution better than explicit with the same time and 

space split periods i.e same choice of (m,n). see 

Figure (1-9). Morever implicit method is 

unconditionlly stability and it’s faster than explicit 

method because it isn’t need high value of m or n to 

give small error. The explicit method has stability 

with this condition 





 1


h
r ,this mean if we 

choose m integer number (i.e choose h= 1/m) then 

we must choose n (i.e τ=1/n ) tosatisfy this quality, 

see Figure10 where (m,n are not satisfy 

condation ) ,Figure11 shows the same examble but 

with n,m to satisfy condation ,Figure 12 shows the 

same example with choice n,m larger than Figure 

10,11.The adding of any terms, like the integral 

term, will don’t give any changing in stability and 

converg ,because, (since we use the method of 

trapezoidal to approximate integral term and it has 

error smaller than the order error of exiplicit or 

implicit methods, with this not: exiplicit method 

don’t change in condition of stibilety). 
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تعميم طريقة الفروق المنتهية لحل معادلات تفاضلية جزئية معينة ذات رتب كسورية نوع 
 القطع المكافيء

 

 رغد كاظم صالح      أيمان حسن عودة     مديحة شلتاغ يوسف     احمد محمد شكر 

 فرع الرياضيات وتطبيقات الحاسوب-قسم العلوم التطبيقية-الجامعة التكنولوجية

 
 

 

 

 المستخلص :

 (S-TFDEتم دراسة معادلات تفاضلية جزئية ذات رتب كسورية في الزمن والمكان معا.)

تم استخدام الطريقة الضمنية والصريحة مع طريقة شبه المنحرف لايجاد صيغة خاصة لحل هذا النوع من المعادلات. تم 
تم دراسة وبيان تأثير اضافة الحد التكاملي على  مناقشة التقارب والاستقراية لهذه الطريقة وايجاد شرط التقارب. كذلك

المعادلة التفاضلية. تم حل ثلاث امثل وايجاد الرسومات للحلول العددية والحل الحقيقي وبيان تفاصيل النتائج من خلال هذه 
 الرسومات. برامج ايجاد الرسومات وبرامج ايجاد النتائج تمت بالاستعانة ببرنامح الماتلاب.

 

 ية:مفتاحالكلمات ال

  PDE تكاملية ذات رتب كسو, معادلات التفاضلية نوع القطع المكافيء ذات -, معادلات تفاضلية ذات رتب كسورية
 الرتب الكسورية.
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