Journal of AL-Qadisiyah for computer science and mathematics Vol.10 No.3 Year 2018 ISSN (Print): 2074 – 0204 ISSN (Online): 2521 – 3504

Math Page 97- 102 Mazen .O

Permuting Jordan Left Tri – Derivations On Prime and semiprime rings

Mazen O. Karim Department of mathematics, College of education , University Of Al-Qadisiyah mazen.karim@qu.edu.iq

Recived : 13\11\2017 Revised : 22\11\2017 Accepted : 17\7\2018

Available online : 6/8/2018

DOI: 10.29304/jqcm.2018.10.3.409

Abstract :

Let $\mathfrak K$ be a 2 and 3 – torsion free prime ring then if $\mathfrak K$ admits a non-zero Jordan left tri- derivation $B: \mathfrak{K} \times \mathfrak{K} \times \mathfrak{K} \to \mathfrak{K}$, then R is commutative ,also we give some properties of permuting left tri - derivations.

Keywords: prime ring , semiprime ring , left tri-derivation, Jordan left tri-derivations.

Mathematics Subject Classification: 16A12; 16A68; 12A72

1.Introduetion:

Throughout this paper we will use $\tilde{\mathbf{R}}$ to represent an associative ring with center $Z(\mathfrak{K})$, \mathfrak{K} is said to be n-torsion free if $na = 0$, $a \in \mathfrak{K}$ implies $a = 0$ [5].

A ring $\hat{\mathbf{x}}$ is called prime(semiprime) if $a\hat{\mathbf{x}}b = 0$ $(a\mathfrak{K}a = 0)$ implies that $a = 0$ or $b = 0$ ($a = 0$) [3] .A mapping $D: \mathfrak{K} \times \mathfrak{K} \times \mathfrak{K} \longrightarrow \mathfrak{K}$ is said to be permuting if

 $D(x_1, x_2, x_3) = D(x_{\pi_1}, x_{\pi_2}, x_{\pi_3})$ hold for all $x_1, x_2, x_3 \in \mathfrak{K}$ and every permute π_1, π_2, π_3 .

A mapping $d: \mathfrak{K} \to \mathfrak{K}$ defined by $d(x) =$ $D(x, x, x)$ is called the trace of $D(\ldots)$ where $D: \mathfrak{K} \times \mathfrak{K} \times \mathfrak{K} \to \mathfrak{K}$ is permuting tri- additive mapping [3], a tri-additive mapping $D: \mathfrak{K} \times \mathfrak{K} \times$ $\mathfrak{K} \to \mathfrak{K}$ is called tri – derivation if $D(x_1x_2, y, z) = x_1D(x_2, y, z) + D(x_1, y, z)x_2$ $D(x, y_1y_2, z) = y_1D(x, y_2, z) + D(x, y_1, z)y_2$ and $D(x, y, z_1 z_2) = z_1 D(x, y, z_2) + D(x, y, z_1) z_2$ are hold for all $x, y, z, x_i, y_i, z_i \in \mathbb{R}$ [3]. The trace d of D satisfy the relation $d(x + y) = d(x) + d(y) + 3D(x, x, y) +$ $3D(x, y, y)$ for all $x, y \in \mathbb{R}$ [7].

 A. K. Faraj in [1] and R. C. Shaheenin [6] define the permuting left tri- derivation as follows a permuting tri-additive mapping $D: \mathfrak{K} \times \mathfrak{K} \times \mathfrak{K} \to$ v is called permuting left tri – derivation if $D(x_1x_2, y, z) = x_1D(x_2, y, z) + x_2D(x_1, y, z)$ $D(x, y_1y_2, z) = y_1D(x, y_2, z)$ $+y_2D(x, y_1, z)$

and

 $D(x, y, z_1 z_2) = z_1 D(x, y, z_2)$ $+z_2D(x, y, z_1)$

are hold for all $x, y, z, x_i, y_i, z_i \in \mathfrak{R}$, $i = 1,2$ also D is called permuting Jordan left tri – derivation if $D(x^2, y, z) = 2xD(x, y, z)$, $D(x, y^2, z) =$ $2yD(x, y, z)$ and $D(x, y, z^2) = 2zD(x, y, z)$ are hold for all $x, y, z \in \mathfrak{R}$

 In this paper , we gave some properties of permeating left tri-derivation, also we prove that if $\hat{\mathbf{R}}$ is a prime ring of characteristic not equal 2 and 3 and $\mathfrak K$ is admit anon-zero Jordan left-tri-derivation on \mathfrak{K} . Then \mathfrak{K} is commutative.

2.Permuting left tri-derivations:-

In the following theorem we introduce some properties of permuting Jordan left tri –derivation on a ring

Theorem 2.1:

Let v a 2 - torsion free ring. If $B: \mathfrak{K} \times \mathfrak{K} \times$ $\mathfrak{K} \to \mathfrak{K}$ is a Jordan left tri – derivation then for all $a, b, y, z \in \mathfrak{K}$ we have.

i) $B(ab + ba, y, z) = 2aB(b, y, z) +$ $2bB(a, v, z)$ ii) $B(aba, y, z) = a^2 B(b, y, z) + 3abB(a, y, z)$ $baB(a, y, z)$ iii) $B(abc + cba, y, z) = (ac + ca)B(b, y, z) +$ $3abB(c, y, z) + 3cbB(a, y, z)$ $-baB(c, y, z)$ – $bcB(a, y, z)$ iv) $[a, b]aB(a, y, z) = a[a, b]B(a, y, z)$ v) $[a, b]$ { $B(ab, y, z) - aB(b, y, z) - b$ $bB(a, y, z) = 0$ **Proof:** i) Since $B(a^2, y, z) = 2aB(a, y, z)$ replace a by $a + b$ $B((a + b)^2, y, z) = B(a^2 + ba + ab + b^2, y, z)$ $= B(a^2, y, z) + B(b^2, y, z) +$ $B(ab + ba, y, z)$ $= 2aB(a, y, z) + 2bB(b, y, z) +$ $B(ab + ba, y, z)$... (1) Now $B((a + b)^2, y, z) = 2(a + b)B(a + b)y, z)$ $= 2aB(a + b), y, z) +$

 $2bB(a + b, y, z)$ $= 2aB(ay, z) + 2aB(b, y, z) +$ $2bB(a, y, z) + 2bB(b, y, z)$...(2)

comparing (1) and(2)we get $B(ab + ba, y, z) = 2aB(b, y, z) + 2bB(a, y, z)$ ii) From(i) we have for $a, b, \gamma, z \in \mathfrak{R}$. $B(a(ab + ba) + (ab + ba)a, y, z) = 2aB(ab +$ ba, y, z) + 2($ab + ba$) $B(a, y, z)$ $= 2a\{2aB(b, y, z) + 2bB(a, y, z)\} +$ $2abB(a, y, z) + 2baB(a, y, z)$ $= 4a^2B(b, yz) + 6abB(a, y, z) +$ $2baB(a, y, z)$...(3) On the other hand , we have $B(a(ab + ba) + (ab + ba)a, y, z) = B(a^2)$ $aba + aba + ba^2, y, z)$ $= B(a^2)$ ba^2 , y, z) + 2B(aba, y, z) $= 2a^2B(b, v, z) +$ $4baB(a, y, z) + 2B(aba, y, z)$...(4) Composing (3)and(4) we get $2B(aba, y, z) = 2a^2B(b, y, z) +$ $6abB(a, y, z) - 2baB(a, y, z)$ So that $2B(aba, y, z) = 2(a^2B(b, y, z) +$ $3abB(a, y, z) - baB(a, y, z)$ Since R is 2-torsion free we have $B(aba, y, z) = a^2 B(b, y, z) + 3abB(a, y, z)$ $-$ baB(a, y, z). iii) Linearizing (ii) on α we get $B((a+c)b(a+c)$, y, z) $=(a+c)^{2}B(b, y, z) + 3(a+c)bB(a)$ $(c, y, z) - b(a + c)B(a + c, y, z)$ $= a^2 B(b, y, z) + acB(b, y, z) + caB(b, y, z)$ $+ c^2 B(b, y, z)$ $+ 3abB(a + c, y, z)$ $+3cbB(a + c, y, z) - baB(a + c, y, z)$ $bcB(a + c, y, z)$ $= a^2 B(b, y, z) + acB(b, y, z) + caB(b, y, z) +$ $c^2B(b, y, z) + 3abBca, y, z)$ $+3abB(c, y, z) + 3cbB(a, y, z) + 3cbB(c, y, z)$ $baB(a, y, z)$ $-baB(c, y, z) - bcB(a, y, z)$ $bcB(c, y, z)$...(5) In other hand $B((a + c)b(a + c), y, z) = B(aba + abc + cba + c))$ $(bc, y, z) = B(aba, y, z) + B(abc + cba, y, z) +$ $B(cbc, y, z) = a^2 B(b, y, z) + 3abB(a, y, z)$ $baB(a, y, z) + B(abc + cba, y, z) + c^2B(b, y, c) +$ $3cbB(c, y, z) - bcB(c, y, z)$...(6) Comparing (5) and(6) we have. $B(abc + cba, y, z) = (ac + ca)B(b, y, z) +$

 $3abB(c, y, z) + 3cbB(a, y, z)$

 $-baB(c, y, z) - bcB(a, y, z)$

(iv) Assume that $w = B(ab(ab) + (ab)ba, y, z)$ Then by (iii) we obtain $w = (a(ab) + (ab)a)B(b, y, z) + 3abB(ab, y, z)$ $+3(ab)bB(a, y, z)$ $-$ baB(ab, y, z) $- b(ab)B(a, y, z)$ $w = (a^2b + aba)B(b, y, z) + 3ab B(ab, y, z)$ $+3ab^2B(a,y,z)$ $- ba B(ab, y, z)$ $-babB(a, y, z)$...(7)

On the other hand $w = B((ab)(ab) + (ab)ba, y, z)$ $= B((ab)^2, y, z) + B(ab^2a, y, z)$ $= 2abB(ab, y, z) + a^2B(b^2, y, z) +$ $3ab^2 B(a, y, z) - b^2 a B(a, y, z)$ So by definition of B $w = 2abB(ab, y, z) + 2a^2bB(b, y, z) +$ $3ab^2 B(a, y, z) - b^2 a B(a, y, z)$...(8) By comparing (7) and (8) $[a, b]B(ab, y, z) + abaB(b, y, z) - b(ab)B(a, y, z)$ $-a^2bB(b, y, z)$ $+ b (b a) B(a, y, z) = 0$ Then $[a, b]B(ab, y, z) - a[a, b]B(b, y, z)$ $-b[a, b]B(a, y, z) = 0$ so $[a, b]B(ab, y, z) = a[a, b]B(b, y, z) +$ $b[a, b]B(a, y, z)$...(9) Replace b by $a + b$ in (9) $[a, a + b]B(a(a + b), y, z) = [a, b]B(a², y, z) +$ $[a, b]B(ab, y, z)$ $= 2[a, b]aB(a, y, z) + a[a, b]B(b, y, z) +$ $b[a, b]B(a, y, z)$ $= a[a, a + b]B(a + b, y, z) + (a + b)[a, a + b]$ b $B(a, v, z)$ $= a[a, b]B(a, y, z) + a[a, b]B(b, y, z) +$ $a[a, b]B(a, y, z) + b[a, b]B(a, y, z)$ Hence $2[a, b]aB(a, y, z) = 2a[a, b]B(a, y, z)$ Since \Re is 2-torsion free, then $[a, b]$ $aB(a, y, z) =$ $a[a, b]B(a, y, z)$...(10) (v) In (10) replace a by $+b$, the left hand give $w = [a + b, b] (a + b) B (a + b, y, z)$ $= [a, b]aB(a, y, z) + [a, b]a B(b, y, z) +$ $[a, b]bB(a, y, z) + [a, b]bB(b, y, z)...(11)$ The right hand give $w = (a + b)[a + b, b]B(a + b, y, z)$ $= a[a, b]B(a, y, z) + a[a, b]B(b, y, z) +$ $b[a, b]B(a, y, z) + b[a, b]B(b, y, z)$...(12) from(9)we have $[a, b]B(ab, y, z) = a[a, b]B(b, y, z)$ $+ b[a, b]B(a, y, z)$

So that by using (10) $[a, b]B(ab, y, z) = [a, b](aB(b, y, z))$ $+ bB(a, y, z)$ $[a, b] {B(ab, y, z) - aB(b, y, z) - bB(a, y, z)} = 0$ **3.The Main Results: Theor**em 3.1: let \Re be prime ring of char $\Re \neq 2,3$, then if admits a non –zero Jordan left – tri derivation $B: \mathfrak{K} \times \mathfrak{K} \times \mathfrak{K} \to \mathfrak{K}$, then \mathfrak{K} is commutative **Proof**: we divide proof to some steps. **Step1**: If $B(a, y, z) \neq 0$ for some $a, y, z \in \mathbb{R}$ then $(a[a, x] - [a, x]a)^2$ Let a be a fixed element in \Re and ϕ : $\Re \rightarrow \Re$ be a mapping defined by $\emptyset(x) = [a, x]$ for all $x \in \mathfrak{K}$ Now [Theorem 2.1 ,iv] can be written in the form $x^2(x) B(a, y, z) =$ for all $x \in \mathfrak{K}$ (13) Since the mapping $\phi(x)$ is a derivation, we have $\phi^2(x_1x_2) = \phi^2(x_1)x_2 + 2\phi(x_1)\phi(x_2) + x_1\phi^2(x_2)$ And from (13) it follows that $\phi^2(x_1x_2)B(a, y, z) =$ $\mathbf{0}$ hence $(\phi^2(x_1)x_2 + 2\phi(x_1)\phi(x_2) + x_1\phi^2(x_2))B(a, y, z)$ $= 0$ So that $(\phi^2(x_1)x_2 + 2\phi(x_1)\phi(x_2))B(a, y, z) =$ Hold for all x_1 , In the above relation replace x_2 by $\phi(x_2, x_3)$ and the relation (13) we get $(\phi^2(x_1)\phi(x_2)x_3 + \phi^2(x)x_2\phi(x_2))B(a, y, z)$ $= 0$ (14) For all x_1, x_2 , In (14) substitute $\phi(x_3)$ for x_3 , $^{2}(x_{1})\phi(x_{2})\phi(x_{3})B(a, y, z) =$ 0 ...(15) Now in (14) replace x_2 by $\phi(x_2)$ and using(15) we have $^{2}(x_{1})\phi^{2}(x_{2})x_{3}B(a,y,z) = 0$...(16) holds for all x_1, x_2 , since the relation (16) hold for all $x_3 \in \mathfrak{K}$, we are forced to conclude that $B(a,y,z)$ to which implies that $\phi^2(x_1)\phi^2(x_2) = 0$ for all x_1 , in particular $(\phi^2(x_1))^2$ = **Step 2:** If $a^2 = 0$ then $B(a, y, z) = 0$ for all $v, z \in \mathfrak{K}$ Let $w = B(a(xay + yax)a, y, z)$ Then by using (ii) in Theorem 2.1 We get $w = a^2B(xay + yax, y, z)$ $+3a(xay + yax)B(a, y, z)$ $-(xay + yax)aB(a, y, z)$...(17)

Journal of AL-Qadisiyah for computer science and mathematics Vol.10 No.3 Year 2018 ISSN (Print): 2074 – 0204 ISSN (Online): 2521 – 3504

Mazen .O

Since $a^2 = 0$ we have $B(a^2, y, z) = 0 = 2aB(a, y, z)$ But char $\mathfrak{K} \neq 2$, then $aB(a, y, z) = 0$ hance (17) becomes $w = 3a(xay + yax)B(a, y, z)$ $= 3axayB(a, y, z) +$ $3a\text{y}axB(a, y, z)$...(18) From (ii) Theorem 2.1 we have $B(axa, y, z) = 3axB(a, y, z)$ According to (iii) in Theorem 2.1, we find $B(ax(axa) + (axa)xa, y, z)$ $= (a^2xa + axa^2)B(x, y, z)$ $+3axB(axa, y, z)$ $+3(axa)xB(a, y, z)$ $-x(\alpha xa)B(\alpha, y, z)$ Since $a^2 = 0$, we have $w = 9axaxB(a, y, z) + 3axaxB(a, y, z)$...(19) Comparing(18)and (19)we get $6axaxB(a, y, z) = 0$ But $\overline{\mathfrak{R}}$ is of characteristic not equal 2 and 3 so that $axaxB(a, y, z) = 0$ for all x, y and z are arbitrary elements of $\tilde{\mathbf{R}}$. so that $B(a, y, z) = 0$ or $a = 0$ If $a = 0$ we have $B(a, y, z) = 0$ So that in any case we have $B(a, y, z) = 0$ for all $y, z \in \mathfrak{R}$ **Step3** : $\overline{\mathbf{R}}$ is commutative. Take: $a, y, z \in \mathfrak{R}$ such that $B(a, y, z) \neq 0$. From step1 and step2, it follows in this case that. $B(a[a, x] - [a, x]a), y, z) = 0$ for all $x \in$ \mathfrak{R} ... (20) By using (i) and (ii) in Theorem 2.1, and since $a[a, x] - [a, x]a = a^2x - 2axa + xa^2$ So we obtain from (20) $0 = B(a^2x + xa^2, y, z) - 2B(axa, y, z)$ $= 2a^2B(x, y, z) + 2xB(a^2, y, z) - 2a^2B(x, y, z)$ $- 6axB(a, y, z) + 2xaB(a, y, z)$ $= 4xaB(a, y, z) - 6axB(a, y, z) + 2xaD(a, y, z)$ $= 6x aB(a, y, z) - 6axB(a, y, z)$ hence $6[x, a]B(a, y, z) = 0$ since *char* $(\hat{\mathbf{x}}) \neq 2,3$, we get $[x, a]B(a, y, z) = 0$ for all $x, y \in \mathfrak{R}$ For all $x, y \in \mathfrak{R}$ we have $0 = [yx, a]B(a, y, z) = y[x, a]B(a, y, z) +$ $[y, a] \times B(a, y, z) = [y, a] \times B(a, y, z)$ Since we have assumed that $B(a, y, z) \neq 0$ So that $[y, a] = 0$ for all $y \in \mathfrak{R}$ consequentially $a \in Z(\mathfrak{K})$ Thus we have proved that \Re is the union of its proper subsets $Z(\mathfrak{K})$ and $ker B = \{a \in R | B(a, y, z) = 0 \text{ for all } y, z \in \mathbb{R}\}\$ It is clear that both subsets $Z(\mathfrak{K})$ and kerB are

additive subgroups of , but a group cannot be the union of it is two proper subgroups , so that either

 $\ker B = \Re$ or $Z(\Re) = \Re$ and since $B \neq 0$ by hypothesis we have ker $B \neq \mathfrak{R}$ Consequentially $\mathfrak{K} = Z(\mathfrak{K})$ and hence \mathfrak{K} is commutative **Theorem 3.2** : Let $\tilde{\mathbf{R}}$ be a prime ring and $B: \mathfrak{K} \times \mathfrak{K} \times \mathfrak{K} \to \mathfrak{K}$ a left tri-derivation. If $B \neq 0$ then \mathfrak{K} is commutative. **Proof:** Consider $B(aba, y, z)$ for all $a, b, y, z \in \mathfrak{R}$ Then $B(a(ba), y, z) = aB(ba, y, z) + baB(a, y, z)$ $= a^2 B(b, y, z) + abB(a, y, z)$ $+baB(a, y, z)$...(21) On the other hand $B((ab)a, y, z) = abB(a, y, z) + aB(ab, y, z)$ $= ab B(a, y, z) + a^2 B(b, y, z) +$ $abB(a, y, z)$ $= 2abB(a, y, z) +$ $a^2B(b, y, z)$...(22) Comparing (21) and (22) we have $[a, b]B(a, y, z) = 0$ for all $a, b, y, z \in$ \mathfrak{R} ...(23) Replace b by cb in (23) we get $0 = [a, cb]B(a, y, z)$ $= (a (cb) - (cb)a)B(a, y, z)$ $= (ac - ca)b B(a, y, z) + c(ab$ $ba)B(a, y, z)$ $=[a, c]bB(a, y, z)$ for all $a, b, c, y, z \in \mathbb{R}$ So that $[a, c]bB(a, y, z) = 0$ for all $a, b, c, z, y \in$ \mathfrak{R} ...(24) It follows that for each $a \in \mathfrak{K}$ we have either $a \in Z(\mathfrak{K})$ or $B(a, y, z) = 0$ But, since $Z(\mathfrak{K})$ and $kerB =$ ${a \in \mathfrak{K} \mid B(a, y, z) = 0 \text{ for all } y, z \in \mathfrak{K}}$ are additive subgroups of $\tilde{\mathbf{R}}$. We have either $\mathfrak{K} = Z(\mathfrak{K})$ or $\mathfrak{K} = \text{ker } B$ but $B \neq$ 0, so that $\mathfrak{K} = Z(\mathfrak{K})$ and hence \mathfrak{K} is commutative.

Theorem 3.3: Let $\tilde{\mathbf{R}}$ be a semi-Prime ring and $B: \mathfrak{K} \times \mathfrak{K} \times \mathfrak{K} \to \mathfrak{K}$ be a left tri-derivations then B is tri-derivation that maps $\tilde{\mathfrak{R}}$ into it is center.

Proof :

 Linearize (24) $[a + d, c]bB(a + d, y, z) = 0$ Which gives that $[a, c]bB(d, y, z) + [d, c]bB(a, y, z) = 0$ Which implies that $[a, c]bB(d, y, z) = -[d, c]bB(a, y, z)$ Since \Re is a ring, for alla, b, c, d, y, $z \in \Re$ we have $[a, c]bB(d, y, z)x[a, c]bB(a, y, z)$ $= -[d, c]bB(d, y, z)x[a, c]bB(a, y, z) = 0$ Since $\tilde{\mathbf{x}}$ is semiprime, this relation yields $[a, c]bB(d, y, z) = 0$

In particular

 ${aB(d, y, z) - B(d, y, z)a}$ ${b{aB(d, y, z)}$ $-B(d, y, z)a$ } = 0 semiprimeness of $\mathfrak K$ implies that $aB(d, y, z) - B(d, y, z)a = 0$ Consequently B is a tri-derivation and $B(d, y, z) \in$ $Z(\mathfrak{K})$

Theorem3.4: Let $\hat{\mathbf{x}}$ be a prime ring of *char* $\hat{\mathbf{x}} \neq$ 2,3 and $B: \mathfrak{K} \times \mathfrak{K} \times \mathfrak{K} \to \mathfrak{K}$ a Jordan left triderivation, suppose that $ax = 0$, $a, x \in \mathbb{R}$ implies that $a = 0$ or $x = 0$ if $B \neq 0$ then \Re is commutative .

Proof:

 From (v) of Theorem 2.1 , we have for each pair $a, b \in \mathfrak{R}$ $[a, b] = 0$ or B (ab, v, z)

 $= aB(b, y, z) + bB(a, y, z)$

Given $a \in \mathfrak{K}$ and let $G_{n} = \{ h \in \mathfrak{B} | a[a, h] = 0 \}$ and

$$
H_a = \{b \in \Re | B(ab, y, z) = aB(b, y, z) + b \}
$$

$$
u_a - \nu \in \mathcal{N}|\mathcal{D}(a, y, z)|
$$

 $bB(a, y, z)$ We see that \mathfrak{K} is the union of it's additive subgroups G_a and H_a

Hence = G_a or $\mathfrak{K} = H_a$, on the other words, \mathfrak{K} is the union of its subgroup's

 $G = \{a \in \Re | G_a = \Re\} = Z(\Re)$ and

 $H = \{a \in \Re | H_a = \Re\}$

 $= {a \in \mathfrak{K} | B(ab, y, z) = aB(b, y, z) +$

 $bB(a, y, z)$, for all $a, b, y, z \in R$

Clearly G and H are additive subgroups of \Re

Hence $G = \Re$ or $H = \Re$

If $G = \mathfrak{K}$ then \mathfrak{K} is commutative.

If $H = \mathfrak{K}$ then B is a left tri-derivation and hence \mathfrak{K} is commutative by Theorem 3.3

Thus in any way
$$
\tilde{\mathfrak{R}}
$$
 is commutative.

References

- 1. A.K. Faraj and S.J.Shareef ; On Generalized permuting left 3-Derivations of prime rings; Engineering and Technology Journal , Vol. 35,part B, No.1, 2017
- 2. H. Durna and s.Oguz ; Permuting triderivation in prime somiprine vings , Interational jornal of Algebra and statics , vol.5,no.1,(2016) P.P:52-58
- 3. H. Yazarli , M.A.Ozturk and Y.B.Jun ;Tri additive maps and permuting tri-derivations ; Commun. Fac. Sci.Univ.Ank.Series A1 ; Vol.54 , No.1 , (2005) , pp 1-8 .
- 4. H. Yazarli ; Permuting Triderivations of Prime and Semiprime Rings ; Miskolc Mathematical Notes Vol. 18, No. 1 (2017), pp. 489–497
- 5. M. Ali Ozturk ; permeating tri- derivations in prime and semi prime tri-derivations inprine and semiprine rings . East Asian Mathematical iournal Vol.15,No.2,1999.pp177-190.
- 6. R. C. shaheen ;On permuting 3- left derivation on prime and semiprime ring ,journal of College of Education ,Vol. 5 ,2016 ,pp . 64- 73 .
- 7. Yong-Soo Jung and Kyoo-Hong Park ,on prime and semiprime rings with permuting 3-derivations , Bull Korean Mat ,h. Soc. , 44,No.4 ,(2007), 789-794 .

اشتقاقات جوردان اليسارية الثالثية التبادلية على الحلقات االولية والحلقات شبه االولية

مازن عمران كريم جامعة القادسية / كلية التربية / قسم الرياضيات

الملخص : لتكن Rحلقة اولية طليقة االلتواء من النمط 2 و 3 . اذا كانت R تسمح بوجود اشتقاق جوردان اليساري الثالثي فانها تكون ابدالية . $R \times R \times R \to R$ كذلك قدمنا بعض الخواص لمشتقات جوردان اليسارية الثلاثية التبادلية