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1. Introduction e The first number and the last number in
Pascal's triangle can be arranged in a triangular array each row is 1
of numbers, as follows: ) .

e Every other number in the array can be
(0) obtained by adding the two numbers
(1) appearing directly above it. This
) property is equivalent to the following

(z) identity:

(0 ()+@=("%) (.

e e The numbers equidistant from the ends
n n n n n n
(0) (1) (k - 1) (k) (n_ 1) (n) are equal. This property is equivalent to
" ("TH (" " ¢ the following identity:
Wh >k.
It h:sreihenf(;lowing properties. (n) - ( n ) 1.2
k) \n—k (1.2)
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Now since the numbers appearing in Pascal's
triangle are the binomial coefficients, and here is

some of identities satisfied by them.
n

Z (Z) —on (1.3)
k=0

Z k (:) = n2n1 (1.4)
kn=0

Z(—1)k (Z) —0 (15)
k

=0
See [3] for more details.

Can we obtain new identities?

By using the identities above. This paper has

answered this question by ten original propositions.

2. Notation and Definitions

We denote the set of natural numbers N :=
{1,2,3,...}. By Z we denote the set of integers
numbers. By € we denote the complex numbers.
The set of C* isdefinedby C* := {z€C, z #

0} . The set of all nonzero polynomials over the set
C with indeterminate z is denoted by C[z] . Thus

Clz] = {f(2): f(2) is a polynomial , f(z) # 0}.

Definition 2.1. (See [1]). A number P is called a
composite prime, and P €Z , if P=p; "py - p;.
Where p;,p,, ..., p; are distinct primes.

Definition 2.2. (See [2]). We call A a set of basic
numbers.
A:={p,P € Z: pisaprime number,
P is a composite prime}.

Definition 2.3. (See [2]). A number a is called a
basic number if a € A.

Definition 2.4 (See [2]). A polynomial P(z) is
called a composite primary polynomial, and
P(z) € Clz] , if P(2) =cpi(2)" p2(2) - pi(2) -
Where p, (2),p,(2), ... , p;(2) are irreducible distinct
polynomials and ¢ # 0 is a constant.

Definition 2.5. (See [2]).
basic polynomials.

We call A[z] a set of

Alz] = {p(2),P(z) € C[z]: p(2)is a
irreducible polynomial,
P(z) is a composite primary
polynomial }.

Definition 2.6. (See [2]). A polynomial A(z) is
called a basic polynomial if A(z) € A[z].
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Definition 2.7. We will define two types powers
triangle:
e A powers triangle of number can be

obtained by z" (ora),where z € C*
and r € N, as follows:

1 7@ 1

1 7@ 27D 1
1 7@ 7B B 1
T ¢ I (%) B 4 ) B () B |
1 27(%H 27("%Y) 277G 1
Or
1 a® 1
1 a0 a® 1
1 a®  a® a® 1
1 a® P %) BN ¢ I () B |
1 oM L a1

It has the following interesting properties:
—  The first number and the last number in

each row is 1.

— Every other number in the array can be
obtained by multiplying the two
numbers appearing directly above it.

—  The numbers equidistant from the ends
are equal.

e A powers triangle of polynomial can be
obtained by f(z)" (or A(z)) . By using
the symbol f(z) (or A(2)) instead of
z (or a), likewise, we define a powers
triangle of polynomial.

3. The Results

We have proved the following Results:
Proposition 3.1.

270D = 2GR+ (), 3.1
Corollary. If z" = a, then

a(D) = gGR)+(), (3.2)
Proposition 3.2.

2700 = 77 (3.3)
Corollary. If z" = a, then

a® = a2 . (3.4)
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Example 3.1. If a powers triangle is

Proposition 3.3. 1 4 1
no . 1 4 4 1
Hzr(k) =z7", (3.5) 1 4 42 4 1
k=0 1 4 43 4% 4 1
Corollary. If z" = a, then 1 4 4% 45 4% 4 1
T o 1 4 45 410 410 45 4 1
na M=at (3.6) Compute
k=0 a)
Proposmon 3.4.
H(zr(")) Zm2" (3.7) 1_[4(k)
Corollary If z" =a,then b)
@) = gnzn? >
U(a ) = 38) [](®)"
Proposition 3.5. k=0
n c
H(z ()" (3.9) ) :
(4®)" V")
Corollary If z7 =a,then 1_[ k
nyS (— 1) k=0
n(a(k)) =1, (3.10)
k=0 Solution:
Proposition 3.6. a)
f(Z)r(nltl) = f(z)r(n21)+r(2). (311) 5
Corollary. If f(z)" = A(z) , then 1_[ 22(3) = 264
A% = A(z)WE0+ ) | (3.12)
Proposition 3.7. b)
f@) W = f(z)yre). (3.13) 5
Corollary. If f(z)" = A(z) , then (22(,5())" — 2160
A@z)®) = A(z) "), (3.14) i1
Proposition 3.8. 0)
() = r2" 3.15 S 1k
Qf(Z) D =r@ (3.15) (2OY ™ 1
Corollary. If f(z)" = A(2) , then %=0
HA(Z)GD = A(2)*". (3.16) Example 3.2. If a powers triangle is
k=0 1 3 1
Proposition 3.9. 1 3 3 1
. . et 1 3 32 3 1
n(f(z)r(k)) = f(z)rnz . (317) 1 3 33 33 3 1
Corollary. If f(z)" = A(z) , then Computel 30030 3 3t 31
H(A(z)(li))k — A" (3.18) d)
k=0 4 4
Proposition 3.10. 1_[ 300).
- (D"
n(f(z) N =1, (3.19) 0
Cor]ozlloary. If f(z2)" = A(z) ,then 4 ) k
3k
ny (-1F 1_[
H(A(z>< ) (3.20) k=0

k=0
Now, here are some examples to show the results.
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f)
- (-1
1_[ (3(2)) ,
k=0
Solution:
d)
4
1_[3(;) = 316.
k=0
e)
4 k
k=0
f)
4 1)
1‘[ (30) C
k=0
Example 3.3. Compute
a)
5
1_[(422 +2z+1)W.
k=0
b)
> k
1_[ ((4z% + 2z + W) .
k=0
c)
> (-1
1_[ ((4z2 +27+ 1)(2)) .
k=0
Solution:
a)
5
1_[(22 + 120 = 22 + 164,
k=0
b)
> k
1_[ (@z+1)?W)" = 22+ 1)1,
k=0
c)

5 k
1—[ (z+ 1)2(2))(_” -
k=

0
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Example 3.4. Compute
a)
4
1_[(22 + 1)),
k=0
b)
4
1_[ (22 + 1)(k)
k=0
c)
. =
1_[ (2z+ 1))
k=0
Solution:
a)
4
1_[(22 +1D® = 22 + 1)1,
k=0
b)
4
n (2z + 1)(k) = (2z + 1)32.
k=0
c)

1_[ (z+ 1)(i))(_1)k =

4
k=0
4. Proof of the Results

Proof of Proposition 3.1. Since z =z, now (1.1)
leads to
27D = 7GR ()

O

Proof of Proposition 3.2. Since z =z, now (1.2)
leads to

ZT(}:) = Zr(nfk) .

O

Proof of Proposition 3.3. By definition 2.7 , in row

n
n

1—[ 7@ = 77 () ()

k=0

- ZT((E)+(711)+"‘+(?L)) [By (1.3) ]
— Zrzn O

Proof of P.roposition 3.4. We expand the left-hand
side of (3.7)

H(zr('“) = @) @O) @) - (@)’

_ Zr(o(n)+1(n)+z(n)+ (")) [By (1.4)]

n-1
— Zrn2 . (m]
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Proof of Proposition 3.5. We expand the left-hand
side of (3.9)
n

[ @™
k=0

= (z®) (D) (@) - (W)
- Zr((f)‘)—(’11)+(’21)+»-~+(—1)”(2)) [By (1.5)]
=1. m]
Proof. By using the symbol f(z) instead of z,
likewise, we prove propositions 3.6,3.7,3.8,3.9

and 3.10.
O

"
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