Journal of AL-Qadisiyah for computer science and mathematics Vol.10 No.3 Year 2018 ISSN (Print): 2074 – 0204 ISSN (Online): 2521 – 3504

Math Page 103- 107 Mohammed .A

The new exponential identities

Mohammed Abdulla Saeed Salem

Department of Mathematics, College of Education-Radfan, Aden University, Yemen, E. mail: alhoshiby@hotmail.com

Recived : 13\6\2018 Revised **: 26\7\2018** Accepted **: 1\8\2018**

Available online : 6/8/2018

DOI: 10.29304/jqcm.2018.10.3.410

ABSTRACT: We have obtained new exponential identities. By ten original propositions we have proved them.

Keywords: Identities, Pascal's triangle, Binomial coefficients.

Mathematics subject classification: 11D61.

1. Introduction

Pascal's triangle can be arranged in a triangular array of numbers, as follows:

It has the following properties.

- The first number and the last number in each row is 1.
- Every other number in the array can be obtained by adding the two numbers appearing directly above it. This property is equivalent to the following identity:

$$
\binom{n}{n-1} + \binom{n}{k} = \binom{n+1}{k} \tag{1.1}
$$

 The numbers equidistant from the ends are equal. This property is equivalent to the following identity:

$$
\binom{n}{k} = \binom{n}{n-k} \tag{1.2}
$$

Mohammed .A

Now since the numbers appearing in Pascal's triangle are the binomial coefficients, and here is some of identities satisfied by them*.*

$$
\sum_{k=0}^{n} {n \choose k} = 2^{n}
$$
 (1.3)

$$
\sum_{k=0}^{n} k {n \choose k} = n2^{n-1}
$$
 (1.4)

$$
\sum_{k=0}^{k=0} (-1)^k {n \choose k} = 0
$$
 (1.5)

 $k=0$
See [3] for more details.

Can we obtain new identities? By using the identities above. This paper has

answered this question by ten original propositions*.*

2. Notation and Definitions

We denote the set of natural numbers $\mathbb{N} :=$ ${1,2,3,...}$. By $\mathbb Z$ we denote the set of integers numbers. By $\mathbb C$ we denote the complex numbers. The set of \mathbb{C}^* is defined by $\mathbb{C}^* := \{ z$ 0}. The set of all nonzero polynomials over the set $\mathbb C$ with indeterminate z is denoted by $\mathbb C [z]$. Thus $\mathbb{C}[z] \coloneqq \{f(z): f(z) \text{ is a polynomial}, f(z) \neq 0\}.$

Definition 2.1. (See [1]). A number P is called a *composite prime,* and $P \in \mathbb{Z}$, if $P = p_1 \cdot p_2 \cdots p_i$. Where $p_1, p_2, ..., p_i$ are distinct primes.

Definition 2.2. (See [2]). We call A a *set of basic numbers*.

 $A:=\{p, P \in \mathbb{Z} : p \text{ is a prime number,}\}$ P is a composite prime}.

Definition 2.3. (See [2]). A number a is called a *basic number* if $a \in \mathbb{A}$.

Definition 2.4 (See [2]). A polynomial $P(z)$ is called a *composite primary polynomial*, and $P(z) \in \mathbb{C}[z]$, if $P(z) = cp_1(z) \cdot p_2(z) \cdot p_i(z)$. Where $p_1(z)$, $p_2(z)$, ..., $p_i(z)$ are irreducible distinct polynomials and $c \neq 0$ is a constant.

Definition 2.5. (See [2]). We call $A[z]$ a *set of basic polynomials*.

> $A[z] := \{ p(z), P(z) \in \mathbb{C}[z] : p(z) \text{ is } a \}$ irreducible polynomial, $P(z)$ is a composite primary polynomial }.

Definition 2.6. (See [2]). A polynomial $A(z)$ is called a *basic polynomial* if $A(z) \in A[z]$.

Definition 2.7. We will define two types powers triangle:

 A *powers triangle of number* can be obtained by z^r (or a), where $z \in \mathbb{C}^*$ and $r \in \mathbb{N}$, as follows:

 () () () () () () () () () () () () () Or () () () () () () () () () () () () ()

It has the following interesting properties:

- The first number and the last number in each row is 1.
- Every other number in the array can be obtained by multiplying the two numbers appearing directly above it.
- The numbers equidistant from the ends are equal.
- A *powers triangle of polynomial* can be obtained by $f(z)^r$ (or $A(z)$). By using the symbol $f(z)$ (or $A(z)$) instead of z (or a), likewise, we define a powers triangle of polynomial.

3. The Results

We have proved the following Results: **Proposition 3.1.**

$$
z^{r{n+1 \choose k}} = z^{r{n \choose n-1} + r{n \choose k}}.
$$

Corollary. If $z^r = a$, then

$$
\binom{n+1}{r} = \binom{n}{r} \binom{n}{r}.
$$
 (3.1)

$$
a^{\binom{n+1}{k}} = a^{\binom{n}{n-1} + \binom{n}{k}}.
$$
 (3.2)
Proposition 3.2.

$$
z^{r{n \choose k}} = z^{r{n \choose n-k}}.
$$
\n(3.3)

Corollary. If $z^r = a$, then $a^{(n)}_{k} = a^{(n-k)}_{k}$. (3.4)

Mohammed .A

 $\overline{1}$

$$
Corollary. \text{ If } f(z)^{r} = A(z) \text{ , then}
$$
\n
$$
\prod_{k=0}^{n} (A(z)^{\binom{n}{k}})^{(-1)^{k}} = 1. \tag{3.20}
$$

 $k=0$
Now, here are some examples to show the results.

Example 3.1. If a powers triangle is $1 \quad 4 \quad 1$ $\mathbf{1}$ $\mathbf{1}$ \overline{c} $\overline{1}$ $\mathbf{1}$ Δ 4^3 $\mathbf{4}^3$ $\mathbf{1}$ $\overline{4}$ $\mathbf{1}$ $4⁶$ $\mathbf{1}$ 4^4 $4⁴$ $\overline{4}$ $\mathbf{1}$ 4^{10} 4^{10} $4⁵$ $\mathbf{1}$ \overline{A} $4⁵$ $\overline{4}$ Compute a) 5 $\prod 4^{5}$. \boldsymbol{k} b) $\int_0^5 \left(4^{5 \choose k}\right)^k$. \boldsymbol{k} c) $\int_{0}^{5} (4^{(\frac{5}{k})})^{(-1)^k}$. \boldsymbol{k} Solution: a) 5 $\prod 2^{2 {5 \choose k}}$ $= 2^{64}$. \boldsymbol{k} b) $\int_{0}^{5} (2^{2(\frac{5}{k})})^{k}$ $= 2^{160}$. \boldsymbol{k} c) $\int_{0}^{5} (2^{2(\frac{5}{k})})^{(-1)^k}$ $=$ \boldsymbol{k} **Example 3.2.** If a powers triangle is $1 \quad 3 \quad 1$ $3¹$ $\begin{array}{@{}c@{\hspace{1em}}c@{\hspace{$ $\mathbf{1}$ $\overline{1}$ $\overline{3}$ $3₂₃$ $\frac{1}{3}$ 3 $3⁴$ $\overline{3}$ $\mathbf{1}$ 6 $2⁴$ $\overline{1}$ Compute d) $\overline{\mathbf{4}}$ $\prod 3^{4 \choose k}$. \boldsymbol{k} e) $\prod_{k=1}^{4} (3^{4k})^{k}$.

 \boldsymbol{k}

Journal of AL-Qadisiyah for computer science and mathematics Vol.10 No.3 Year 2018
ISSN (Print): 2074 – 0204 ISSN (Online): 2521 – 3504 **ISSN (Online): 2521 – 3504**

Mohammed .A

 $\prod_{k=1}^{4} (3^{4k})^{(-1)^k}$ \boldsymbol{k}

.

Solution: d)

f)

e)

$$
\prod_{k=0}^{4} 3^{k \choose k} = 3^{16}.
$$

e)
$$
\prod_{k=0}^{4} \left(3^{k \choose k}\right)^k = 3^{32}.
$$

f)
$$
\prod_{k=0}^{4} \left(3^{k \choose k}\right)^{(-1)^k} = 1.
$$

Example 3.3. Compute

a)

b)

c)

$$
\prod_{k=0}^{5} (4z^2 + 2z + 1)^{{5 \choose k}}.
$$

$$
\prod_{k=0}^{5} ((4z^{2} + 2z + 1)^{{5 \choose k}})^{k}.
$$

$$
\prod_{k=0}^{5} ((4z^{2} + 2z + 1)^{{5 \choose k}})^{(-1)^{k}}
$$

.

Solution:

a)
\n
$$
\prod_{k=0}^{5} (2z+1)^{2\binom{5}{k}} = (2z+1)^{64}.
$$
\nb)
\n
$$
\prod_{k=0}^{5} ((2z+1)^{2\binom{5}{k}})^{k} = (2z+1)^{160}.
$$
\nc)
\n
$$
\prod_{k=0}^{5} ((2z+1)^{2\binom{5}{k}})^{(-1)^{k}} = 1.
$$

Example 3.4. Compute a) $\prod (2z+1)^{4 \choose k}$ 4 \boldsymbol{k} b) $\prod_{k=1}^{4} ((2z+1) {t \choose k})^{k}$ \boldsymbol{k} c) $\prod_{k=1}^{4} \left((2z+1) {k \choose k} \right) (-1)^k$ \boldsymbol{k}

Solution: a)

b)

c)

□

$$
\prod_{k=0}^{4} (2z+1)^{4 \choose k} = (2z+1)^{16}.
$$

$$
\prod_{k=0}^{4} ((2z+1)^{\binom{4}{k}})^{k} = (2z+1)^{32}.
$$

$$
\prod_{k=0}^{4} ((2z+1)^{\binom{4}{k}})^{(-1)^{k}} = 1.
$$

4. Proof of the Results

Proof of Proposition 3.1. Since $z = z$, now (1.1) leads to

.

$$
z^{r{n+1 \choose k}} = z^{r{n \choose n-1} + r{n \choose k}}
$$

□ **Proof of Proposition 3.2.** Since $z = z$, now (1.2) leads to

$$
z^{r{n\choose k}} = z^{r{n\choose n-k}}.
$$

Proof of Proposition 3.3. By definition 2.7, in row \boldsymbol{n} \overline{a}

$$
\prod_{k=0}^{n} z^{r\binom{n}{k}} = z^{r\binom{n}{0}} \cdot z^{r\binom{n}{1}} \cdots z^{r\binom{n}{n}}
$$
\n
$$
= z^{r\binom{n}{0} + \binom{n}{1} + \cdots + \binom{n}{n}}
$$
\n[By (1.3)]\n
$$
= z^{r2^n}.
$$

Proof of Proposition 3.4. We expand the left-hand side of $\frac{1}{n}$

$$
\prod_{k=0}^{n} (z^{r {n \choose k}})^{k} = (z^{r {n \choose 0}})^{0} (z^{r {n \choose 1}})^{1} (z^{r {n \choose 2}})^{2} \cdots (z^{r {n \choose n}})^{n}
$$

= $z^{r(0 {n \choose 0}+1 {n \choose 1}+2 {n \choose 2}+ \cdots+ n {n \choose n})}$ [By (1.4)]
= $z^{rn2^{n-1}}$.

.

 \overline{a}

 $\overline{}$

Mohammed .A

Proof of Proposition 3.5. We expand the left-hand side of $\frac{1}{n}$

$$
\prod_{k=0}^{n} (z^{r {n \choose k}})^{(-1)^k}
$$
\n
$$
= (z^{r {n \choose 0}})^1 (z^{r {n \choose 1}})^{-1} (z^{r {n \choose 2}})^1 \cdots (z^{r {n \choose n}})^{(-1)^n}
$$
\n
$$
= z^{r {n \choose 0} - {n \choose 1} + {n \choose 2} + \cdots + (-1)^n {n \choose n}} \qquad [By (1.5)]
$$
\n
$$
= 1.
$$

Proof. By using the symbol $f(z)$ instead of z, likewise, we prove propositions 3.6, 3.7, 3.8, 3.9 and 3.10. □

5. Acknowledgements

To my lovely wife Areefa and my son Qys. Thank you. Without you, I would have never achieved my paper.

6. References

- [1] **Mohammed Abdulla Saeed Salem.,** "the divisors sequences with finite differences", *Journal for Algebra and Number Theory Academia*, Mili Publications, **4 (2):** pp. 31-39 (2014).
- [2] **Mohammed Abdulla Saeed Salem.,** "The special case for divisors sequences with finite differences", *Journal for Algebra and Number Theory Academia*, Mili Publications, **7 (2):** pp.11-36 (2017).
- [3] **Seymour Lipschutz**, *Schaum's Outlines of Theory and Problems of Finite Mathematics*, first Edition, McGraw-Hill, (1966), pp. 141-144.

المتطابقات األسية الجديدة

محمد عبدهللا سعيد سالم

قسم الرياضيات، كلية التربية ردفا*ن*، جامعة عدن، الي*من*
29 يولاي: ٧٨٩٢ - ٧٧١٣ **جوال: 771307892 بريد الكتروني: com.hotmail@alhoshiby**

المستخلص :

تحصلنا على متطابقات أسية جديدة اثبتناها بعشر مبرهنات أصلية.

كلمات مفتاحية: متطابقات، مثلث باسكال، معامالت ذات الحدين.