Journal of AL-Qadisiyah for computer science and mathematics Vol.10 No.3 Year 2018 ISSN (Print): 2074 – 0204 ISSN (Online): 2521 – 3504

Math Page 103-107

Mohammed .A

The new exponential identities

Mohammed Abdulla Saeed Salem

Department of Mathematics, College of Education-Radfan, Aden University, Yemen, E. mail: alhoshiby@hotmail.com

Recived : 13\6\2018

Revised : 26\7\2018

Accepted : 1\8\2018

Available online : 6/8/2018

DOI: 10.29304/jqcm.2018.10.3.410

ABSTRACT: We have obtained new exponential identities. By ten original propositions we have proved them.

Keywords: Identities, Pascal's triangle, Binomial coefficients.

Mathematics subject classification: 11D61.

1. Introduction

Pascal's triangle can be arranged in a triangular array of numbers, as follows:

$$\begin{pmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} \\ \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 0 \end{pmatrix} & \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 0 \end{pmatrix} & \begin{pmatrix} 1 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 2 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 3 \\ 0 \end{pmatrix} & \begin{pmatrix} 2 \\ 1 \end{pmatrix} & \begin{pmatrix} 2 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 3 \\ 0 \end{pmatrix} & \begin{pmatrix} 3 \\ 1 \end{pmatrix} & \begin{pmatrix} 2 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 3 \\ 0 \end{pmatrix} & \begin{pmatrix} 3 \\ 1 \end{pmatrix} & \begin{pmatrix} 2 \\ 2 \end{pmatrix} \\ \begin{pmatrix} 3 \\ 0 \end{pmatrix} & \begin{pmatrix} 3 \\ 1 \end{pmatrix} \\ \begin{pmatrix} 4 \\ 1 \end{pmatrix} & \begin{pmatrix} 2 \\ 2 \end{pmatrix} & \begin{pmatrix} 3 \\ 3 \end{pmatrix} \\ \begin{pmatrix} 4 \\ 0 \end{pmatrix} & \begin{pmatrix} 4 \\ 1 \end{pmatrix} & \begin{pmatrix} 4 \\ 2 \end{pmatrix} & \begin{pmatrix} 4 \\ 3 \end{pmatrix} & \begin{pmatrix} 4 \\ 4 \end{pmatrix} \\ \begin{pmatrix} n \\ n \end{pmatrix} & \begin{pmatrix} n \\ n \end{pmatrix} & \begin{pmatrix} n \\ n \end{pmatrix} \\ \begin{pmatrix} n + 1 \\ 1 \end{pmatrix} & \dots & \begin{pmatrix} n + 1 \\ k \end{pmatrix} & \dots & \begin{pmatrix} n + 1 \\ n \end{pmatrix} & \begin{pmatrix} n + 1 \\ n + 1 \end{pmatrix} \\ \text{Where } n \ge k .$$

It has the following properties.

- The first number and the last number in each row is 1.
- Every other number in the array can be obtained by adding the two numbers appearing directly above it. This property is equivalent to the following identity:

$$\binom{n}{n-1} + \binom{n}{k} = \binom{n+1}{k} \tag{1.1}$$

• The numbers equidistant from the ends are equal. This property is equivalent to the following identity:

$$\binom{n}{k} = \binom{n}{n-k} \tag{1.2}$$

Mohammed .A

1

Now since the numbers appearing in Pascal's triangle are the binomial coefficients, and here is some of identities satisfied by them.

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n} \tag{1.3}$$

$$\sum_{k=0}^{n} k \binom{n}{k} = n2^{n-1} \tag{1.4}$$

$$\sum_{k=0}^{n} (-1)^{k} {n \choose k} = 0$$
(1.5)

See [3] for more details.

Can we obtain new identities?

By using the identities above. This paper has answered this question by ten original propositions.

2. Notation and Definitions

We denote the set of natural numbers $\mathbb{N} := \{1,2,3,...\}$. By \mathbb{Z} we denote the set of integers numbers. By \mathbb{C} we denote the complex numbers. The set of \mathbb{C}^* is defined by $\mathbb{C}^* := \{z \in \mathbb{C}, z \neq 0\}$. The set of all nonzero polynomials over the set \mathbb{C} with indeterminate z is denoted by $\mathbb{C}[z]$. Thus $\mathbb{C}[z] := \{f(z): f(z) \text{ is a polynomial }, f(z) \neq 0\}$.

Definition 2.1. (See [1]). A number *P* is called a *composite prime*, and $P \in \mathbb{Z}$, if $P = p_1 \cdot p_2 \cdots p_i$. Where p_1, p_2, \dots, p_i are distinct primes.

Definition 2.2. (See [2]). We call \mathbb{A} a set of basic numbers.

 $\mathbb{A} := \{ p, P \in \mathbb{Z} : p \text{ is a prime number,} \\ P \text{ is a composite prime} \}.$

Definition 2.3. (See [2]). A number *a* is called a *basic number* if $a \in A$.

Definition 2.4 (See [2]). A polynomial P(z) is called a *composite primary polynomial*, and $P(z) \in \mathbb{C}[z]$, if $P(z) = cp_1(z) \cdot p_2(z) \cdot p_i(z)$. Where $p_1(z), p_2(z), \dots, p_i(z)$ are irreducible distinct polynomials and $c \neq 0$ is a constant.

Definition 2.5. (See [2]). We call $\mathbb{A}[z]$ a set of basic polynomials.

 $\mathbb{A}[z] \coloneqq \{ p(z), P(z) \in \mathbb{C}[z]: p(z) \text{ is } a \\ \text{ irreducible polynomial,} \\ P(z) \text{ is a composite primary} \\ \text{ polynomial } \}.$

Definition 2.6. (See [2]). A polynomial A(z) is called a *basic polynomial* if $A(z) \in \mathbb{A}[z]$.

Definition 2.7. We will define two types powers triangle:

A powers triangle of number can be obtained by z^r (or a), where z ∈ C^{*} and r ∈ N, as follows:

$$\begin{array}{c} \begin{array}{c} 1 & z^{r\binom{0}{0}} & 1 \\ & 1 & z^{r\binom{0}{0}} & z^{r\binom{1}{1}} & 1 \\ & 1 & z^{r\binom{0}{0}} & z^{r\binom{2}{2}} & z^{r\binom{2}{2}} & 1 \end{array} \\ & & & & \\ \end{array} \\ \begin{array}{c} & & & \\ 1 & z^{r\binom{n}{0}} & \dots & z^{r\binom{n}{k-1}} & z^{r\binom{n}{k}} & \dots & z^{r\binom{n}{n}} & 1 \\ & & & & z^{r\binom{n+1}{k}} & \dots & z^{r\binom{n+1}{n+1}} & 1 \end{array} \\ \\ \begin{array}{c} & & & & \\ 1 & z^{\binom{0}{0}} & 1 \\ & & & & z^{\binom{n}{0}} & 1 \\ & & & & & z^{\binom{n}{0}} & 1 \\ & & & & & z^{\binom{n}{0}} & 1 \\ & & & & & z^{\binom{n}{2}} & a^{\binom{2}{2}} & 1 \end{array} \\ \\ \hline & & & & & \\ \end{array} \\ \begin{array}{c} & & & & \\ 1 & a^{\binom{n}{0}} & \dots & a^{\binom{n}{k-1}} & a^{\binom{n}{k}} & \dots & a^{\binom{n}{n}} & 1 \end{array} \end{array}$$

It has the following interesting properties:

- The first number and the last number in each row is 1.
- Every other number in the array can be obtained by multiplying the two numbers appearing directly above it.
- The numbers equidistant from the ends are equal.
- A powers triangle of polynomial can be obtained by f(z)^r (or A(z)). By using the symbol f(z) (or A(z)) instead of z (or a), likewise, we define a powers triangle of polynomial.

3. The Results

We have proved the following Results: **Proposition 3.1.**

$$z^{r\binom{n+1}{k}} = z^{r\binom{n}{n-1} + r\binom{n}{k}}.$$
(3.1)
Corollary. If $z^{r} = a$, then
 $\binom{n+1}{k} = \binom{n}{k} \binom{n}{k}$

$$a^{\binom{n}{k}} = a^{\binom{n-1}{k}+\binom{n}{k}}.$$
 (3.2)
Proposition 3.2.

$$z^{r\binom{n}{k}} = z^{r\binom{n}{n-k}}.$$
 (3.3)

Corollary. If $z^r = a$, then $a^{\binom{n}{k}} = a^{\binom{n}{n-k}}$. (3.4)

Mohammed .A

1

Proposition 3.3.	
$\prod_{k=0}^{n} z^{r\binom{n}{k}} = z^{r2^n}.$	(3.5)
Corollary. If $z^r = a$, then	
$\prod_{k=0}^n a^{\binom{n}{k}} = a^{2^n}.$	(3.6)
Proposition 3.4. n	
$\prod_{k=0}^{n} \left(z^{r\binom{n}{k}} \right)^k = z^{rn2^{n-1}}.$	(3.7)
Corollary. If $z^r = a$, then	
$\prod_{k=0}^{n} \left(a^{\binom{n}{k}}\right)^k = a^{n2^{n-1}}.$	(3.8)
Proposition 3.5.	
$\prod_{k=0}^{n} \left(z^{r\binom{n}{k}} \right)^{(-1)^{k}} = 1.$	(3.9)
Corollary. If $z^r = a$, then	
$\prod_{k=0}^{n} \left(a^{\binom{n}{k}} \right)^{(-1)^{k}} = 1.$	(3.10)
Proposition 3.6. $\binom{n}{2}$	
$f(z)^{r\binom{n}{k}} = f(z)^{r\binom{n}{n-1} + r\binom{n}{k}}.$	(3.11)
Corollary. If $f(z)^{r} = A(z)$, then $A(z)^{\binom{n+1}{k}} = A(z)^{\binom{n}{n-1} + \binom{n}{k}}$.	(3.12)
Proposition 3.7. $f(z)^{r\binom{n}{k}} = f(z)^{r\binom{n}{n-k}}$	(2 12)
Corollary. If $f(z)^r = A(z)$, then	(3.13)
$A(z)^{\binom{n}{k}} = A(z)^{\binom{n}{n-k}}.$	(3.14)
Proposition 3.8.	
$\prod_{k=0}^{n} f(z)^{r\binom{n}{k}} = f(z)^{r2^{n}}.$	(3.15)
Corollary. If $f(z)^r = A(z)$, then	
$\prod_{k=0}^{n} A(z)^{\binom{n}{k}} = A(z)^{2^{n}}.$	(3.16)
Proposition 3.9.	
$\prod_{k=0}^{n} \left(f(z)^{r\binom{n}{k}} \right)^{k} = f(z)^{rn2^{n-1}}.$	(3.17)
Corollary. If $f(z)^r = A(z)$, then	
$\prod_{k=1}^{n} \left(A(z)^{\binom{n}{k}} \right)^{k} = A(z)^{n2^{n-1}}.$	(3.18)
Proposition 3.10.	
$\prod_{k=1}^{n} \left(f(z)^{r\binom{n}{k}} \right)^{(-1)^{k}} = 1.$	(3.19)
k=0	

Corollary. If
$$f(z)^r = A(z)$$
, then

$$\prod_{k=0}^n (A(z)^{\binom{n}{k}})^{(-1)^k} = 1.$$
(3.20)

Now, here are some examples to show the results.

Example 3.1. If a powers triangle is 1 4 1 1 1 4² 1 4 1 4³ 4³ 1 4 1 4 4⁵ 46 4^{4} 1 1 4¹⁰ 4¹⁰ 4⁵ 1 4 4 Compute a) $\int 4^{\binom{5}{k}}.$ b) $\prod_{k=1}^{5} \left(4^{\binom{5}{k}}\right)^{k}.$ c) $\prod_{k=2}^{5} \left(4^{\binom{5}{k}}\right)^{(-1)^{k}}.$ Solution: a) $\prod_{k=1}^{5} 2^{2\binom{5}{k}} = 2^{64}.$ b) $\prod_{k=0}^{5} \left(2^{2\binom{5}{k}} \right)^k = 2^{160} \,.$ c) $\prod_{k=0}^{5} \left(2^{2\binom{5}{k}} \right)^{(-1)^{k}} = 1.$ **Example 3.2.** If a powers triangle is 1 3 1 1 3 1 1 3 34 1 3 1 Compute d) $\prod_{k=0}^{4} 3^{\binom{4}{k}}.$

 $\prod_{k=0}^4 \left(3^{\binom{4}{k}}\right)^k.$

e)

Journal of AL-Qadisiyah for computer science and mathematics Vol.10 No.3 Year 2018 **ISSN (Print): 2074 – 0204** ISSN (Online): 2521 - 3504

Mohammed .A

 $\prod_{k=0}^{-} \left(3^{\binom{4}{k}}\right)^{(-1)^{k}}.$

Solution: d)

f)

e)

$$\prod_{k=0}^{4} 3^{\binom{4}{k}} = 3^{16}.$$
e)

$$\prod_{k=0}^{4} \left(3^{\binom{4}{k}}\right)^{k} = 3^{32}.$$
f)

$$\prod_{k=0}^{4} \left(3^{\binom{4}{k}}\right)^{(-1)^{k}} = 1.$$

Example 3.3. Compute

a)

b)

c)

 $\prod_{k=0}^{5} (4z^2 + 2z + 1)^{\binom{5}{k}}.$

1.

$$\prod_{k=0}^{5} \left((4z^2 + 2z + 1)^{\binom{5}{k}} \right)^k.$$
$$\prod_{k=0}^{5} \left((4z^2 + 2z + 1)^{\binom{5}{k}} \right)^{(-1)^k}$$

Solution:

a)

$$\prod_{k=0}^{5} (2z+1)^{2\binom{5}{k}} = (2z+1)^{64}.$$
b)

$$\prod_{k=0}^{5} \left((2z+1)^{2\binom{5}{k}} \right)^{k} = (2z+1)^{160}$$
c)

$$\prod_{k=0}^{5} \left((2z+1)^{2\binom{5}{k}} \right)^{(-1)^{k}} = 1.$$

Example 3.4. Compute a) $\prod_{k=0} (2z+1)^{\binom{4}{k}}.$ b) $\prod_{k=0}^{4} \left((2z+1)^{\binom{4}{k}} \right)^{k}.$ $\prod_{k=0}^{4} \left((2z+1)^{\binom{4}{k}} \right)^{(-1)^{k}}.$ c)

Solution: a)

$$\prod_{k=0}^{4} (2z+1)^{\binom{4}{k}} = (2z+1)^{16}.$$

b)

$$\prod_{k=0}^{4} \left((2z+1)^{\binom{4}{k}} \right)^k = (2z+1)^{32}$$
c)

$$\prod_{k=0}^{4} \left((2z+1)^{\binom{4}{k}} \right)^{(-1)^k} = 1.$$

4. Proof of the Results

Proof of Proposition 3.1. Since z = z, now (1.1) leads to

$$z^{r\binom{n+1}{k}} = z^{r\binom{n}{n-1} + r\binom{n}{k}}$$

Proof of Proposition 3.2. Since z = z, now (1.2) leads to

$$z^{r\binom{n}{k}} = z^{r\binom{n}{n-k}} .$$

Proof of Proposition 3.3. By definition 2.7, in row п n

$$\prod_{k=0}^{n} z^{r\binom{n}{k}} = z^{r\binom{n}{0}} \cdot z^{r\binom{n}{1}} \cdots z^{r\binom{n}{n}}$$

= $z^{r\binom{n}{1} + \binom{n}{1} + \cdots + \binom{n}{n}}$ [By (1.3)]
= $z^{r2^{n}}$.

Proof of Proposition 3.4. We expand the left-hand side of (3.7)

$$\prod_{k=0}^{n} \left(z^{r\binom{n}{k}} \right)^{k} = \left(z^{r\binom{n}{0}} \right)^{0} \left(z^{r\binom{n}{1}} \right)^{1} \left(z^{r\binom{n}{2}} \right)^{2} \cdots \left(z^{r\binom{n}{n}} \right)^{n}$$

= $z^{r\binom{0}{0}+1\binom{n}{1}+2\binom{n}{2}+\cdots+n\binom{n}{n}}$ [By (1.4)]
= $z^{rn2^{n-1}}.$

Mohammed .A

Proof of Proposition 3.5. We expand the left-hand side of (3.9)

Proof. By using the symbol f(z) instead of z, likewise, we prove propositions 3.6, 3.7, 3.8, 3.9 and 3.10.

5. Acknowledgements

To my lovely wife Areefa and my son Qys. Thank you. Without you, I would have never achieved my paper.

6. References

- [1] **Mohammed Abdulla Saeed Salem.,** "the divisors sequences with finite differences", *Journal for Algebra and Number Theory Academia*, Mili Publications, **4** (2): pp. 31-39 (2014).
- [2] Mohammed Abdulla Saeed Salem., "The special case for divisors sequences with finite differences", *Journal for Algebra and Number Theory Academia*, Mili Publications, 7 (2): pp.11-36 (2017).
- [3] **Seymour Lipschutz**, Schaum's Outlines of Theory and Problems of Finite Mathematics, first Edition, McGraw-Hill, (1966), pp. 141-144.

المتطابقات الأسية الجديدة

محمد عبدالله سعيد سالم

قسم الرياضيات، كلية التربية ردفان، جامعة عدن، اليمن جوال: ٧٧١٣٠٧٩٩ بريد الكتروني: alhoshiby@hotmail.com

المستخلص:

تحصلنا على متطابقات أسية جديدة اثبتناها بعشر مبر هنات أصلية.

كلمات مفتاحية: متطابقات، مثلث باسكال، معاملات ذات الحدين.