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We introduce and study the recall the notion of coc-b-connected space. And we prove many of the proposition and
remarks which are related to it. And we discuss the definition of coc-b-locally connected, remarks and proposition about
this concept . This study presents the definition of hyper connected by coc-b-open set. Also we give some proposition
and remarks about this subject and give some important generalizations on this concept and we prove some results on the

concept.
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Introduction

In [5] M.C .Gemignani studied the concept of
connected spaces and in [2] R. Engleking studied the
characterizations of continuity provided that the
continuous image of connected space is connected .
Several properties of connected space in [11,10]. We
recall that any two subsets A and B of a space X are

called 7 —separated iff AN B = AN B = @ see [8].

Definition(1):

Let X be topological space .Then A is called cocompact
b-open set (notation : coc-b-open set) if for every x € A,
there exists an b-open set U < X and a compact set K
suchthatx € U — K < A.The complement of coc-b-
open set is called coc-b-closed set .

Remark(2):

Everyopen set is coc-b-open set.

But the converse is not true the following example
shows: LetX = {a,b,c}

r ={X,0,{a},{b}, {a, b}}. The coc-b-open sets are
{x.0,{a},{b}.{c}.{a, b} {a,c},{b,c}}.

Then {a, c} is an coc-b-open but it is not open.
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Definition(3):

Let f: X—Y be a function of a space X into a space Y

then f is called an coc-b-continuous function if f~(4)
is an coc-b-open set in X for every opensetAinY .

Definition(4):

Let f: X - Y be a function of a space X into a space Y,
then f is called an coc-b-irresolute (coc -b-continuous
for brief) function if £~1(4) is an coc-b-open set in X
for every coc-b-openset AinY.

Definition(5):

Let (X, 7) be topology space .Two subsets 4 and B of a
—b—

space X are called coc-b-separated if A “np=

= Q.

Definition(6): [9]

A subset A is said to be w-open set if for each x €A
,there exists an open set U, such that x € U, and
U, — A is countable.

Definition(7):

Let X be aspaceand A < X . The union of all coc-b-
open sets of X contained in A is called coc-b-Interior of
A and denoted by A™=¢°“or coc-b-In,(4) .
Coc-b-In,(A)
=U{B:Biscoc—b—openinX and B < A}.

—b—coc

ANB
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Definition(8):

Let (X, 1) be topology space and @ # A € X. Then A
is called coc-b-connected set if is not union of any two
coc-b-separated sets .

Definition(9):

A set is called coc-b-clopen if it is coc-b-open and coc-
b-closed.

Proposition(10):

Let (X, ) be topological space ,then the following
statements are equivalent :

1-X is coc-b-connected space .

2-The only coc-b-clopen sets in the space are X
and @ .

3-There exist no two disjoint coc-b-open sets A and B
such that X = AUB.

Proof:

(1)—(2) Let X be coc-b-connected space ,suppose that
D is coc-b-clopen set such that D = @ and D # X .Let
E =X — D .Since D # X then E # @. Since D is coc-b-

. —b-
open , then E is coc-b-closed .But D “nNE=Dn
E = @. (since D is coc-b-clopen set and E is coc-b-

closed setyhence DNE =D NE  * = @. Then D
and E are two coc-b-separated setsand X = D UE.
Hence X is not coc-b-connected space which is a
contradiction . Therefore the only coc-b-clopen set in

the space are X and @ .

(2)—(3) Suppose the only coc-b-clopen set in the space
are X and @ . Assume that there exists two disjoint coc-
b-open W and B such that X = W U B .Since W = B¢
then W is coc-b-clopen set But W = @ and W # X
which is a contradiction .Hence there exists no two
disjoint coc-b-open set W and B suchthat X =W U B .

(3)—(1) Suppose that X is not coc-b-connected space .

Then there exist two coc-b-separated sets A and B such
—bh—

that X = AUB.Sinced ~ NB=g@andANBC

—b-c

oc ; —b—coc
A NBthusANB =@.Since A CB‘=A

. R —b—
then A is coc-b-closed set and since B NA = [0)
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andANB € B

—b—coc

€ A° = B then B is coc-b-closed set, since
A = B¢ then A and B are two disjoint coc-b-open sets
such that X = A U B which is a contradiction .Hence X
is coc-b-connected space .

—cocC .
NnAthus AN B = @, since

Remark(11):

Every coc-b-connected space is connected space .But
the converse is not true in general.

Example(12):

LetX = {1,2,3}and r = {®, X, {1}, {2}, {1,2}} then X is
connected space but X is not coc-b-connected space
since {2}, {1,3} are coc-b-open set and X = {2} U {1,3}.

Proposition(13):

Let A be coc-b-connected set and D, E coc-b-separated
sets.If A © D UE theneitherA € DorA c E.

Proof:
Suppose A be a coc-b-connected set and D ,E coc-b-
separated setsand A € DUE .LetA¢€ Dand A € E.

Suppose A, =DNA+@and A4, =ENA# @then

—bh—
A =A;UA, Since A; S D hence 4, e
—b—

oc . —b—coc —>b—coc
D ,since D N E = @ then A, NA, =0

coc . —b—coc
,since E n

) —b—coc
,since A, € E hence 4, CE
— bh—
D=0thend, ~NA =@ .ButA=4,UA,
therefore A is not coc-b-connected space which is a
contradiction .Theneither A € D orA € E.

Proposition(14):

Let (X, ) be a topological space such that any two
element x and y of X are contained in some coc-b-
connected subspace of X. Then X is coc-b-connected .

Proof:

Suppose X is not coc-b-connected. Then X is the union
of two coc-b-separated sets A ,B. Since A4, B are
nonempty sets. Thus there exists a, b such that a €
A,b € B. Let D be coc-b-connected subspace of X
which contains a, b. Therefore either D € AorD € B
which is a contradiction (since An B = @). Then X is
coc-b-connected space .
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Proposition(15):

—b—
If A is coc-b-connected set then A mis coc-b-
connected .

Proof:

. —b—coc,
Suppose A is coc-b-connected and A ““is not coc-b-
connected. Then there exist two coc-b-separated set

—b—coc —b—coc
D, E such that A =DUE.Butd c A .then
A € D U E and since A is coc-b-connected set. Then

Ci

. —b—
either A € D orA C E.IfA CDthend . C

—b—coc

—b—coc —b—coc
D .ButD NE = @, hence A NE=¢
—b—
since A = DUE.Then E = @ whichisa

—b—coc
E

—b—
contradiction .If A € E then 4 € c . But
—b—coc

—b—coc ) —b—coc
E N D = @ ,hence A ND = @since A =
E U D. Then D = @ which is a contradiction .Then

—b—coc .
A is coc-b-connected.

Proposition(16):

—b—
If D is coc-b-connected setand D € E € D o then
E is coc-b-connected .

Proof:

—b—
Let D be coc-b-connected setand D € E € D o

.Suppose E is not coc-b-connected ,then there exist two
—b—coc

—b—
sets 4, B such that A “AB=ANB =@ E=
AUB,since D € E ,thuseitherD €< AorD € B

—b—coc —b—coc —b—coc
.Suppose D < A then D c A ,thus D n
—b—coc —b—coc
B=A NB=@.ButD € E <D ,then
—b—coc

D N B = B .Therefore B = @ whichis a
contradiction, hence E is coc-b-connected set.

Proposition(17):

If a space X contains a coc-b-connected subspace E

—b
suchthat E = X then X is coc-b-connected .

Proof:

Suppose E a coc-b-connected subspace of a space X
—b—coc . —b—coc

such that E =X,sinceE € X=E then by

proposition (2.3.11) then X is coc-b-connected .

Lemma(18):

If A is subset of a space X which is both coc-b-open
and coc-b-

closed sets, then any coc-b-connected subspace C <
X which meets A must be contained in A.
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Proof:

If A is coc-b-open and coc-b-closed sets in X then

C N A coc-b-open and coc-b-closed in C ,if C is coc-b-
connected this implies that C N A = C which says that
C is contained in A.

Proposition(19):

The coc-b-continuous onto image of coc-b-connected
space is connected.

Proof:

Let f: (X,t) = (Y,7") be coc-b-continuous, onto
function and X is coc-b-connected .To prove that Y is
connected .Suppose Y is a not connected space . So
Y=AUB suchthat A= @,B+@andAnB = @ and
A,B € t'hence f(Y) = f'(AUB), then X =
f~1(4) u f~1(B) . Since f is coc-b-continuous hence
f71(A) and f~1(B) are coc-b-open in X and sine that
A#® B #@and fisonto .Then f1(4) #
?,f1(B) # ¢and fF1(4) n f1(B) = @ ,hence X is
not coc-b-connected space which is contradiction .Then
Y is connected .

Corollary(20):

The coc'-b-continuous image of coc-b-connected space
is coc-b-connected.

Proof:

Let f: (X,7) - (Y,7") be coc -b-continuous, onto
function and X is coc-b-connected. To prove Y is coc-b-
connected. Suppose Y is not coc-b-connected space. So,
Y=AUBsuchthatA+@,B#+@ andANB =0
and A, B are coc-b-open sets, hence £~ (Y) =
f*(AUB) then X = f~1(4) U f~1(B). Since that

f coc'-b-continuous ,hence f~*(4) and f~1(B) are
coc-b-open in X and since that A = @, B # @ then
ffA#0, ' (B)#0and (A nf(B) =0,
hence X is not coc-b-connected space which is
contradiction .Then Y is coc-b-connected .

Proposition(21):
Let X be topological space and let Y = {0,1} have the

discrete space. Then X is coc-b-connected iff there is no
coc-b-continuous function from X onto Y.
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Proof:

Suppose f: (X, 1) = (Y, 1") is coc-b-continuous onto
function. So there exists x ,y € X such that x +#
y.f@)=0,f»)=1Thenf'({0}) =4, A cX
and f'({1}) = B, B < X therefore A and B are coc-
b-open set in X .Since f is coc-b-continuous .Hence
X=AUBsuchthat A#9,B+®.A, B are coc-b-
open sets which is a contradiction .Since X is coc-b-
connected .

Conversely, let X be not coc-b-connected. Then
X=AUBsuchthat A+90,B+0,AnB=0 and A
, B are coc-b-open sets. Define g: (X, 1) - (Y, ") such
thatg(x) =0 Vx e Adand g(x) =1 Vx € B ,hence
g is coc-b-continuous ,which is contradiction .Then X is
coc-b-connected.

Definition(22): [4]

Let f: X — Y be a function of a space X into a space Y.

Then f is called a w-continuous function if f~*(A) is
an w-open set in X for every openset AinY.

Definition(23): [6]
A subset A of a space X is called an w-setifA=UUV
when U is open set and Int(V) = Int,, (V).

Definition(24): [7]
A space (X, 7) is said to be satisfy w-condition if
every w-openis w-set.

Lemma(25): [6]

A subset A of a space X is open iff A w-open set and w-
set .

Definition(26): [1]
A space X is said to be w-connected provided that X is
not the union of two nonempty disjoint w-open sets .

Proposition(27):

Let (X, 1) and (Y, r') be two topological spaces. If
satisfy w- condition ,then the coc-b-continuous, onto
image of coc-b-connected space is w-connected .

Proof:

Let f: (X,t) = (Y, ") be coc-b-continuous, onto
function and X be coc-b-connected. To prove Y is w-
connected. Suppose Y is not w-connected space. So,
Y={AUB}suchthat A+ @,B+@andANB =0
and A , B w-open sets since Y satisfy w-condition ,

then A, B are open sets. Hence f~*(Y) = f~*(A U B).
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Then X = f~1(4) U f~1(B). Since that f coc-b-
continuous hence f~*(A) and f~*(B) are coc-b-open in

X Sincethat A += @,B + @ and f is onto then

ffA =0,/ (B)#oand ' (A) n ' (B) = 9,
hence X is not coc-b-connected space which is
contradiction .Then Y is w-connected.

Definition(28): [3]

A space (X, 7) is said to be locally connected if for each
point x € X and each open set U such that x e U.
There is a connected opensetV x € V < U.

Definition(29):

A space (X, 7) is said to be coc-b-locally connected if
for each point x € X and each coc-b-open set U such
that x € U. There is a coc-b-connected open set V

X EV € U.

Proposition(30):

Every coc-b-locally connected space is locally
connected space.

Proof: Clear

Remark(31):

The convers of the proposition (24) is not true in
general.

Example(32):

LetX = {1,2,3} ,7 = {X,0,{2,3}} .The coc-b-open sets
are X, ®,{1},{2},{3},{1,2},{1,3}, {2,3} then (X, 7) is
locally connected but (X, 7) is not coc-b-locally. Since
1 €{1,2}. There is no coc-b-connected open set V such
that 1 eV < {1,2}.

Remark(33):
If (X, 1) is a coc-b-locally connected space. Then it
need not be coc-b-connected .

Example(34):
Let X = {1,2,3}, T=

{X,0,{13,{2},{3},{1,2},{1,3},{2,3}} . The coc-b-open
sets is discrete topology then (X, 7) is a coc-b-locally
but (X, 7) is not coc-b-connected ,since {1}, {2,3} are
coc-b-open sets in X such that X = {1} U {2,3} and
{1}n {23} = 0.

Definition(35):
Let (X, 7) be any space, a maximal coc-b-connected of
X is said to be coc-b-component of X.
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Theorem(36):
For a space (X, 7). The following condition are
equivalent:

1-X is a coc-b-locally connected.

2-Every coc-b-component of every coc-b-open set is
open.

Proof:

(1)—(2) Let X be coc-b-locally connected and let C be
coc-b-component of X such that x e C. Letx € X and
A is coc-b-opensetin X suchthatx e C © A . Then

x € Aand A is coc-b-open set in X . Since X is a coc-b-
locally connected , then there exist coc-b-connected
opensetVin X suchthat x € V < A ,since that C is
coc-b-component ;thenV < Cand U, <.V, S

C ,hence C = U, ¢ x{Vi:x € C} therefore C is open
set.

(2)>(1) Let x € X and U be coc-b-open set in X such
that x € U and let C coc-b-component of U such that

x € C € U.Then Cisopensetin X by (2) . Since that
C is coc-b-component, hence C is coc-b-connected
.Therefore X is a coc-b-locally connected.

Proposition(37):

The coc-b-continuous, open, image of coc-b-locally
connected space is locally connected.

Proof:

Let f: (X,t) » (Y,7") be coc-b-continuous open and
onto function and (X, 7) is coc-b-locally connected
space. To prove (Y, r') is locally connected. Lety € Y
and U be opensetinY 3y € U. Since f is onto there
exist x € X suchthat f(x) =y, since f is coc-b-
continuous then £~1(U) is coc-b-open set in X such that
x € f~1(U), since X is coc-b-locally connected then
there exist V' is coc-b-connected open set in X such that
x € V € f~1(U) since f open function, then f(x) €
f(V) € Usuchthat f(V)isopenand f(V) is
connected by corollary(14). Therefore Y is a locally
connected .

Remark(38):

The coc-b-continuous image of coc-b-locally connected
need not be coc-b-locally connected.
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Example(39):
LetX ={1,2,3}, Y ={a,b,c}, T=

{8,X,{13,{2},{3},{1,2},{2,3},{1,3}} and

7 ={0,Y,{a}} . The coc-b-open setin X and Y are
discrete topology. Define f: (X,7) — (Y, 1') such that
f(1) =a,f(2) =b,f(3) = ciscoc-b-continuous,
onto function .Then (X, 7) is coc-b-locally connected
but (¥, 7') is not coc-b-locally connected since

b €{a, b} and exists no coc-b-connected open set V in
X suchthat b €V c{a, b}.

Proposition(40):
The coc -b-continuous, open, image of coc-b-locally
connected space is coc-b-locally connected.

Proof:

Let f: (X,7) - (Y,7") be coc -b-continuous, open and
onto function and (X, 7) is coc-b-locally connected
space . To prove (Y, r’) is coc-b-locally connected, let
y €Y and U is coc-b-open setin Y, such that y e U.
Since f onto there exist x € X such that f(x) = y for
each y e, since f is coc -b-continuous, hence f~1(U)
is coc-b-open set in X such that x e f~1(U). Since X is
coc-b-locally connected then 3 V coc-b-connected open
setin X such that x e V < f~1(U), since f is open then
f(V)isopensetinY and f(V) is coc-b-connected by
proposition (15). Hence f (V) is coc-b-connected open
setin Y suchthaty e f(V) cU. Therefore Y is a coc-b-
locally connected space.

Definition(41):
Let X be a space ,A < X, A is called coc-b-dence set in

—b—coc

XifA =X

We recall that a space X is said to be hyper connected if
for every nonempty open subset of X is dence see [5] .

Definition(42):

A space X is said to be coc-b-hyper connected if for
every nonempty coc-b-open subset of X is coc-b-dence.

Now, we explain the relation between an coc-b-hyper
connected space and hyper connected space .

Proposition(43):

Every coc-b-hyper connected space is hyper connected.
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Proof:

Let X be coc-b-hyper connected space. Then every
nonempty coc-b-open subset of X is coc-b-dence in X,
hence every nonempty open subset of X is dence.

Therefore X is hyper connected (since every coc-b-
dence set is dence).

Remark(44):

The convers of the proposition (43) is not true in
general.

Example(45):
Let X = {1,2,3} , T = {X, @}. The coc-b-open sets

{x,0,{13, {23, {3}, {1,2}, {1,3}, {2,3}}. Then (X, 7) is

hyper connected but (X, 7) is not coc-b-hyper connected

——b—coc
since {1} is coc-b-open set and {1} = {1} # X.

Proposition(46):

Every coc-b-hyper connected space is coc-b-connected.
Proof:

Let X be coc-b-hyper connected space and suppose X is
not coc-b-connected. Then there exists A is coc-b-
clopen subset in X such that A = @ and A # X, hence

—b-—
A=74 “ whichisa contradiction, since X is coc-b-
hyper connected. Therefore X is coc-b-connected .

Definition(47): [2]
A space (X, 7) is said to be extremally disconnected if
the closure of every open subset of X is open in X.

Raad. A/Ghadeer. k

Definition(48):
A space (X, 7) is said to be coc-b-extremally
disconnected if the closure of every open is coc-b-open.

Remark(49):

Every extremally disconnected space is coc-b-
extremally disconnected space and the convers is not
true in general.

Example(50):

LetX = {a,b,c},7 = {X,0,{a},{b}, {a, b}} .The coc-b-
open set {X, @, {a},{b}, {c},{a, b}, {a, c}, {b, c}} .Then
(X, 7) is coc-b-extremally disconnected, but (X, 7) is

not extremally disconnected since @ ={ac}et.

Remark(51):

Every coc-b-hyper connected is a coc-b-extremally
disconnected space but the convers is not true in
general.

Example(52):
Let

X={123}, 1=

{x,0,{13,{2},{3},{1,2},{1,3}, {2,3}}. The coc-b-open
set X, @, {1}, {2}, {3},{1,2},{1,3},{2,3}. Then (X, 1) is
coc-b-extremally disconnected since the closure of
every open subset of X is coc-b-open. But (X, 7) is not

—bh—
coc-b-hyper connected since A “ =A% X VAcoc-
b-open.

The following diagram explain the relationship among these types of connected spaces

connected

a

Coc-b-connected

7\

Coc-b-hyper connected —>

Coc-b-locally connected

l

Locally connected

Coc-b-extremally

Hyper connected
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