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Abstract : 

We introduce and study the  recall the notion of coc-b-connected space. And we prove many of the proposition and 

remarks which are related to it. And we discuss the definition of coc-b-locally connected, remarks and proposition about 

this concept . This study presents the definition of hyper connected by coc-b-open set. Also we give some proposition 

and remarks about this subject and give some important generalizations on this concept and we prove some results on the 

concept. 
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Introduction 

In [5] M.C .Gemignani studied the concept of 

connected spaces and in [2] R. Engleking studied the 

characterizations of continuity provided that the 

continuous image of connected space is connected . 

Several properties of connected space in [11,10]. We  

recall that any two subsets   and   of a space   are 

called   –separated iff           see [8]. 

Definition(1):                                                

 Let   be topological space .Then   is called cocompact 

b-open set (notation : coc-b-open set) if for every    , 

there exists an b-open set       and a compact set   

such that            . The complement of coc-b-

open set is called coc-b-closed set . 

Remark(2):                                                       

Everyopen set is coc-b-open set. 

But the converse is not true the following example 

shows:   Let   *     + 

   {    * + * + *   +}  The coc-b-open sets are 

{    * + * + * + *   + *   + *   +} . 

Then *   + is an coc-b-open but it is not open. 

 

 

 

 

Definition(3):                                                  

Let        be a function of a space   into a space   

then   is called an coc-b-continuous function if     ( ) 

is an coc-b-open set in   for every open set   in   . 

Definition(4):                                                 

Let        be a function of a space   into a space  , 

then   is called an coc-b-irresolute (    -b-continuous 

for brief) function if    ( ) is an coc-b-open set in   

for every coc-b-open set   in  . 

Definition(5):                                                    

 Let (   ) be topology space .Two subsets   and   of a 

space   are called coc-b-separated if  
     

     

       
     

  . 

Definition(6): [9]                                     

 A subset   is said to be  -open set if for each     

,there exists an open set    such that       and 

     is countable. 

Definition(7): 

Let   be a space and       . The union of all coc-b-

open sets of   contained in   is called coc-b-Interior of 

  and denoted by         or coc-b-   ( ) . 

Coc-b-   ( ) 

 ⋃*                               + .  
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Definition(8):                                                    

Let (   ) be topology space and        . Then   

is called coc-b-connected set if is not union of any two 

coc-b-separated sets . 

Definition(9):                                                     

A set is called coc-b-clopen if it is coc-b-open and coc-

b-closed. 

Proposition(10):                                                 

Let (   ) be topological space ,then the following 

statements are equivalent : 

1-  is coc-b-connected space . 

 2-The only coc-b-clopen sets in the space are   

and    . 

3-There exist no two disjoint coc-b-open sets A and B 

such that    ⋃ . 

Proof: 

(1) (2) Let   be coc-b-connected space ,suppose that 

  is coc-b-clopen set such that     and     .Let 

      .Since     then    . Since   is coc-b-

open , then   is coc-b-closed .But  
     

     

   . (since   is coc-b-clopen set and   is coc-b-

closed set) hence        
     

  . Then   

and   are two coc-b-separated sets and      . 

Hence   is not coc-b-connected space which is a 

contradiction . Therefore the only coc-b-clopen set in 

the space are   and   . 

(2) (3) Suppose the only coc-b-clopen set in the space 

are   and   . Assume that there exists two disjoint coc-

b-open   and   such that       .Since      

then   is coc-b-clopen set .But     and     

which is a contradiction .Hence there exists no two 

disjoint coc-b-open set   and   such that       . 

(3) (1) Suppose that   is not coc-b-connected space . 

Then there exist two coc-b-separated sets   and   such 

that       . Since  
     

     and     

  
     

   thus       . Since  
     

      

then   is coc-b-closed set and since   
     

      

 

 

and        
     

   thus      , since 

 
     

       then   is coc-b-closed set, since 

      then   and   are two disjoint coc-b-open sets 

such that       which is a contradiction .Hence   

is coc-b-connected space .  

Remark(11):                                                         
Every coc-b-connected space is connected space .But 

the converse is not true in general. 

Example(12):                                                     

Let   *     + and   {    * + * + *   +} then   is 

connected space but    is not coc-b-connected space 

since * + *   + are coc-b-open set and   * +  *   +. 

Proposition(13):                                                

 Let   be coc-b-connected set and     coc-b-separated 

sets .If         then either       or      . 

Proof: 

Suppose   be a coc-b-connected set and   ,  coc-b-

separated sets and         .Let     and    . 

Suppose          and          then      

        .Since       hence   

     
 

  
     

 since  
     

     then   

     
      

,since       hence   

     
   

     
  since  

     
 

    then   

     
      .But         

therefore   is not coc-b-connected space which is a 

contradiction .Then either        or       . 

Proposition(14):                                                 

Let (   ) be a topological space such that any two 

element   and   of   are contained in some coc-b-

connected subspace of  . Then   is coc-b-connected . 

Proof: 

Suppose   is not coc-b-connected. Then   is the union 

of two coc-b-separated sets   , . Since     are 

nonempty sets. Thus there exists     such that    

        . Let   be coc-b-connected subspace of   

which contains    . Therefore either       or       

which is a contradiction (since      ). Then   is 

coc-b-connected space .  
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Proposition(15):                                                             

If   is coc-b-connected set then  
     

is coc-b-

connected . 

Proof:                                                         

 Suppose   is coc-b-connected and  
     

is not coc-b-

connected. Then there exist two coc-b-separated set 

    such that  
     

    . But      
     

 ,then 

        and since   is coc-b-connected set. Then 

either        or      . If      then  
     

  

 
     

 . But  
     

    , hence  
     

      

since  
     

    . Then     which is a 

contradiction .If       then  
     

   
     

. But     

 
     

     ,hence  
     

     since  
     

 

   . Then     which is a contradiction .Then 

 
     

 is coc-b-connected. 

Proposition(16):                                               

 If   is coc-b-connected set and        
     

 then 

  is coc-b-connected . 

Proof: 

Let   be coc-b-connected set and        
     

  

.Suppose   is not coc-b-connected ,then there exist two 

sets     such that  
     

      
     

     

   , since       , thus either      or       

.Suppose      then  
     

   
     

  thus  
     

 

   
     

    . But          
     

 then 

 
     

     .Therefore     which is a 

contradiction, hence   is coc-b-connected set. 

Proposition(17):                                               

 If a space   contains a coc-b-connected subspace   

such that  
    

   then   is coc-b-connected . 

Proof: 

Suppose   a coc-b-connected subspace of a space   

such that  
     

  , since        
     

then by 

proposition (2.3.11) then   is coc-b-connected . 

Lemma(18):                                                       

 If   is subset of a space   which is both coc-b-open 

and coc-b- 

closed sets, then any coc-b-connected subspace    

   which meets   must be contained in  . 

 

Proof: 

If   is coc-b-open and coc-b-closed sets in   then 

    coc-b-open and coc-b-closed in   ,if   is coc-b-

connected this implies that       which says that 

  is contained in  .  

Proposition(19):                                               

The coc-b-continuous onto image of coc-b-connected 

space is connected. 

Proof: 

Let   (   )  (    ) be coc-b-continuous, onto 

function and   is coc-b-connected .To prove that   is 

connected .Suppose   is a not connected space . So  

       such that          and       and 

          hence    ( )     (   ), then   

   ( )     ( ) . Since   is coc-b-continuous hence 

   ( ) and    ( ) are coc-b-open in   and sine that   

        and   is onto .Then    ( )  

      ( )    and    ( )     ( )    ,hence X is 

not coc-b-connected space which is contradiction .Then 

  is connected . 

Corollary(20):                                                    

The     -b-continuous image of coc-b-connected space 

is coc-b-connected. 

Proof:                                                                  

Let   (   )  (    ) be     -b-continuous, onto 

function and   is coc-b-connected. To prove   is coc-b-

connected. Suppose   is not coc-b-connected space. So, 

      such that           and        

and     are coc-b-open sets, hence    ( )  

   (   ) then      ( )     ( )  Since that  

       -b-continuous ,hence    ( ) and    ( ) are 

coc-b-open in   and since that          then 

   ( )        ( )    and    ( )     ( )    , 

hence   is not coc-b-connected space which is 

contradiction .Then   is coc-b-connected . 

Proposition(21):                                                 

Let   be topological space and let   *   + have the 

discrete space. Then   is coc-b-connected iff there is no 

coc-b-continuous function from   onto  .  

 

Raad. A/Ghadeer. k 

45 



 

Journal of AL-Qadisiyah for computer science and mathematics 

Vol.8   No.1   Year  2016 

 

Proof: 

Suppose   (   )  (    ) is coc-b-continuous onto 

function. So there exists          such that   

     ( )     ( )   . Then    (* +)           

and    (* +)           therefore   and   are coc-

b-open set in   .Since f is coc-b-continuous .Hence 

      such that          . A , B are coc-b-

open sets which is a contradiction .Since   is coc-b-

connected . 

Conversely, let   be not coc-b-connected. Then 

      such that          ,        and    

,   are coc-b-open sets. Define   (   )  (    ) such 

that  ( )            and  ( )            ,hence 

  is coc-b-continuous ,which is contradiction .Then   is 

coc-b-connected. 

Definition(22): [4]                                              

Let       be a function of a space   into a space  . 

Then   is called a  -continuous function if    ( ) is 

an  -open set in   for every open set   in  . 

Definition(23):  [6]                                              

A subset   of a space   is called an  -set if       

when U is open set and    ( )      ( ). 

Definition(24):  [7]                                            

 A space (   ) is said to be satisfy   -condition if 

every   -open is   -set. 

Lemma(25):  [6]                                                 

A subset   of a space   is open iff    -open set and  -

set . 

Definition(26): [1]                                            

 A space   is said to be  -connected provided that    is 

not the union of two nonempty disjoint  -open sets . 

Proposition(27):                                                 

Let (   ) and (    ) be two topological spaces. If 

satisfy   - condition ,then the coc-b-continuous, onto 

image of coc-b-connected space is  -connected . 

Proof: 

Let   (   )  (    ) be coc-b-continuous, onto 

function and   be coc-b-connected. To prove   is   -

connected. Suppose   is not  -connected space. So, 

  *   + such that          and       

and   ,    -open sets since   satisfy  -condition , 

then      are open sets. Hence    ( )     (   ).  

 

Then      ( )     ( ). Since that   coc-b-

continuous hence    ( ) and    ( ) are coc-b-open in  

  .Since that          and   is onto then 

   ( )        ( )    and    ( )     ( )   , 

hence   is not coc-b-connected space which is 

contradiction .Then   is   -connected. 

Definition(28):  [3]                                           

A space (   ) is said to be locally connected if for each 

point       and each open set   such that      . 

There is a connected open set   ,         . 

Definition(29):                                                  

A space (   ) is said to be coc-b-locally connected if 

for each point       and each coc-b-open set   such 

that      . There is a coc-b-connected open set   

,        . 

Proposition(30):                                               

 Every coc-b-locally connected space is locally 

connected space.  

Proof: Clear  

Remark(31):                                                    

 The convers of the proposition (24) is not true in 

general.  

Example(32):                                                     

Let   *     +     {    *   +} .The coc-b-open sets 

are     * + * + * + *   + *   + *   + then (   ) is 

locally connected but (   ) is not coc-b-locally. Since 

    *   +. There is no coc-b-connected open set   such 

that         *   +.  

Remark(33):                                                     

If (   ) is a coc-b-locally connected space. Then it 

need not be coc-b-connected . 

Example(34):                                                     

  Let   *     +                                                   

{    * + * + * + *   + *   + *   +} . The coc-b-open 

sets is discrete topology then (   ) is a coc-b-locally 

but (   ) is not coc-b-connected ,since * + *   + are 

coc-b-open sets in   such that   * +  *   + and     

* +  *   +   . 

Definition(35):                                                  

Let (   ) be any space, a maximal coc-b-connected of 

  is said to be coc-b-component of  .  
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Theorem(36):                                                     

For a space (   ). The following condition are 

equivalent: 

1-  is a coc-b-locally connected.  

2-Every coc-b-component of every coc-b-open set is 

open. 

Proof: 

(1) (2) Let   be coc-b-locally connected and let   be 

coc-b-component of   such that      . Let       and 

  is coc-b-open set in   such that           . Then 

      and   is coc-b-open set in   . Since   is a coc-b-

locally connected , then there exist coc-b-connected 

open set   in   such that           ,since that   is 

coc-b-component ,then       and ⋃          

   ,hence   ⋃ *        +      therefore   is open 

set. 

(2) (1) Let      and   be coc-b-open set in   such 

that     and let   coc-b-component of   such that 

         . Then   is open set in   by (2) . Since that 

  is coc-b-component, hence   is coc-b-connected 

.Therefore   is a coc-b-locally connected. 

 

Proposition(37):                                              

The coc-b-continuous, open, image of coc-b-locally 

connected space is locally connected. 

Proof: 

Let   (   )  (    ) be coc-b-continuous open and 

onto function and (   ) is coc-b-locally connected 

space. To prove (    ) is locally connected. Let       

and   be open set in         . Since   is onto there 

exist       such that  ( )   , since   is coc-b-

continuous then    ( ) is coc-b-open set in   such that 

       ( ), since   is coc-b-locally connected then 

there exist   is coc-b-connected open set in   such that 

           ( ) since   open function, then  ( )   

  ( )      such that  ( ) is open and  ( ) is 

connected by corollary(14). Therefore   is a locally 

connected . 

Remark(38):                                                       

The coc-b-continuous image of coc-b-locally connected 

need not be coc-b-locally connected. 

 

Example(39):                                                     

Let   *     +       *     +                             

{    * + * + * + *   + *   + *   +} and  

   {    * +} . The coc-b-open set in   and   are 

discrete topology. Define   (   )  (    ) such that 

 ( )      ( )      ( )    is coc-b-continuous, 

onto function .Then (   ) is coc-b-locally connected 

but (    ) is not coc-b-locally connected since 

    *   + and exists no coc-b-connected open set   in 

  such that         *   +. 

Proposition(40):                                                 

The     -b-continuous, open, image of coc-b-locally 

connected space is coc-b-locally connected. 

Proof: 

Let   (   )  (    ) be     -b-continuous, open and 

onto function and (   ) is coc-b-locally connected 

space . To prove (    ) is coc-b-locally connected, let 

      and   is coc-b-open set in  , such that      . 

Since   onto there exist       such that  ( )    for 

each      , since   is     -b-continuous, hence    ( ) 

is coc-b-open set in   such that        ( ). Since   is 

coc-b-locally connected then     coc-b-connected open 

set in   such that            ( ), since   is open then 

 ( ) is open set in   and   ( ) is coc-b-connected by 

proposition (15). Hence  ( ) is coc-b-connected open 

set in   such that      ( )    . Therefore   is a coc-b-

locally connected space. 

Definition(41):                                                   

Let   be a space ,     ,   is called coc-b-dence set in 

  if  
     

  . 

We recall that a space   is said to be hyper connected if 

for every nonempty open subset of   is dence see [5] . 

Definition(42):                                                  

 A space   is said to be coc-b-hyper connected if for 

every nonempty coc-b-open subset of   is coc-b-dence. 

Now, we explain the relation between an coc-b-hyper 

connected space and hyper connected space . 

Proposition(43):                                                

 Every coc-b-hyper connected space is hyper connected.   

 

Raad. A/Ghadeer. k 

47 



 

Journal of AL-Qadisiyah for computer science and mathematics 

Vol.8   No.1   Year  2016 

 

Proof: 

Let   be coc-b-hyper connected space. Then every 

nonempty coc-b-open subset of   is coc-b-dence in  , 

hence every nonempty open subset of   is dence.  

Therefore   is hyper connected (since every coc-b-

dence set is dence). 

Remark(44):                                                     

The convers of the proposition (43) is not true in 

general.   

Example(45):                                                   

Let   *     +     *   +. The coc-b-open sets 

{    * + * + * + *   + *   + *   +}. Then (   ) is 

hyper connected but (   ) is not coc-b-hyper connected 

since * + is coc-b-open set and * +
     

 * +   . 

Proposition(46):                                                  

Every coc-b-hyper connected space is coc-b-connected.  

Proof: 

Let   be coc-b-hyper connected space and suppose   is 

not coc-b-connected. Then there exists   is coc-b-

clopen subset in   such that     and    , hence 

   
     

 which is a contradiction, since   is coc-b-

hyper connected. Therefore   is coc-b-connected . 

Definition(47): [2]                                              

A space (   ) is said to be extremally disconnected if 

the closure of every open subset of   is open in  .  

 

Definition(48):                                                  

 A space (   ) is said to be coc-b-extremally 

disconnected if the closure of every open is coc-b-open. 

Remark(49):                                                       

Every extremally disconnected space is coc-b-

extremally disconnected space and the convers is not 

true in general. 

Example(50):                                                      

Let   *     +    {    * + * + *   +} .The coc-b-

open set {    * + * + * + *   + *   + *   +} .Then 

(   ) is coc-b-extremally disconnected, but (   ) is 

not extremally disconnected since * +  *   +     . 

Remark(51):                                                       

Every coc-b-hyper connected is a coc-b-extremally 

disconnected space but the convers is not true in 

general. 

Example(52):                                                     

Let 

  *     +    

{    * + * + * + *   + *   + *   +}. The coc-b-open 

set     * + * + * + *   + *   + *   +. Then (   ) is 

coc-b-extremally disconnected since the closure of 

every open subset of X is coc-b-open. But (   ) is not 

coc-b-hyper connected since  
     

          coc-

b-open. 

 

 

 

The following diagram explain the relationship among these types of connected spaces 

  

 

 

 

 

 

Hyper connected Locally connected 

Coc-b-hyper connected Coc-b-locally connected 

Coc-b-connected 

connected 

Coc-b-extremally 
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 coc-b الفضاءات الوتصلة هن النوط

 غذير خضير عبيس                      رعذ عزيز حسين

 قسن الرياضيات / كلية علوم الحاسوب وتكنلوجيا الوعلوهات/  جاهعة القادسية

 الوستخلص :

مبشهنات والملاحظات حىل هزا المفهىم والنتائج التي تخص رلك و كزلك نقىم ,حيث نقذم عذد من ال coc-bنحن نقذم و نذسس الفضاء المتصل من النمط 

أيضا نقذم بعض الملاحظات والمبشهنات حىل المفهىم الجذيذ. في هزه الذساسة   coc-bبمناقشة تعشيف المتصل محليا من النمط

 ونعطي المبشهنات والملاحظات التي تخص رلك المفهىم. coc-bباستخذام المجمىعة المفتىحة من النمط   hyper connectedأيضا نقذم تعشيف 
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