Page 50 - 53

Saied. A/ Hashmiya. I

On coc-coercive function

Saied A. Johnny Hashmiya I. Naser

AL-Qadissiya Education

Recived : 21\1\2016

Revised : 16\3\2016

Accepted : 27\3\2016

Abstract :

In this paper, we use the concept of coc-closed and coc-compact sets to construct a new type of functions which is coccoercive function and investigate the properties of this concept.

Keywords: coc-open, coc-closed, coc-compact space, coc-Hausdorff, coc-cluster point, coc'-continuous function, coc'-compact function and ccoc-coercive function.

Mathematics subject classification : 54 A20, 54 C08, 54 C10.

1. Introduction

The basic definitions that needed in this work are recalled . In this work , spaces always mean topological spaces on which no separation axioms are assumed unless explicitly stated, a topological space is denoted by (X, τ) (or simply X). A subset A of a space X is called co-compact open set (for brief cocopen), if for every $x \in A$, there is open set $U \subseteq X$ and a compact subset $K \subseteq X$ with $x \in U - K \subseteq A[2]$. The complement of coc-open set is called coc-closed set [2]. The coc-closure of $A \subseteq X$ is intersection of all coc-closed sets which contains A and it is denoted by \overline{A}^{coc} [2]. By AL-Hussaini F. H. [1], [3] give the definition of coc-Hausdorff and coc-compact spaces and study of it is properties. In [1] introduces the certain types of continuous (closed and compact) functions . Finally in [4] Hamzah S. H. and Hassan N. K. defined certain of a cluster points of a nets and shows relationship with the coc-compact space . We use T_{ind} to denote the indiscrete topology on a nonempty sets X.

1.1.Definition [1]:

i. A space X is called coc- Hausdorff space iff for each $x \neq y$ in X there exists disjoint coc- open sets U, V in X such that $x \in U, y \in V$, (every Hausdorff space is coc-Hausdorff).

ii. A space X is called coc-compact if every coc-open cover of X has finite sub cover.

1.2.Theorem[1], [2], [3]:

i. Every open (closed) set is coc-open (coc-closed) set.

ii. If X be a space and Y be a nonempty closed set in X .

If *B* be a coc-open (coc-closed) set

in X, then $B \cap Y$ is coc-open (coc-closed) set in Y.

iii. Every finite subset of a space *X* is coc-compact.

iv. If Y be a coc-open in a space X and $K \subseteq Y$, then K is a coc-compact in X iff it is coc- compact set in Y.

v. Every coc-compact subset of a Hausdorff space is coc-closed.

vi. Every coc-compact space is compact.

vii. The intersection of coc-closed set with a coccompact set is coc-compact.

1.3. Definition[1],[2]:

A function $f: X \to Y$ is called:

i. coc'-continuous (coc'-compact), if $f^{-1}(A)$ is cocopen (or coc-closed) (coc-compact) set in X, for every coc-open (or coc-closed) (coc-compact) set A in Y.

ii. coc'- closed, if f(A) is coc-closed set in Y, for every coc-closed set A in X.

iii. If f be a coc'-continuous onto and X be coccompact, then Y is coc-compact.

 $\ensuremath{\text{iv.}}$ The coc'-continuous image for any coc-compact set

is coc-compact.

Saied. A/ Hashmiya. I

1.4.Theorem [4]:

i. A net $(\chi_d)_{d\in D}$ in a space X is called to have $x \in X$ as coc-cluster point if $(\chi_d)_{d\in D}$ is frequently in every coc-open set contains x and it is denoted by

 $\chi_d^{coc} \propto x$. **ii.** Let X be a space and $A \subseteq X$, then $x \in \overline{A}^{coc}$ iff there is a net $(\chi_d)_{d \in D}$ in A such that $\chi_d^{coc} \propto x$.

iii. X is coc-compact iff every net $(\chi_d)_{d \in D}$ in X has a coc-cluster point in X.

2.The main results:

This section is devoted to a new concept which is called coc- coercive function. Several

various examples, theorems and remarks on the concept are proved . Furthermore are stated as well as the relationship between the concepts with the coccompact function.

2.1. Definition:

A function $f: X \to Y$ is said to be coc-coercive, if for every coc-compact subset *B* of *Y* there is coccompact subset *A* of *X* such that $f(X \setminus A) \subseteq (Y \setminus B)$.

2.2. Example:

i. The identity function for any space is coc-coercive. ii. Let $X = \{1,2,3\}, Y = \{4,5\}, T_X = \{\emptyset, X, \{3\}\}, T_Y = T_{ind}$ and $f: X \to Y$ be a function with f(1) = f(2) = 4, (3) = 5, then *f* is coc-coercive.

iii. If *X* any finite space and $f: X \to Y$ be a function , then *f* is coc-coercive .

2.3. Theorem:

If $f: X \to Y$ be a function, such that X is coccompact space, then f is coc-coercive.

Proof:

Let *B* be a coc-compact subset of *Y*. Since *X* is coc-compact. Then $f(X \setminus X) = f(\emptyset) = \emptyset \subseteq f(Y \setminus B)$, so *f* is coc-coercive function.

2.4. Theorem:

Let $f: X \to Y$ be a coc'-continuous function with Y be a Hausdorff space, then f is coc-coercive if and only if it is coc'-compact.

Proof:

Suppose that *f* is coc-coercive and let *B* be a coccompact subset of *Y*. To prove that *f* is coc'-compact function, since *Y* is T_2 -space, then by Theorem (1.2.v), *B* is coc-closed . But *f* is coc'-continuous , then $f^{-1}(B)$ is coc-closed subset of *X* definition (1.3.i). Since *f* be coc-coercive then by definition (2.1), there is a coc-compact subset *A* of *X* such that $f(X \setminus A) \subseteq (Y \setminus B)$. Since $f^{-1}(B)$ is a coc-closed, then by Theorem (1.4.ii) every net in $f^{-1}(B)$ has a coc-cluster in itself. By

Theorem (1.4.iii), $f^{-1}(B)$ is coc-compact subset in X. Thus f is coc'-compact.

Conversely, suppose that *B* is coc-compact subset of *Y*. Since *f* is coc'-compact function, then $f^{-1}(B)$ is coc-compact subset of *X*. Put $A = f^{-1}(B)$, then $f(X \setminus A) \subseteq (Y \setminus B)$. Hence *f* is coc-coercive function.

2.5. Theorem:

For any closed and coc-open subset *F* of a space *X*, the inclusion function $i: F \to X$ is coc-coercive.

Proof:

Let A be a coc-compact subset of X, since F closed, then by Theorem (1.2.vii), $F \cap A$

is coc-compact subset of X , by Theorem (1.2.iv) , $F \cap A$ is coc-compact of F. We have

 $i(F \setminus F \cap A) \subseteq X \setminus A$, then $i: F \to X$ is coc-coercive function.

2.6. Theorem:

Let *X* and *Y* be two spaces and $f: X \to Y$ be a function , if *f* be a coc-coercive with *F*

be a closed and coc-open subset of X , the restriction function $f_{_{IF}}:F\to Y$ is coc-coercive .

Proof:

Let *B* be a coc-compact subset of *Y*, since *f* be coccoercive. Then there is a coc-compact subset *A* of *X* such that $f(X \setminus A) \subseteq (Y \setminus B)$. Since *F* be a closed subset of *X*, then by Theorem

(1.2.vii), $F \cap A$ is coc-compact subset of X, and hence $F \cap A$ is coc-compact subset of F. Since $f_{/F}(F \cap A) = f(F \setminus A)$ and $F \setminus A \subseteq X \setminus A \Rightarrow$ $f(F \setminus A) \subseteq f(X \setminus A) \Rightarrow f_{/F}(F \setminus F \cap A) \subseteq Y \setminus B$,

hence $f_{/F}: F \to Y$ is coc-coercive function.

2.7. Theorem:

Let X and Y be two spaces, $f: X \to Y$ be a coccoercive, coc'-continuous function. If T closed and coc-open subset of Y, then $f_T: f^{-1}(T) \to T$ is coccoercive function with $f^{-1}(T)$ is open in X.

Proof:

Let *B* be a coc-compact subset of *T*, since *T* is a closed subset of *Y*, then by Theorem (1.2.iv), *B* is coccompact subset of *Y*. Since *f* be a coc-coercive, then there is a coc-compact subset *A* of *X* such that $f(X \setminus A) \subseteq (Y \setminus B)$.

Saied. A/ Hashmiya. I

Since *f* be coc'-continuous by (1.3.i), $f^{-1}(T)$ is cocclosed subset of *X*, by Theorem (1.2.vii) $f^{-1}(T) \cap A$ is coc-compact subset of $f^{-1}(T)$. Notice that: $f_T(f^{-1}(T) \setminus f^{-1}(T) \cap A) = f_T(f^{-1}(T) \cap A^c) =$

 $f_T(f^{-1}(T)\backslash A) \cdot \text{Since } f^{-1}(T)\backslash A \subseteq X\backslash A,$ then $f_T(f^{-1}(T)\backslash A) \subseteq f_T(X\backslash A) \cdot \text{So} \quad f_T(X\backslash A) =$ $T \cap f(X\backslash A) \text{ and } T \cap f(X\backslash A) \subseteq T \cap (Y\backslash B) = T\backslash B.$ Hence $f_T(f^{-1}(T)\backslash f^{-1}(T)\cap A) \subseteq T\backslash B.$ Therefore f_T is coc-coercive function.

2.8. Theorem:

A composition of two coc-coercive functions is coc-coercive.

Proof:

Let $f: X \to Y$ and $h: Y \to Z$ be two coccoercive functions. Let *C* is a coc-compact subset of *Z*, then there is a coc-compact subset *B* of *Y* such that $h(Y \setminus B) \subseteq Z \setminus C$. Since *f* is a coc-coercive, then there is a coc-compact subset *A* of *X* such that $f(X \setminus A) \subseteq Y \setminus B$.

So $h(f(X \setminus A)) \subseteq h(Y \setminus B)$, but $h(Y \setminus B) \subseteq Z \setminus C$. Hence $h(f(X \setminus A)) = hof(X \setminus A) \subseteq Z \setminus C$, therefore *hof* is coc-coercive function.

2.9. Corollary:

Let *X* and *Y* be two spaces , if $f: X \to Y$ is a function and *X* is a coc-compact with *F* closed and cocopen subset of *X*, then $f_{/F}: F \to Y$ is coc-coercive.

Proof: By using Theorems (2.3) and (2.8).

2.10. Theorem:

If $f: X \to Y$ is a bijective, coc'-compact and $g: Y \to Z$ is a coc-coercive function, then *gof* is coc-coercive function.

Proof:

Let *C* be a coc-compact subset of *Z*, then there is a coc-compact subset *B* of *Y* such that $g(Y \setminus B) \subseteq$ $Z \setminus C$. Put $A = f^{-1}(B)$. Since *f* is coc'-compact, then *A* is a coc-compact subset of *X*. Thus $gof(X \setminus A) = g(f(X \cap A^c)) = g(f(X) \cap f(A^c))$. Since *f* be a bijective, then $gof(X \setminus A) = g(Y \cap f(f^{-1}(B))^c) = g(Y \cap B^c) =$

$$g(Y \backslash B) \subseteq Z \backslash C .$$

Therefore *gof* is coc-coercive function.

2.11. Theorem:

Let $f: X \to Y$ and $g: Y \to Z$ be two functions such that:

i. If gof is coc-coercive and g is coc'-continuous and bijective, then f is coc-coercive.

ii. If gof is coc-coercive and f is coc'-continuous and onto, then g is coc-coercive.

Proof:

i. Let *B* be a coc-compact subset of *Y*, since *g* be a coc'-continuous ,by Theorem (1.3.iv), g(B) is coc-compact subset of *Z*. Since *gof* be a coc-coercive function, then there is a coc-compact subset *A* of *X* with *gof* (*X**A*) \subseteq *Z**g*(*B*), since *g* be a bijective function then:

 $g^{-1}(gof(X \setminus A)) \subseteq g^{-1}(Z \setminus g(B)) =$

 $g^{-1}(Z \cap (g(B))^c) = g^{-1}(Z) \cap g^{-1}(g(B^c))) = Y \setminus B.$ But $f(X \setminus A) = g^{-1}(gof(X \setminus A)) \subseteq Y \setminus B$, therefore *f* is coc-coercive function.

ii. Let *C* be a coc-compact subset of *Z*. Since *gof* is coc-coercive, then there is a coc-compact subset *A* of *X* such that $gof(X \setminus A) \subseteq Z \setminus C$, so $g(f(A^c)) \subseteq Z \setminus C$, since *f* is onto we get $g((f(A))^c)) \subseteq Z \setminus C$. Since *f* is coc'-continuous, then by Theorem (1.3.iv), f(A) is coc-compact subset of *Y*. Therefore *h* is coc-coercive function.

Reference:

[1]. AL-Abulla R. A. and AL-Hussaini F. H., " On cocompact open Set ", J. of AL-Qadisiya

for computer science and math., Vol. 6, No. 2,

2014 . Math. and computer Science, 2014.

[2]. Al Ghour S. and Samarah S. "Cocompact Open Sets and Continuity ", Abstract and Applied analysis, Article ID 548612, 9 pages ,2012.

[3]. AL-naylle N. H. " On Cocompact Actions ", M.S. c. Thesis University of AL-Qadissiya , College of Mathematics and computer Science , 2015.

[4]. Hamzah S. H. and Hassan N. K., " On cocconvergence of Nets and Filters", INDIAN J. OF APPLIED RESEARCH. Vol. 5, issue 8, August 2015

Saied. A/ Hashmiya. I

الدوال الاضطرارية من النمط -COC

سعيد عبد الكاظم جوني

هاشمية ابراهيم ناصر

مديرية تربية القادسية

المستخلص :

في هذا البحث أستخدمنا مفهومي المجموعات (المغلقة -coc) و (المرصوصة -coc) لتقديم نوع جديد من الدوال الاضطرارية يدعى (الدالة الاضطرارية-coc) وقدمنا بعض المبرهنات حول هذه الدالة وعلاقتها مع الدوال المرصوصة -coc .