Math Page 132-140

Raad .A / Karim .F

On Minimal and Maximal T₁-space Via B^{*}c-open set

Raad Aziz Hussan Al-Abdulla Karim Fadhil Al-Omri Department of Mathematics College Computer Science and Information Technology AL-Qadisiyah university

Recived : 1\8\2018

Revised : 16\8\2018

Accepted : 20\8\2018

Available online : 26 /9/2018

DOI: 10.29304/jqcm.2018.10.3.434

Abstract

In this paper, we introduced study about properties of the spaces minimal T_1 – Space and maximal T_1 – space by using the set open (respace β - open, B^{*}c– open) sets and we concluded some propositions, remarks and relations between spaces m B^{*}c – T₁ space and M B^{*}c – T₁ space and study the relation between m – space and M – space to space T₁ – space. Where we find every m B^{*}c – T₁ space is M B^{*}c – T₁ space, but the converse is not true in general. Also we introduced hereditary properties and topological properties.

Key Words: minimal $B^*c - T_1$ space maximal $B^*c - T_1$ space minimal $\beta - T_1$ space maximal $\beta - T_1$ space

Mathematics subject classification: 54XX

1) Introduction:

The topological idea from study this type of the space came to determine the relation between minimal T_1 – space and maximal T_1 – space In [5] Abd El – Monsef M. E., El – Deeb S. N. Mahmoud R. A., the Category β – open set was defined which considered to study the B^{*}c – open set. In [1] and [2] F. Nakaoka and N. oda. , has been defined minimal and maximal open set. In [4] M. C. Gemignani, has been defined T_1 – space In[3]S.S Benchalli defined the function category strongly m – open function and m – irresolute function which is study open function continuity respectively. In [6] and [7] proved proposition about T_1 –space by the B^{*}c – open set.

2) Basic Definitions and Remarks Definition (2.1): [5]

Let X be a topological space, then a sub set A of X is said to be β - open set if A \subseteq cl(int(cl(A))) is β - closed set if A^C is β - open.

Definition (2.2):

Let X be a topological space and $A \subseteq X$. Then a β - open set A is said a B^{*}c - open set if $\forall x \in A \exists F_x$ closed set $\exists x \in F_x \subseteq A$. A is a B^{*}c - closed set if A^c is a B^{*}c - open.

Definition (2.3):

The family union of all B^*c - open set of a topological space X contained in A is said B^*c - interior of A is, denoted by A^{oB^*c} . i.e

 $A^{oB^*c} = \bigcup \{ : G \subseteq A \text{ and } G B^*c \text{ - open in } X \}.$

Definition (2.4): [1]

Let X be a topological space A proper non empty open set U of X is said to be a minimal open set if any open set which is contained in V is \emptyset or U.

Definition (2.5): [2]

Let X be a topological space A proper nonempty open set U of X is called to be a maximal open set if any open set which is contained in U is X or U.

Definition (2.6):

Let X be a topological space A proper non empty β - open set U of X is said to be

i) A minimal β - open set if any β - open set which is contained in U is \emptyset or U.

ii) A maximal β - open set if any β - open set which contains in U is X or U.

Definition (2.7):

Let X be a topological space A proper non empty B^*c - open set U of X is said to be

i) A minimal B^*c - open set if any B^*c - open set which contains in U is \emptyset or U.

ii) A maximal B^*c - open set if any B^*c - open set which is contained in U is X or U.

Definition (2.8): [4]

A topological space X is called T_1 – space iff for each $x \neq y$ in X, there exists open sets U and V such that $x \in U$, $y \notin U$ and $y \in V$. $x \notin V$.

Definition (2.9):

A topological space X is called m - T_1 space (respace M - T_1) space iff for each $x \neq y$ in X, $\exists m$ – open (respace M – open) sets U and V such that $x \in U, y \notin U$ and $y \in V. x \notin V$.

Definition (2.10):

A topological space X is called βT_1 – space iff $\forall x \neq y$ in X there exists β - open sets U and V such that $x \in U, y \notin U$ and $y \in V. x \notin V$.

Definition (2.11):

A topological space X is called $m\beta - T_1$ space (respace $M\beta T_1$ - space) iff for each $x \neq y$ in X there exists $m\beta$ – open (respace $M\beta$ – open) sets U and V such that $x \in U, y \notin U$ and $y \in V. x \notin V$.

Definition (2.12):

A topological space X is called BcT_1 – space iff for each $x \neq y$ in X , $\exists B^*c$ - open sets U and V such that $x \in U$, $y \notin U$ and $y \in V$. $x \notin V$.

Definition (2.13):

A topological space X is called $mB^*c - T_1$ space (respace $MB^*c - T_1$) space iff for each $x \neq y$ in X there exists mB^*c – open (respace MB^*c – open) sets U and V so that $x \in U$, $y \notin U$ and $y \in V$. $x \notin V$.

Definition (2.14):

Let X,Y be a topological spaces and let F: $X \rightarrow Y$ be a function Then:

i) F is called strongly m - open [3], if $\forall m - open$ set U in X, then F(U) is m - open set in Y.

ii) F is called strongly M – open , if \forall M – open set U in X, then F(U) M - open set in Y.

iii) F is called strongly $m\beta$ – open (respace strongly $M\beta$ – open), if for all $m\beta$ – open (respace $M\beta$ – open) set U in X, then F(U) is $m\beta$ – open (respace $M\beta$ – open) set in Y.[8].

iv) F is called strongly mB^*c -open (respace strongly M B^*c - open), if $\forall m B^*c$ - open (respace MB*c - open) set U in X, then F(U) is mB*c open (respace MB*c - open) set in Y.

Definition (2.15):

Let X,Y be a topological spaces and let F: $X \rightarrow Y$ be a function Then:

i) F is called m – irresolute function [3], if $\forall m -$ open U in Y, then $F^{-1}(U)$ is m – open in X.

ii) F is called M –irresolute function, if \forall M –open U in Y, then F⁻¹(U) is M – open in X.

iii) F is called $m\beta$ – irresolute (respace $M\beta$ – irresolute) function. If $\forall m\beta$ –open (respace $M\beta$ – open) U in Y, then F⁻¹(U) $m\beta$ – open (respace $M\beta$ – open) set in X.[8].

iv) F is called mB^*c – irresolute (respace MB^*c – irresolute) function, if $\forall mB^*c$ –open (respace MB^*c – open) U in Y, then $F^{-1}(U) mB^*c$ – open (respace MB^*c – open) set in X.

Notion: We will use the symbol m to minimal sets and the symbol M to maximal sets.

The family a fall β – open set is denoted by $\beta o(x)$ and the family of all B^*c – open is denoted by $B^*co(x)$.

Theorem (2.1):

Let X be a topological space and $A \subseteq X$. Then:

i) Every open set is β - open.

ii) Every B^*c – open set is β - open.

Proof:

i) Let A be open set, then A =int(A). Since A \subseteq cl(A), then A = int(A) \subseteq int(cl(A)), there for A \subseteq cl(int(cl(A))), hence A β - open set in X.

ii) By definition (2.2)

The converse of above Theorem is not true in general.

Example (2.1):

Let $X = \{a, b, c\}, t = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}.$ $\beta o (X) = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{b, c\}\}.$ $B^*co (X) = \{\emptyset, X, \{b, c\}, \{a, c\}\}.$ Then let $A = \{b, c\}, B = \{b\}.$ Note that i) A is β - open, but not open.

ii) B is β - open, but not B*c – open.

The following diagram shows the relation among types of open sets

<u>Remark (2.1):</u>

Let X be a topological space . Then:

i) Every m - open (respace M - open) is open.

ii) Every $m\beta$ – open (respace $M\beta$ – open) is β - open.

iii) Every mB*c – open (respace MB*c – open) isB*c - open.

The converse of above Theorem is not true in general.

Example (2.2):

In example (2.1), we notice:

i) $A = \{a,b\}$ open, but not m – open also $B = \{a\}$ open, but not M – open.

ii) A = $\{a,b\}\beta$ - open, but not m β - open also B = $\{a\}\beta$ - open, but not M - open.

iii) $A = \emptyset B^*c$ - open, but not m B^*c - open also B = X B^*c - open, but not M - open.

Corollary (2.1):

i) Every m – open (respace M–open) is β - open.

ii) Every mB*c – open (respace MB*c – open) is β - open.

<u>Remark (2.2):</u>

Let X be a topological space Then

i) Every T_1 – space is β - T_1 space

ii) Every $B^*c - T_1$ space is $\beta - T_1$ space

The converse of above Theorem is not true in general.

Example (2.3):

In example (2.1), we see that X is β - T_1 space But

i) X is not T_1 – space, since $\forall a, c \in X \ni a \neq c$, but $\nexists U, V$ open in $X \ni a \in U, c \notin U$ and $c \in V, a \notin V$. ii) X is not $B^*c - T_1$ space ,since $\forall a, c \in X \ni a \neq c$, but $\nexists U, V B^*c$ – open $\ni a \in U, c \notin U$ and $c \in V, a \notin V$.

Theorem (2.2):

Let X be a topological space and $A \subseteq X$. Then $x \in A^{oB^*c}$ iff $\exists B^*c$ – open in $X \ni x \in G \subseteq A$.

Proof:

Let $x \in A^{oB^*c}$

Since $A^{oB^*C} = \bigcup \{ G : G \subseteq A, G \text{ is } B^*c \text{ - open set}$ in X }.

Then $x \in \bigcup \{ G : G \subseteq A, G \text{ is } B^*c \text{ - open set in } X \}$, and hence $\exists G B^*c \text{ - open in } X \ni x \in G \subseteq A$. Conversely

Let $x \in G \subseteq A$ and G is B^*c – open $\exists x \in G \subseteq A$. Then

 $x \in U \{ G : G \subseteq A, G \text{ is } B^*c \text{ - open set in } X \}$,therefore $x \in A^{oB^*c}$.

Definition (2.16):

Let X be a topological space and $A \subseteq X, x \in X$. Then

i) The point x is called limit point of A [7] iff $\forall U$ open set $\exists x \in U$, then $(U \cap A) - \{x\} \neq \emptyset$.

ii) The point x is called β -limit point of A iff $\forall U \beta$ -open set $\exists x \in U$,then (U \cap A) - {x} $\neq \emptyset$.

iii) The point x is called B^*c - limit point of A iff \forall U B*c - open set $\ni x \in U$, then $(U \cap A) - \{x\} \neq \emptyset$.

Remark (2.2):

i) The set of all limit point of A is denoted by Á.

ii) The set of all β - limit point of A is denoted that \dot{A}^{β} .

iii) The set of all B^*c - limit point of A is denoted that \hat{A}^{B^*c} .

Lemma (2.1):

Let X be a topological space and $A \subseteq X, x \in X$. Then

i) A is closed set iff Á ⊆ A. [7].

ii) A is β - closed set iff $\hat{A}^{\beta} \subseteq A$. [5].

<u>Theorem (2.3):</u>

Let X be a topological space and $A \subseteq X$. Then A is $B^*c - closed$ set iff $A^{B^*c} \subseteq A$. **Proof:**

Let A be B*c – closed and b \notin A, then b \in A^C is B*c – open set, hence \exists B*c – open set A^C \ni A^C \cap A = \emptyset . Hence x \notin Å^{B*c}, therefore Å^{B*c} \subseteq A. Conversely

Let $A^{B^*c} \subseteq A$ and $b \notin A$ then $b \notin A^{B^*c}$, hence $\exists B^*c - \text{open set } G \ni b \in G \cap A = \emptyset$, hence $b \in G \subseteq A^C$. Therefore A^C is $B^*c - \text{open set in } X$ by Theorem(2.2), hence A is $B^*c - \text{closed}$.

3) $m - T_1 (M - T_1)$ space by using the set (open, β - open, B^*c - open).

Lemma (3.1) [6]

Let X be a topological space Then X is T_1 - space iff {x} is closed set in X $\forall x \in X$.

Theorem (3.1):

Let X be a topological space Then X is β -T₁ space iff {x} is β - closed set in X $\forall x \in X$. **Proof:**

Let X be β -T₁ space and let $y \notin \{x\}$, the x \neq y. Since X β -T₁ space, then \exists U, V β - open in X \ni x \in U, y \notin U and y \in V, x \notin V. Then V β open in X and y \in V, then (V $\cap \{x\}) - \{Y\} = \emptyset$, then y not β - limit point of $\{x\}$, then y $\notin [\{x\}]^{\beta}$, then [$\{x\}$] $^{\beta} \subseteq \{x\}$. Hence $\{x\}$ is β - closed by lemma (2.1) (ii).

Conversely

Let x, $y \in X \ni x \neq y$. Let $\{x\} \beta$ - closed in X, then $\{x\}^C \beta$ - open in X. Let $U = \{x\}^C$, $V = \{y\}^C$ are β - open in $X \ni x \in V$, $y \notin V$ and $y \in X$, $x \notin U$, hence X β –T₁ space

<u>Theorem (3.2):</u>

Let X be a topological space Then X B*c $-T_1$ space iff {x} is B*c – closed set in X $\forall x \in X$. **Proof:**

Similarly of Theorem(3.2).

<u>Theorem (3.3):</u>

Let X be a topological space Then

i) Every m - T_1 space is T_1 space

ii) Every m β - T₁ space is β -T₁ space

ii) Every mB*c - T_1 space is B*c $-T_1$ space

Proof:

i) Let X be m - T₁ space and let x, $y \in X \ni x \neq y$. Since X m - T₁ space, then $\exists U, V m$ - open in X \ni x \in U, y \notin U and y \in V, x \notin V, then by Remark (2.1) (i) and definition (2.8), we get the resulte.

ii) Let X be m β - T₁ space and let x, y \in X \ni x \neq y. Since X is m β - T₁ space, then \exists U, V m β - open sets in X \ni x \in U, y \notin U and y \in V, x \notin V. then by Remark (2.1) (ii) and definition (2.10), we get the resulte.

iii) Let X be mB*c - T₁ space and let x, $y \in X \ni x \neq y$. Since X is mB*c - T₁ space, then $\exists U, V mB*c$ - open sets in $X \ni x \in U$, $y \notin U$ and $y \in V$, $x \notin V$. then by Remark (2.1) (iii) and definition (2.12), we get the resulte .The converse of above Theorem is not true in general.

Example (3.1)

Let X = IR with a usual top. Then X is T_1 – space, but not $m - T_1$ space

Proof:

Let $x \in IR$ and let (x, ∞) , $(-\infty, x) \in T$. Since $(x, \infty) \cup (-\infty, x) \in T$, then $IR - \{(x, \infty) \cup (-\infty, x)\}$ closed set in IR.

But IR $- \{(x, \infty) \cup (-\infty, x)\} = \{x\}$, then $\exists \{x\}$ closed set in IR $\forall x \in$ IR. Hence X is T_1 – space by lemma (3.1).

T. P X not $m - T_1$ space

Let x, $y \in X \ni x \neq y$, but $\nexists U$, V m – open in X $\ni x \in U$, $y \notin U$ and $y \in V$, $x \notin V$.

Example (3.2):

In example (3.1). Note that X is βT_1 – space by remark (2.2) (i), but not m β - T_1 space Since $\forall x, y \in X$, $x \neq y$, but $\nexists U$, V m β – open in $X \ni x \in U$, $y \notin U$ and $y \in V$, $x \notin V$.

Example (3.3)

Let X = IR with a usual topology. Then X is $B*cT_1 - space$, but not $mB*c - T_1$ space **Proof:**

Let x, y \in Y, x \neq y and let $|x - y| = \varepsilon$ and let U = $(x - \frac{\varepsilon}{4}, x + \frac{\varepsilon}{4})$, V = $(y - \frac{\varepsilon}{4}, y + \frac{\varepsilon}{4})$, then U, V \in T \ni x \in U, Y \notin U and Y \in V, X \notin V.

Choose U = (x, Y], V = [x, Y), then U, V are β - open set, then

 $\forall a \in U \exists \{a\} \text{ closed set } \exists a \in \{a\} \subseteq U.$

 $\forall b \in V \exists \{b\} \text{ closed set } \exists a \in \{b\} \subseteq V.$

Then U, V B*c – open sets in X \ni y \in U, x \notin U and x \in V, Y \notin V.

Then X is $B^*c - T_1$ space

T. P. X not $mB^*c - T_1$ space Let x, $y \in X \ni x \neq Y$, but $\nexists mB^*c$ – open set U, V in $X \ni y \in U$, $x \notin U$ and $x \in V$, $Y \notin V$.

Corollary (3.1):

Let X be a topological space . Then:

i) If X m–T₁ space , then $\{x\}$ closed set in X $\forall x \in X$.

ii) If X m β – T₁ space, then {x} β - closed set in X \forall x \in X.

iii) If X mB*c – T₁ space, then {x} B*c - closed set in X $\forall x \in X$.

Proof:

i) Follows from theorem (3.3) (i) and lemma (3.1).

ii) Follows from theorem (3.3) (ii) and Theorem(3.2).

iii) Follows from theorem (3.3) (iii) and Theorem(3.2).

Theorem (3.4):

Let X be a topological space Then:

i) If X is $m - T_1$ space, then X is β - T_1 space

ii) If X is $mB^*c - T_1$ space, then X is $\beta - T_1$ space **Proof:**

<u>rooi:</u>

i) Follows from Theorem(3.3) (i) and remark (2.2)(i).

ii) Follows from Theorem(3.3) (iii) and remark (2.2) (ii).

Lemma (3.3)

 $\label{eq:Let X be a topological space and a \in X.$ Then:

i) [1]. If $\{a\}$ open (respace closed), then $\{a\}$ m – open (respace m – closed) set. So $[\{a\}]^C$ M – closed (respace M – open).

ii) If {a} β - open (respace β - closed), then {a} $m\beta$ - open (respace $m\beta$ - closed). So [{a}]^C $M\beta$ - closed (respace $M\beta$ - open).

iii) If $\{a\} B^*c$ - open (respace B^*c - closed), then $\{a\} mB^*c$ - open (respace mB^*c - closed). So $[\{a\}]^C MB^*c$ - closed (respace MB^*c - open).

<u>Theorem (3.5):</u>

 $\label{eq:Let X be a topological space .Then X is M \\ - T_1 \text{ space iff } \{x\} \text{ closed set in } X \forall x \in X.$

Proof:

Let X be $M-T_1$ space and let $Y \notin \{x\}$, the $x \neq y$. Since X $M-T_1$ space, then $\exists U, V M$ - open in $X \ni x \in U$, $y \notin U$ and $y \in V$, $x \notin V$, then by Lemma (3.1) we get $\{x\}$ closed set in X. Conversely

Let x, y \in X and x \neq y. Let {x} be closed set in X, then by Lemma (3.3) (i), we get {x} m closed, then [{x}]^C M - open in X. Let U = {x}^C, V = {Y}^C are M - open in X, then \exists U, V M - open in X \ni x \in V, y \notin V and y \in U, x \notin U, hence X is M -T₁ space

Theorem (3.6):

Let X be a topological space Then i) X M β -T₁ space iff{x} β -closed set in X $\forall x \in X$. ii) X MB*c - T₁ space iff {x} B*c - closed set in X $\forall x \in X$.

Proof:

Similarly Theorem(3.5).

Corollary (3.2):

Let X be a topological space Then

i) X M – T_1 space iff X is T_1 – space

ii) X M β – T₁ space iff X is β –T₁ space

Raad .A / Karim .F

iii) X MB*c – T_1 space iff X is B*c – T_1 space **Proof:**

i) Follows from Theorem(3.5) and Lemma (3.1).
ii) Follows from Theorem(3.6) (i) and Theorem(3.1).
iii) Follows from Theorem(3.6) (ii) and Theorem(3.2).

Theorem (3.7):

Let X be a topological space .Then i) Every $m - T_1$ space is $M - T_1$ space

ii) Every $m\beta - T_1$ space is $M\beta - T_1$ space

iii) Every $mB^*c - T_1$ space is $MB^*c - T_1$ space **Proof:**

i) Follows from Theorem (3.3)(i)and Corollary. (3.13) (i).

ii)Follows from Theorem (3.3)(ii)and

Corollary.(3.2) (ii).

iii) Follows from Theorem(3.3) (iii) and Corollary .(3.2) (iii).

The converse of above Theorem is not true in general.

Example (3.4):

i) In example (3.1), we note that X is T_1 – space, then X is M - T_1 space, by Coro. (3.13) (i), but not m - T_1 space Since $\forall x, Y \in X, x \neq Y$, but $\nexists \cup, V$ m – open in X $\ni x \in U, Y \notin U$ and $Y \in V, X \notin V$. ii) In example (3.2), note that X is βT_1 – space, then X is M β - T_1 space by (3.13) (ii), but not m β - T_1 space Since $\forall x, Y \in X, x \neq Y$, but $\nexists \cup, V$ m – open in X $\ni x \in U, Y \notin U$ and $Y \in V, X \notin V$.

iii) In example (3.3), note that X is $B^*c - T_1$ space, then X is MB*c - T_1 space by corollary (3.2) (iii), but not mB*c - T_1 space Since $\forall x, Y \in X, x \neq Y$, but $\nexists U, V mB*c$ - open in $X \ni x \in U, Y \notin U$ and $Y \in V, X \notin V$.

Theorem (3.8):

Let X be a topological space . Then i) If X M – T₁ space, then X is β – T₁ space ii) If X M – T₁ space, then X is M β – T₁ space iii) If X MB*c – T₁ space, then X is β – T₁ space iv) If X MB*c – T₁ space, then X is M β – T₁ space **Proof:**

It is clear.

The converse of above theorem is not true in general.

Example (3.5):

In example (3.1), note that X is βT_1 – space, and M β - T_1 space But

i) and (ii) Not M - T₁ space Since a, $c \in X \ni a \neq c$, but \nexists U, V M - open in X $\ni a \in U$, $c \notin U$ and $c \in$ V, $a \notin V$.

iii) and (iv) Not MB*c - T_1 space Since $a, c \in X \ni a \neq c$, but $\nexists U$, V MB*c – open in $X \ni a \in U$, $c \notin U$ and $c \in V$, $a \notin V$.

The following diagram shows the relation among types of $M - T_1$ space

<u>4) Hereditary properties:</u> Lemma (4.1): [7]

Let X be a topological space then

i) If V open in Y and Y open in X, then V open in X.

ii) If V closed in Y and Y closed in X, then V closed in X.

Lemma (4.2): [6]

Let X be a topological space Then G open set in X if and only if $cl(G\cap cl(A))=cl(G\cap A) \forall A \subseteq X$.

Theorem (4.1):

Let X be a topological space and Y open in X. If A β - open in Y, then A β - open in X.

Proof:

Let A be β - open in Y

Let $x \in A$, then there exists U β - open in Y such that $x \in U \subseteq A$. Then

$$U \subseteq \overline{U}^{oY} = [\overline{U} \cap Y]^{oY}.$$

$$\subseteq [(\overline{U} \cap \overline{Y}) \cap Y].$$

$$\subseteq [(\overline{U} \cap \overline{Y}) \cap Y].$$

$$\subseteq [(\overline{U} \cap \overline{Y}) \cap Y].$$

$$= [(\overline{U} \cap \overline{Y}) \cap Y].$$

by lemma (4.2).

$$= \frac{\overline{(U \cap Y)}}{(U \cap Y)} \boxtimes$$
$$= (U \cap Y) \text{ by lemma (4.2)}$$
$$\subseteq \overline{U}$$

Then U is β - open. Since $x \in U \subseteq X$ and U is β - open in X. Therefore A β - open in X.

Theorem (4.2):

Let X be a topological space and Y clopen in X. If A B*c - open in Y, then A B*c - open in X. **Proof:**

Let A be B*c - open in Y, then A β - open in Y. Since Y clopen in X, then Y open and closed in X, then A β - open in X by Theorem(4.1). Let $x \in A$, then \exists F closed set in Y such that $x \in F_y \subseteq A$, then F closed set in X by lemma (4.1) (ii). Then $x \in F_x$ \subseteq A, hence A B*c – open in X.

Theorem (4.3):

Let X be a topological space and Y open in X. Then:

i) If U m-open in X, then U ∩ Y is m- open in Y.
ii) If U M-open in X, then U∩Y is M-open in Y.

Proof:

i) Let V open in $Y \ni V \subseteq U \cap Y$. T. P V = Ø or V = U \cap Y. Then V open in X by lemma (4.1). Since V \subseteq U and U m – open in X, then V = Ø or V = U. Since V = V \cap Y = U \cap Y, then U \cap Y m – open in Y.

ii) Let V open in $Y \ni U \cap Y \subseteq V$. T. P V = X or V = U \cap Y. Then V open in X by lemma (4.1). Since U \subseteq V and U M – open in X, then V = X or V = U. Since V = V \cap Y = U \cap Y, then U \cap Y M – open in Y.

Theorem (4.4):

Let X be a topological space and Y clopen in X. Then:

i) If U mB^{*}c-open in X, then U \cap Y is mB^{*}c- open in Y.

ii) If U MB*c- open in X, then U \cap Y is MB*c - open in Y.

Proof : Similarly Theorem(4.3).

Theorem (4.5):

i) Every open sub space of $m - T_1$ space is $m - T_1$ space

ii) Every open sub space of $M - T_1$ space is $M - T_1$ space

Proof:

i) Let X be $m - T_1$ space and A is open sub space of X T. P A $m - T_1$ space

Let $a_1, a_2 \in A \ni a_1 \neq a_2$. Since $A \subseteq X$ and $a_1, a_2 \in A$, then $a_1, a_2 \in X \ni a_1 \neq a_2$. Since $m - T_1$ space, then $\exists U, V m$ - open in $X \ni a_1 \in U$, $a_2 \notin U$ and $a_2 \in V$, $a_1 \notin V$. Since U, V m - open in X and A open sub space of X, then. Let $U^* = U \cup A$, $V^* = V \cup A$, then U^* , V^* are m - open in A by Theorem(4.3) (i). Since $a_1 \in U$, $a_2 \notin U$ and $a_1, a_2 \in A$, then $a_1 \in A \cap U = U^*$ and $a_2 \notin A \cap U = U^*$, then $a_1 \in U^*$, $a_2 \notin U^*$. Since $a_2 \in V$, $a_1 \notin V$ and $a_1, a_2 \in A$, then $a_2 \in A \cap V = V^*$ and $a_1 \notin A \cap V = V^*$, then $a_2 \in V^*$, $a_1 \notin V^*$. Hence A is $m - T_1$ space

ii) Similarly part (i)

Remark (4.1):

i) If A m $- T_1$ space sub space of X, the X not necessary m $- T_1$ space

ii) If A M $- T_1$ space sub space of X, the X not necessary M $- T_1$ space

Example (4.1)

Let $X = \{1,2,3\}, t = \{\emptyset, X, \{1\}, \{2\}, \{1,2\}\}$.

Let $A = \{1,2\}, t_A = \{\emptyset, X, \{1\}, \{2\}\}$. Note that

i) A m – T₁ space, but X not m – T₁ space Since 2, 3 \in X \ni 2 \neq 3, but \nexists U, V m – open in X \ni 2 \in U, 3 \notin U and 3 \in V, 2 \notin V.

ii) A M – T₁ space, but X not M – T₁ space Since 2, 3 \in X \ni 2 \neq 3, but \nexists U, V M – open in X \ni 2 \in U,3 \notin U and 3 \in V,2 \notin V.

Theorem (4.6):

i) Every open sub space of $m\beta{-}T_1$ space is $m\beta{-}T_1$ space

ii) Every open sub space of $M\beta$ - T_1 space is mB*c- T_1 space

Proof:

Similarly Theorem(4.5).

Theorem (4.7):

i) Every clopen sub space of $mB^*c - T_1$ space is $mB^*c - T_1$ space

ii) Every clopen sub space of $MB^*c - T_1$ space is $MB^*c - T_1$ space

Proof:

i) Let X be a mB*c – T_1 space and A is clopen sub space of X T. P A mB*c – T_1 space

Let $a_1, a_2 \in A \ni a_1 \neq a_2$. Since $A \subseteq X$ and $a_1, a_2 \in A$, then $a_1, a_2 \in X \ni a_1 \neq a_2$. Since X mB*c – T₁ space, then $\exists U, V mB*c$ - open in X $\ni a_1 \in U, a_2 \notin U$ and $a_2 \in V, a_1 \notin V$. Since U, V mB*c - open in X

and A clopen sub space of X, then. Let $U^* = U \cup A$, $V^* = V \cup A$, then U^* , V^* are mB*c – open in A by Theorem(4.3) (i).

Since $a_1 \in U, a_2 \notin U$ and $a_1, a_2 \in A$, then $a_1 \in A \cap U = U^*$ and $a_2 \notin A \cap U = U^*$, then $a_1 \in U^*, a_2 \notin U^*$.

Since $a_2 \in V$, $a_1 \notin V$ and $a_1, a_2 \in A$, then $a_2 \in A \cap V = V^*$ and $a_1 \notin A \cap V = V^*$, then $a_2 \in V^*$, $a_1 \notin V^*$, hence A is mB*c – T₁ space

Remark (4.2):

i) If A mB*c – T_1 space sub space of X, the X not necessary mB*c – T_1 space

ii) If A MB*c – T_1 space sub space of X, the X not necessary MB*c – T_1 space

Example (4.2):

Let $X = \{a, b, c, d, e\}$

 $t = \{ \emptyset, X, \{a\}, \{b\}, \{e\}, \{a, b\}, \{a, e\}, \{b, e\} \{a, b, e\}, \{a, c, d\}, \{a, b, c, d\}, \{a, c, d, e\} \}.$

 $B^*co (X) = \{\emptyset, X, \{b\}, \{e\}, \{b, e\}, \{a, c, d\}, \{a, b, c, d\}, \{a, c, d, e\} \}.$

Let A = {b, e}, $t_A = \{\emptyset, A, \{b\}, \{e\}\}$. B*co (A) = t_A Note that:

i) A mB*c – T₁ space, but X not mB*c – T₁ space Since a, $d \in X \ni a \neq d$, but $\nexists U$, V mB*c – open in $X \ni a \in U$, $d \notin U$ and $d \in V$, $a \notin V$.

ii) A MB*c – T₁ space, but X not MB*c – T₁ space Since a, $d \in X \ni a \neq d$, but \nexists U, V MB*c – open in $X \ni a \in U, d \notin U$ and $d \in V, a \notin V$.

5) Topological properties

Lemma (5.1): [3]

Let F: $X \rightarrow Y$ be abjection, strongly m – open, m – irresolute function. Then X is m – T₁ space iff Y is m – T₁ space

<u>Theorem (5.1):</u>

Let F: $X \rightarrow Y$ be abjection, strongly $m\beta$ – open. If $X m\beta - T_1$ space, then Y is $m\beta - T_1$ space **Proof:**

Let X be $m\beta - T_1$ space T. P Y $m\beta - T_1$ space Let $y_1, y_2 \in Y \ni y_1 \neq y_2$. Since F on to, then $\exists x_1, x_2 \in X \ni F(x_1) = y_1$, F $(x_2) = y_2$. If $x_1 = x_2$, then F $(x_1) = F(x_2)$, then $y_1 = y_2$ which is contradiction, then $x_1 \neq x_2$. Since X $m\beta - T_1$ space, then $\exists U, V$ $m\beta$ - open set in X $\ni x_1 \in U$, $x_2 \notin U$ and $x_2 \in V$, x_1 $\notin V$. Since F strongly $m\beta$ - open, then F (U) $m\beta$ open in Y, then $y_1 = F(x_1) \in F(U)$, $y_2 = F(x_2)\notin$ F(U) and $y_2 = F(x_2) \in F(V)$, $y_1 = F(x_1) \notin F(V)$. Hence Y $m\beta$ -T₁ space

<u>Theorem (5.2):</u>

Let F:X \rightarrow Y be abjection,mB*c-irresolute function. If Y is mB*c-T₁ space ,then X is mB*c-T₁ space **Proof:**

Let X be mB*c - T₁ space T. P X mB*c - T₁ space Let $x_1, x_2 \in X \ni x_1 \neq x_2$ and let $F(x_1) = y_1$, $F(x_2) = y_2$, then $y_1, y_2 \in Y$.

If $y_1 = y_2$, then $F(x_1) = F(x_2)$, then $x_1 = x_2$ which is contradiction, then $y_1 \neq y_2$. Since F bijection, then $x_1 = F^{-1}(y_1), x_2 = F^{-1}(y_2)$. Since Y mB*c – T₁ space, then $\exists U, V mB*c$ - open set in $Y \ni y_1 \in U, y_2 \notin U$ and $y_2 \in V, y_1 \notin V$. Since F mB*c – irresolute function, then $F^{-1}(U) mB*c$ - open in X, then $x_1 =$ $F^{-1}(y_1) \in F^{-1}(U), x_2 = F^{-1}(y_2) \notin F^{-1}(U)$ and $x_2 = F^{-1}(y_2) \in F^{-1}(V), x_1 = F^{-1}(y_1) \notin F^{-1}(V)$. Hence Y mB*c – T₁ space

Rephrases :

[1] F. Nakaoka and N. oda. Some application of minimal open sets. Int. J. Math. Sci. 27 (8): 471: 476, 2001.

[2] F. Nakaoka and N. oda. Some properties of maximal open sets Int. J. Math. Sci. 21: 1331: 1340, 2003.

[3] S. S. Benchalli, Basavaraj M. Ittanagi, and R. S. W alli. On minimal open sets and maps in topological space. J. comp. and Math. Sci 2(2): 208: 220, 2011.

[4] M. C. Gemignani "Elementary topology", Reading, Mass: Addison – Wesley publishing co. Inc., 1967.

[5] Abd El – Monsef M. E., El – Deeb S. N. Mahmoud R. A., " β - open sets and β - continuous function" Bulletin of the Faculte of science, Assiut university, 12, pp. 77 – 90, 1983.

[6] W. J. Pervin, "Foundation Of General Topology" Academic Press, New York, 1964.

[7] Ryszard Engelking "General Topology" 1988.

[8] Q. R. Shakir " On minimal and maximal Beta open sets" Journal of Al Nahrain university college of management Baghdad. Baghdad – Iraq, 2014. p.p. 160 – 166.

حول فضاءات T_1 العضمى والصغرى بأستخدام مجموعات B^*c المفتوحه

رعد عزيز العبد الله كريم فاضل العمري جامعة القادسية كلية علوم الحاسوب وتكنلوجيا المعلومات

المستخلص:

Maximal T₁-space and Minimal T₁- لنبولوجي الفضاء التبولوجي خصائص الفضاء التبولوجي Maximal T₁-space and Minimal T₁- الفضاء التبولوجي B^{*}c-Open set بأستخدام المجموعه Space B^* c-Open set وأستنتجنا بعض المبر هنات والملاحظات والعلاقات بالنسبه للفضاء MB^{*}c-T₁-Space وMB^{*}c-T₁-Space والفضاء الأعظم MB^{*}c-T₁-Space والفضاء الأصغر MB^{*}c-T₁-Space حيث وجدنا أن كل فضاء Space المعاد العربي المعاد MB^{*}c-T₁-Space يؤدي المعاد المع