Math Page 141-150

Akeel .R

A Class of Small Injective Modules

Akeel Ramadan Mehdi

Mathematical Department/ College of Education/ Al-Qadisiyah University/ Al-Diwaniya City/ Iraq

Email: akeel.mehdi@qu.edu.iq

Recived : 29\8\2018

Revised : 6\9\2018

Accepted : 9\9\2018

Available online : 26 /9/2018

DOI: 10.29304/jqcm.2018.10.3.436

Abstract:

Let *R* be a ring. In this paper, a right *R*-module *M* is defined to be *AS*-injective if $Ext^1(R/K, M) = 0$, for any annihilator-small right ideal *K* of *R*. We characterize rings over which every right module is *AS*-injective. Conditions under which the class of *AS*-injective right *R*-modules (*ASI_R*) is closed under quotient (resp. pure submodules, direct sums) are given. Finally, we study the definability of the class *ASI_R*.

Keywords: Injective module, Definable class, a-small right ideal, Pure submodule.

Mathematics subject classification: 13C11,16D50,16D10.

1. Introduction

Throughout R is an associative ring with identity and all modules are unitary Rmodules. If not otherwise specified, by a module (resp. homomorphism) we will mean a right Rmodule (resp. right *R*-homomorphism). We use *R*-Mod (resp. Mod-R) to denote to the class of left (resp. right) *R*-modules. If $Y \subseteq R$, then $r(Y) = \{r \in$ $R | Yr = 0 \}$ (resp. $l(Y) = \{r \in R | rY = 0\}$)stands for the right (resp. left) annihilator of Y in R. We will use M^* to denote the character module $\operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z})$ of a module *M*. Let *G* (resp. *F*) be a class of right (resp. left) R-modules. A pair $(\mathcal{F}, \mathcal{G})$ is called almost dual pair if the class G is closed under direct products and summands, and for any left *R*-module *M*, $M \in \mathcal{F}$ if and only if $M^* \in \mathcal{G}$ [11, p. 66]. An exact sequence $0 \to A \xrightarrow{\alpha} B \xrightarrow{\beta} C \to 0$ of right *R*-modules is said to be pure if the sequence $0 \rightarrow \operatorname{Hom}_{R}(N, A) \rightarrow \operatorname{Hom}_{R}(N, B) \rightarrow$

 $\operatorname{Hom}_R(N, C) \to 0$ is exact, for every finitely presented right R-module N and we called that $\alpha(A)$ is a pure submodule of B [18]. A right Rmodule M is called FP-injective if every monomorphism $\alpha: M \to N$ is pure. A right *R*module M is called pure injective if M is injective with respect to all pure short exact sequences [18]. Recall that a subclass \mathcal{G} of Mod-R is called definable if it is closed under pure submodules, direct limits and direct products [14]. A right ideal X of a ring R is called small in R if $X + Y \neq R$, for any proper right ideal Y of R [8]. A right R-module M is called small injective if $Ext^{1}(R/K, M) = 0$, for any small right ideal K of R. A right ideal I of R is called annihilator-small (a-small) and denoted by $I \subseteq^a R_R$ if for any right ideal K of R with I + K =R, then l(K) = 0 [13].

The sum of all the annihilator-small right ideals of a ring R is called the right AS-ideal of a ring R and denoted by A_r [13].

We refer the reader to [1, 7, 8, 14, 18], for general background materials.

In section 2 of this paper, we introduce the class of AS-injective modules. This class of modules lies between injective modules and small injective modules. We first characterize rings over which every module is AS-injective. Over a commutative ring R, we prove the equivalence of the following statements: (1) $A_r = 0$. (2) Every module is ASinjective. (3) Every principal a-small right ideal of R is AS-injective. (4) Every simple module is ASinjective and $A_r \subseteq^a R_R$. Conditions under which the class of AS-injective right R-modules (ASI_R) is closed under quotient are given. For instance, we prove that the following statements are equivalent: (1) The class ASI_R is closed under quotient. (2) If $K \subseteq^{a} R$, then K is projective. (3) ASI_{R} contains all sums of any two AS-injective submodules of any module. Also, we show that the class ASI_R is closed under pure submodules if and only if all a-small right ideals in R are finitely generated if and only if all FP-injective modules are AS-injective. Finally, we give conditions such that any direct sum of modules in the class ASI_R is also belong to ASI_R . For instance, we prove that if $A_r \subseteq^a R_R$, then the following are equivalent. (1) A_r is a noetherian module. (2) The class ASI_R is closed under direct sums.

Section 3 studies the definability of the class ASI_R . It is shown that the following assertions are equivalent: (1) ASI_R is definable. (2) The class ASI_R is closed under pure submodules and pure homomorphic images.

Akeel .R

(3) Every a-small right ideal in R is finitely presented. (4) A module $M \in ASI_R$ if and only if $M^{**} \in ASI_R$. Finally, we prove that if the class ASI_R is a definable, then the following are equivalent. (1) The class of flat left R-modules and the class $\{M \in R \operatorname{-Mod} | M^* = \operatorname{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z}) \in ASI_R\}$ are coincide. (2) Each module in ASI_R is FP-injective. (3) Each pure-injective module in ASI_R is injective.

2. AS-Injective modules

Definition 2.1. A module *M* is said to be annihilator-small injective (shortly, *AS*injective), if $\operatorname{Ext}^1(R/K, M) = 0$, for any annihilator-small right ideal *K* of *R*; equivalently, if *K* is any annihilator-small right ideal in *R*, then any *R*-homomorphism $f: K \to M$ extends to R_R . A ring *R* is said to be right *AS*-injective if R_R is *AS*-injective.

We will use ASI_R to denote to the class of ASinjective right *R*-modules.

Examples 2.2.

- It is clear that AS-injectivity implies small injectivity, but Z is a small injective Z-module [17] and clearly, it is not AS-injective. Thus the class of small injective modules contains properly the class of AS-injective modules.
- (2) All injective modules are AS-injective and generally the converse is not true, for example, let {F_i}_{i∈I} be a family of fields and let R = Π_{i∈Λ} F_i be the ring product of F_i, for all i ∈ Λ, where addition and multiplication are define componentwise and let K =⊕_{i∈Λ} F_i. If Λ is infinite, then K_R is not itself injective by [8, p. 140], but K_R is AS-injective, since A_r = 0. Therefore, AS-injective module is a proper generalization of injective modules.

Hence $Inj_R \subsetneq ASI_R \subsetneq SI_R$, where Inj_R (resp. SI_R) is the class of injective (resp. small injective) right *R*-modules.

Remarks 2.3.

- (1) The two classes Inj_R and ASI_R are coinciding, when *R* is an integral domain, since all proper right ideals are a-small in any integral domain.
- (2) All finitely generated Z-modules are not ASinjective and this follows from (1) and the fact that every non-trivial finitely generated Zmodule is not injective [7, p.31]. Also, we have from [17, Theorem 2.8] that any Z-module is small injective.
- (3) From (1) and [9, p.410], we have that any ring R is a field if and only if it is an AS-injective integral domain.

Proposition 2.4. The class of AS-injective modules (ASI_R) is closed under direct summands, direct products and isomorphic copies.

Proof. Clear.

Theorem 2.5. Consider the following conditions for a ring *R*.

- (1) $A_r = 0$.
- (2) All modules are AS-injective.
- (3) All principal a-small right ideals of *R* are *AS*-injective.
- (4) All principal a-small right ideals of R are direct summand in R_R .
- (5) All simple modules are AS-injective and $A_r \subseteq^a R_R$.

Then (1) and (5) are equivalent and $(1) \Rightarrow (2) \Rightarrow$ (3) \Rightarrow (4). Moreover, if *R* is commutative, then (4) implies (1).

Akeel .R

Proof. (1) \Rightarrow (2) \Rightarrow (3) and (1) \Rightarrow

(5) are obvious.

(3) \Rightarrow (4). Let $aR \subseteq^a R$, where $a \in R$. By hypothesis, aR is *AS*-injective and so there is a homomorphism $\alpha: R \rightarrow aR$ such that $\alpha i = I_{aR}$, where $I_{aR}: aR \rightarrow aR$ is the identity homomorphism and $i: aR \rightarrow R$ is the inclusion mapping. Thus aR is a direct summand in R_R .

(4) \Rightarrow (1). Let *R* be a commutative ring. Assume that $A_r \neq 0$, thus there is $(0 \neq)a \in A_r$. By hypothesis, $A_r \subseteq^a R_R$ and hence Lemma 1 in [13] implies $aR \subseteq^a R_R$. By hypothesis, aR is a direct summand in R_R and hence there exist a right ideal *K* with $aR \oplus K = R_R$. Since $aR \subseteq^a R_R$, r(K) = 0. Since aR + K = R, we have $r(aR \cap K) = r(aR) + r(K)$ and hence r(aR) = R. Thus aR = 0, a contradiction. Therefore, $A_r = 0$.

 $(5) \Rightarrow (1)$ Assume that $A_r \neq 0$, thus there is $(0 \neq)a \in A_r$. If $A_r + r(a) \neq R$, then $A_r + r(a) \subseteq$ C, for some maximal right ideal C of R. Thus R/C is a simple right R-module. By hypothesis, R/CAS-injective is an module. Define $\alpha: aR \to R/C$ by $\alpha(ar) = r + C$. Clearly, α is a well-defined right R-homomorphism. By ASinjectivity, there exist $b \in R$ with 1 + C = ba + Cand hence $1 - ba \in C$. Since $a \in A_r$ and A_r is a two sided ideal (by [13, Theorem 9 (1)]), we have $ba \in C$. Thus C = R, a contradiction. Therefore, Since $A_r \subseteq^a R_R$ (by $A_r + r(a) = R.$ hypothesis), l(r(a)) = 0, so that r(l(r(a))) = R. By [1, Proposition 2.15, p.37], r(a) = R and hence a = 0, a contradiction. Thus $A_r = 0$.

Recall that a ring *R* is called regular if for any $x \in R$, there is an element $y \in R$ such that x = xyx[8] **Corollary 2.6.** If *R* is a commutative regular ring, then every module is AS-injective and $A_r = 0$.

Proof. By [8, Theorem 10.4.9, p. 262] and

Theorem 2.5. □

It is not true in general that if $K \subseteq^a R_R$, then K is a projective right *R*-module, for example, if $R = Z_4$ and K = 2R, then $K \subseteq^a R_R$ but it is not projective right *R*-module.

Theorem 2.7. For a ring *R*, the following are equivalent.

- (1) If $K \subseteq^a R_R$, then K is projective.
- (2) The class ASI_R is closed under quotient.
- (3) ASI_R contains all quotients of injective modules.
- (4) ASI_R contains all sums of any two ASinjective submodules of any module.
- (5) ASI_R contains all sums of any two injective submodules of any module.

Proof. (2) \Rightarrow (3) and (4) \Rightarrow (5) are obvious.

(1) \Rightarrow (2) Let $\alpha: N \to M$ be any epimorphism, where *N* is an *AS*-injective module and *M* is any module. Let $\lambda: K \to M$ be any homomorphism, where $K \subseteq^a R_R$. By hypothesis, *K* is projective and hence there is a homomorphism $\beta: K \to N$ such that $\alpha\beta = \lambda$. By *AS*-injectivity of *N*, there is a homomorphism $\gamma: R \to N$ with $\gamma i = \beta$, where $i: K \to R$ is the inclusion mapping. Put $\varphi =$ $\alpha\gamma: R \to M$, so that $\varphi i = \alpha\gamma i = \alpha\beta = \lambda$ and hence *M* is an *AS*-injective module.

(3) \Rightarrow (1) Let $K \subseteq^a R_R$. Let $\alpha: E \to N$ be an epimorphism (where *E* is an injective module) and $\beta: K \to N$ a homomorphism. By hypothesis, $N \in ASI_R$ and hence there is a homomorphism $\lambda: R \to N$ with $\lambda i = \beta$, where $i: K \to R$ is the inclusion mapping. By projectivity of R_R , there is a

homomorphism $\gamma: R \to E$ such that $\alpha \gamma = \lambda$. Let $\tilde{\alpha}: K \to E$ be the restriction of γ over *K*. Clearly, $\alpha \tilde{\alpha} = \beta$ and hence from Proposition 5.2.10 in [2, p.148] we get that *K* is projective.

(2) \Rightarrow (4) Let M_1 and M_2 be two AS-

injective submodules of module *M*. By Proposition 2.4, $M_1 \bigoplus M_2 \in ASI_R$. Since $M_1 + M_2$ is a homomorphic image of $M_1 \bigoplus M_2$, we have $M_1 + M_2 \in ASI_R$, by hypothesis.

 $(5) \Rightarrow (3)$. By similar argument as in the proof of Theorem 2.14 ((6) \Rightarrow (3)) in [12]. \Box

Proposition 2.8. For a ring *R*, consider the following conditions.

- (1) Every module is AS-injective.
- (2) R_R is AS-injective and the class ASI_R is closed under quotient.
- (3) For any $x \in R$, if $xR \subseteq^a R_R$, then there is $y \in R$ such that x = xyx.

Then $(1) \Rightarrow (2) \Rightarrow (3)$ and if *R* is commutative, then (3) implies (1).

Proof. (1) \Rightarrow (2). Clear.

(2) \Rightarrow (3). Let $x \in R$ such that $xR \subseteq^a R_R$. Since ASI_R is closed under quotient (by hypothesis), xR is projective, by Theorem 2.7. Define $\alpha: R \to xR$ by $\alpha(r) = xr$, for all $r \in R$. Clearly, α is an epimorphism, so that there is a homomorphism $f: xR \to R$ with $\alpha f(a) = a$, for all $a \in xR$. Since R_R is AS-injective (by hypothesis), there is a homomorphism $g: R \to R$ such that gi = f, where $i: xR \rightarrow R$ is the inclusion mapping. Thus x = $\alpha(f(x)) = \alpha(g(x)) = xyx$, where $y = g(1) \in R$. $(3) \Rightarrow (1)$. Suppose that *R* is a commutative ring. Let $xR \subseteq^a R_R$, where $x \in R$. By hypothesis, there is $y \in R$ with x = xyx. Let e = xy. Clearly, e is an idempotent of R and xR = eR, so that xR is a direct summand of R_R . Therefore, the result follows by Theorem 2.5.

Proposition 2.9. For a ring *R*, the following are equivalent.

- (1) All a-small right ideals in R are finitely generated.
- (2) The class ASI_R is closed under pure submodules.
- (3) All *FP*-injective modules are *AS*-injective.

Proof. (1) \Rightarrow (2). Let $M \in ASI_R$ and K a pure submodule of M. Let $I \subseteq^a R_R$, thus the hypothesis implies that I is finitely generated and so R/I is a finitely presented. Hence $\operatorname{Hom}_{R}(R/I, M) \rightarrow$ the sequence $\operatorname{Hom}_{R}(R/I, M/K) \to 0$ is exact. By [6, Theorem XII.4.4 (4), p. 491], the exact sequence $\operatorname{Hom}_{R}(R/I, M) \to \operatorname{Hom}_{R}(R/I, M/K)$ \rightarrow $\operatorname{Ext}^{1}(R/I, K) \longrightarrow \operatorname{Ext}^{1}(R/I, M)$ and so $\operatorname{Ext}^{1}(R/I, K) = 0$. Thus, $K \in ASI_{R}$ and hence the class ASI_R is closed under pure submodules.

(2) \Rightarrow (3). If *M* is any *FP*-injective module, then *M* is a pure submodule of an *AS*-injective module. By hypothesis, $M \in ASI_R$.

(3) \Rightarrow (1). Let $I \subseteq^{a} R_{R}$ and $\alpha: I \rightarrow M$ a homomorphism, where *M* is an *FP*-injective module. By hypothesis, *M* is *AS*-injective and hence α extends to R_{R} . By [4], *I* is finitely generated. \Box

Corollary 2.10. If each a-small right ideal in a ring R is finitely generated, then the class ASI_R is closed under direct sums.

Proof. Let $\{M_i \mid i \in I\}$ be a subclass of ASI_R . By Proposition 2.4, $\prod_{i \in I} M_i \in ASI_R$. By [14, Proposition 2.1.10, p. 57], $\bigoplus_{i \in I} M_i$ is a pure submodule in $\prod_{i \in I} M_i$ and hence $\bigoplus_{i \in I} M_i \in ASI_R$, by Proposition 2.9. \Box **Theorem 2.11.** For a ring *R*, consider the following conditions.

- (1) A_r is a noetherian module.
- (2) The class ASI_R is closed under direct sums.
- (3) $M^{\mathbb{N}}$ is AS-injective, for any ASinjective module M_R .
- (4) $M^{\mathbb{N}}$ is AS-injective, for any injective module M_R .

Then $(1) \Rightarrow (2) \Rightarrow (3) \Rightarrow (4)$ and if $A_r \subseteq^a R_R$, then $(4) \Rightarrow (1)$.

Proof. (2) \Rightarrow (3) and (3) \Rightarrow (4) are clear.

(1) \Rightarrow (2). By [13, Theorem 9(1)] and Corollary 2.10.

(4) \Longrightarrow (1). Let $A_r \subseteq^a R_R$ and let $K_1 \subseteq K_2 \subseteq \cdots$ be a chain of right ideals of R with $K_i \subseteq A_r$. Let $E = \bigoplus_{i=1}^{\infty} E_i$, where $E_i = E(R/K_i)$. For every $i \ge 1$, put $M_i = \prod_{j=1}^{\infty} E_j = E_i \bigoplus \left(\prod_{\substack{j=1 \ j \neq i}}^{\infty} E_j\right)$, thus M_i is injective. By hypothesis, $\bigoplus_{i=1}^{\infty} M_i =$ $\left(\bigoplus_{i=1}^{\infty} E_i\right) \bigoplus \left(\bigoplus_{i=1}^{\infty} \prod_{\substack{j=1 \ j \neq i}}^{\infty} E_j\right)$ is *AS*-injective. By Proposition 2.4, E is *AS*-injective. Define $\alpha: \bigcup_{i=1}^{\infty} K_i \longrightarrow E$ by $\alpha(x) = (x + K_i)_i$. Clearly, α is a well-defined homomorphism. By hypothesis, $A_r \subseteq^a R_R$ and hence Lemma 1 in [13] implies that $\bigcup_{i=1}^{\infty} K_i \subseteq^a R_R$. Thus α extends to a homomorphism

 $\beta: R \to E$ and hence $\beta(R) \subseteq \bigoplus_{i=1}^{n} E(R/K_i)$ for some $n \in \mathbb{N}$, since R is finitely generated. Then $\alpha(\bigcup_{i=1}^{\infty} K_i) \subseteq \bigoplus_{i=1}^{n} E(R/K_i).$

So, if $a \in \bigcup_{i=1}^{\infty} K_i$, then $a \in K_m$ for all m > n, and hence $\bigcup_{i=1}^{\infty} K_i = K_{n+1}$. Therefore, the chain $K_1 \subseteq K_2 \subseteq \cdots$ terminates at K_{n+1} and hence A_r is a noetherian module. \Box

Corollary 2.12. If $A_r \subseteq^a R_R$, then the following are equivalent.

- (1) A_r is a noetherian module.
- (2) Direct sum of injective modules is ASinjective.

Lemma 2.13. If *R* satisfies ACC (ascending chain condition) on a-small right ideals of *R*, then $A_r \subseteq^a R_R$

Proof. Let $\mathcal{H} = \{K \mid K \subseteq^a R_R\}$. Thus \mathcal{H} has a maximal element, say N (by Zorn's lemma). Since $A_r = \sum_{K \in \mathcal{H}} K$, it follows that $A_r = N$ and so $A_r \subseteq^a R_R$. \Box

Proposition 2.14. For a ring *R*, the following are equivalent.

- (1) R satisfies ACC on a-small right ideals.
- (2) A_r is a noetherian *R*-module.
- (3) M^N is AS-injective, for any injective module M_R and A_r ⊆^a R_R.

Proof. (1) \Rightarrow (2). Let $N_1 \subseteq N_2 \subseteq \cdots$ be a chain of right ideals of R in A_r . By Lemma 2.13, $A_r \subseteq^a R_R$. By [13, Lemma 1], N_i are a-small right ideals. By hypothesis, the chain $N_1 \subseteq N_2 \subseteq \cdots$ terminates and hence A_r is a noetherian R-module. (2) \Rightarrow (1). By [13, Theorem 9(1)]. (2) \Rightarrow (3). By Theorem 2.11 and Lemma 2.13.

 $(3) \Rightarrow (2)$. By Theorem 2.11.

3. Definability of the class ASI_R

For any class \mathcal{G} of right *R*-modules, we will set $\mathcal{G}^+ = \{M \in \text{Mod-}R \mid M \text{ is a pure submodule of a module in } \mathcal{G}\}$ and $\mathcal{G}^{\ominus} = \{M \in R\text{-Mod} \mid M^* = \text{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z}) \in \mathcal{G}\}.$

Proposition 3.1. The pair $((ASI_R)^{\ominus}, ASI_R)$ is an almost dual pair over a ring *R*.

Proof. By proposition 2.4, the class ASI_R is closed under direct summands and direct products. By [11, Proposition 4.2.11, p.72], the pair ($(ASI_R)^{\ominus}, ASI_R$) is an almost dual pair over a ring R. \Box

Akeel .R

Corollary 3.2. Consider the following conditions

for the class ASI_R over a ring R.

- (1) The class ASI_R is definable.
- (2) $(ASI_R, (ASI_R)^{\ominus})$ is an almost dual pair over a ring *R*.
- (3) $(ASI_R)^* \subseteq (ASI_R)^{\ominus}$.
- (4) $(ASI_R)^{**} \subseteq ASI_R$.
- (5) The class ASI_R is closed under pure homomorphic images.

Then $(1) \Leftrightarrow (2)$, $(1) \Rightarrow (3)$, $(1) \Rightarrow (5)$ and $(3) \Leftrightarrow (4)$. Moreover, if all a-small right ideals in *R* are finitely generated, then all five conditions are equivalent.

Proof. (1) \Leftrightarrow (2). By Proposition 3.1 and [11, Proposition 4.3.8, p. 89].

(1) \Rightarrow (3). Since ASI_R is a definable class, it is closed under pure submodules and hence $(ASI_R)^+ = ASI_R$. Since $((ASI_R)^{\ominus}, ASI_R)$ is an almost dual (by Proposition 3.1), it follows from [11, Theorem 4.3.2, p.85], that $(ASI_R)^* \subseteq (ASI_R)^{\ominus}$.

 $(1) \Rightarrow (5)$. By [14, 3.4.8, p. 109].

(3) \Leftrightarrow (4). By Proposition 3.1 and [11, Theorem 4.3.2, p.85].

 $(4) \Rightarrow (1) \text{ and } (5) \Rightarrow (1).$ Suppose that all a-small right ideals in *R* are finitely generated. By Proposition 2.9, the class ASI_R is closed under pure submodules and hence $(ASI_R)^+ = ASI_R$. Thus the results follow from [11, Theorem 4.3.2, p.85]. \Box

Corollary 3.3. If every *AS*-injective modules is pure-injective, then the following statements are equivalent for a class ASI_R over a ring *R*.

- (1) ASI_R is definable.
- (2) ASI_R is closed under direct sums.
- $(3) \quad (ASI_R)^+ = ASI_R.$
- (4) Each a-small right ideal in *R* is finitely generated.

Proof. The equivalence of (1), (2) and (3) follows from Proposition 3.1 and [11, Theorem 4.5.1, p.103].

(1) \Leftrightarrow (4). By Proposition 3.1, Proposition 2.9 and [11, Theorem 4.5.1, p.103]. \Box

Lemma 3.4. A left *R*-module $M \in (ASI_R)^{\ominus}$ if and only if $\text{Tor}_1(R/I, M) = 0$, for any a-small right ideal *I* of a ring *R*.

Proof. Let *M* be a left *R*-module and $I \subseteq^a R_R$. By [5, Theorem 3.2.1, p.75], Ext¹(*R*/*I*,*M*^{*}) \cong (Tor₁(*R*/*I*,*M*))^{*}, so that Tor₁(*R*/*I*,*M*) = 0 if and only if $M^* \in ASI_R$. Hence ($_{R}ASF, ASI_R$) is an almost dual, where $_{R}ASF = \{M \in R\text{-Mod} \mid \text{Tor}_1(R/I, M) = 0$, for any a-small right ideal *I* of *R*}. By [11, Proposition 4.2.11, p.72],(ASI_R)^{\ominus} = $_{R}ASF$. \Box

A right *R*-module *M* is called *n*-presented if there is an exact sequence $F_n \rightarrow F_{n-1} \rightarrow \cdots \rightarrow F_0 \rightarrow M \rightarrow 0$, with each F_i is a finitely generated free right *R*-modules [3].

Theorem 3.5. The following statements are equivalent for a class ASI_R over a ring R.

- (1) ASI_R is definable.
- (2) The class ASI_R is closed under pure submodules and pure homomorphic images.
- (3) Every a-small right ideal in *R* is finitely presented.
- (4) A module $M \in ASI_R$ if and only if $M^* \in (ASI_R)^{\Theta}$.
- (5) A module $M \in ASI_R$ if and only if $M^{**} \in ASI_R$.

Proof. (1) \Rightarrow (2). By [14, 3.4.8, p. 109].

(2) \Rightarrow (3). Let *M* be any *FP*-injective module, thus there is a pure exact sequence $0 \rightarrow M \xrightarrow{i} E$ $\xrightarrow{\pi} E/M \rightarrow 0$, where *E* is an injective right *R*module. By hypothesis, $E/M \in ASI_R$.

Akeel .R

Let $K \subseteq^a R_R$, thus $\operatorname{Ext}^1(R/K, E/M) = 0$. By [6, Theorem 4.4 (4), p. 491], the sequence $0 = \operatorname{Ext}^1(R/K, E/M) \longrightarrow \operatorname{Ext}^2(R/K, M) \longrightarrow$

Ext²(R/K, E) = 0 is exact and hence Ext²(R/K, M) = 0. By [13, Theorem 4.4 (3), p. 491], the sequence

 $0=\operatorname{Ext}^1(R,M) \longrightarrow \operatorname{Ext}^1(K,M) \longrightarrow$

Ext²(R/K, M) = 0 is exact, so that Ext¹(K, M) = 0. By hypothesis, ASI_R is closed under pure submodules, so that K is finitely generated by Proposition 2.9 and hence [4, Proposition, p. 361] implies that K is finitely presented.

(3) \Rightarrow (1). Let $M \in ASI_R$. Let $K \subseteq^a R_R$, thus K is finitely presented (by hypothesis) and hence there is an exact sequence $F_2 \xrightarrow{\alpha_2} F_1 \xrightarrow{\alpha_1} K \longrightarrow 0$, where F_1, F_2 are finitely generated free right Rmodules. Let $\beta = i\alpha_1$, where $i: K \to R$ is the inclusion mapping, thus the sequence $F_2 \xrightarrow{\alpha_2} F_1$ $\stackrel{\beta}{\longrightarrow} R \stackrel{\pi}{\longrightarrow} R/K \longrightarrow 0 \text{ is exact, where } \pi: R \longrightarrow R/K$ is the natural epimorphism. Hence R/K is a 2-presented module, so that from [3, Lemma 2.7 (2)] we have $\operatorname{Tor}_1(R/K, M^*) \cong (\operatorname{Ext}^1(R/K, M))^* = 0$. By Lemma 3.4, $M^* \in (ASI_R)^{\ominus}$ and hence $(ASI_R)^* \subseteq (ASI_R)^{\ominus}$. By hypothesis, every a-small right ideal in R is finitely generated, so that ASI_R is closed under pure submodules by Proposition 2.9. By Theorem 3.2, ASI_R is a definable class.

(1) \Rightarrow (4). By Corollary 3.2, $(ASI_R, (ASI_R)^{\ominus})$ is an almost dual pair and hence a module $M \in ASI_R$ if and only if $M^* \in (ASI_R)^{\ominus}$.

(4) \Rightarrow (5). By hypothesis, $(ASI_R)^* \subseteq (ASI_R)^{\ominus}$. By Corollary 3.2, $(ASI_R)^{**} \subseteq ASI_R$. Hence for any right *R*-module *M*, if $M \in ASI_R$, then $M^{**} \in ASI_R$.

Conversely, if $M^{**} \in ASI_R$, then $M^* \in (ASI_R)^{\ominus}$. By hypothesis, $M \in ASI_R$.

(5) ⇒ (1). Let *N* be a *FP*-injective module, thus there is a pure exact sequence $0 \rightarrow N \rightarrow E$ $\rightarrow E/N \rightarrow 0$, where *E* is an injective right *R*module. By [18, 34.5, p.286], the sequence $0 \rightarrow N^{**}$ $\rightarrow E^{**} \rightarrow (E/N)^{**} \rightarrow 0$ is split. By hypothesis, $E^{**} \in ASI_R$ and hence $N^{**} \in ASI_R$. By hypothesis, $N \in ASI_R$ so that ASI_R is closed under pure submodules by Proposition 2.9. Thus ASI_R is definable class by Corollary 3.2. □

Note that if the class ASI_R is closed under pure submodules, then $(ASI_R)^+ = ASI_R$. Thus we have the following corollary.

Corollary 3.6. The class ASI_R is a definable if and only if it is closed under pure submodules and the class $(ASI_R)^+$ is a definable.

Corollary 3.7. If the class ASI_R is a definable, then the following are equivalent.

- (1) The class of flat left *R*-modules and the class $(ASI_R)^{\ominus}$ are coincide.
- (2) Every module in ASI_R is *FP*-injective.
- (3) Every pure-injective module in ASI_R is injective.

Proof. (1) \Rightarrow (2). Let $M \in ASI_R$, thus $M^* \in (ASI_R)^{\ominus}$ by Corollary 3.2. By hypothesis, M^* is a flat left *R*-module and hence Proposition 3.54 in [15, p.136] implies that M^{**} is injective. Since *M* is a pure submodule in M^{**} , we have *M* is *FP*-injective by [18, 35.8, p.301].

(2) \Rightarrow (3). Let *M* be any pure-injective module in ASI_R . Let $\mathcal{E}: 0 \rightarrow M \rightarrow M' \rightarrow M'' \rightarrow 0$ be any exact sequence. By hypothesis, *M* is *FP*-injective. By [16, Proposition 2.6], the sequence \mathcal{E} is pure and hence pure-injectivity of *M* implies that the sequence \mathcal{E} is split by [18, 33.7, p. 279]. Therefore, *M* is injective.

(3) ⇒ (1). Let *M* be a flat left *R*-module, thus Tor₁(*N*,*M*) = 0, for any right *R*module *N*. By Lemma 3.4, $M \in (ASI_R)^{\ominus}$. Conversely, if $M \in (ASI_R)^{\ominus}$, then $M^* \in ASI_R$. By [14, Proposition 4.3.29, p. 149], M^* is a pure injective module. By hypothesis, M^* is injective and hence *M* is flat by [10, Theorem, p.239]. □

References:

 F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Grad. Texts in Math., Vol. 13, Springer, 1974.

[2] P. E. Bland, Rings and Their Modules, Walter de Gruyter & Co., Berlin, 2011.

[3] J. L. Chen and N. Q. Ding, On *n*-

coherent rings, Comm. Algebra 24 (1996), 3211-3216.

[4] E. E. Enochs, A note on absolutely pure modules, Canad. Math. Bull. 19 (1976), 361-362.

[5] E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, Walter de Gruyter, 2000.

[6] P. A. Grillet, Abstract Algebra, 2nd edition, GTM 242, Springer, 2007.

[7] P. J. Hilton and U. Stammbach, A course in homological algebra, Springer-Verlag, New York, 1971.

[8] F. Kasch, Modules and Rings, Academic Press, London, New York, 1982.

[9] G. B. Klatt and L. S. Levy, Pre-self-injective rings, Tran. Amer. Math .Soc., 122 (1969), 407-419.
[10] J. Lambek, A module is flat if and only if its character module is injective, Canad. Math. Bull., 7 (1964), 237-243.

[11] A. R. Mehdi, Purity relative to classes of finitely presented modules, PhD Thesis, Manchester University, 2013.

[12]	A.	R.	Mehdi	and	A.	S.	Tayyah,	SS
------	----	----	-------	-----	----	----	---------	----

Injective Modules and Rings, J. AL-

Qadisiyah for Comp. Sci. and Math., 9 (2) 2017, 57 - 70.

[13] W. K. Nicholson and Y. Zhou, Annihilator– small right ideals, Algebra Colloq., 18(1) (2011), 785-800.

[14] M. Prest, Purity, Spectra and Localisation, Cambridge University Press, 2009.

[15] J. J. Rotman, An Introduction to Homological Algebra, Springer, 2009.

[16] B. Stenström, Coherent rings and FP-injective modules, J. London. Math. Soc. 2 (1970), 323-329.

[17] L.V. Thuyet and T. C. Quynh, On small injective rings and modules, J. Algebra and Its Applications 8 (2009), 379-387.

[18] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, 1991.

صنف من المقاسات الأغمارية الصغيرة

عقيل رمضان مهدي جامعة القادسية/ كلية التربية/ قسم الرياضيات

المستخلص: