Math Page 141- 150 Akeel .R

A Class of Small Injective Modules

Akeel Ramadan Mehdi

Mathematical Department/ College of Education/ Al-Qadisiyah University/ Al-Diwaniya City/ Iraq

Email: akeel.mehdi@qu.edu.iq

Recived : 29\8\2018 Revised : 6\9\2018 Accepted : 9\9\2018

Available online : 26 /9/2018

DOI: 10.29304/jqcm.2018.10.3.436

Abstract:

Let R be a ring. In this paper, a right R -module M is defined to be AS-injective if $Ext^1(R/K, M) = 0$, for any annihilator-small right ideal K of R. We characterize rings over which every right module is AS-injective. Conditions under which the class of AS-injective right R -modules (ASI_R) is closed under quotient (resp. pure submodules, direct sums) are given. Finally, we study the definability of the class ASI_R .

Keywords: Injective module, Definable class, a-small right ideal, Pure submodule.

Mathematics subject classification: 13C11,16D50,16D10.

1. Introduction

Throughout R is an associative ring with identity and all modules are unitary R modules. If not otherwise specified, by a module (resp. homomorphism) we will mean a right R module (resp. right R -homomorphism). We use R -Mod (resp. Mod- R) to denote to the class of left (resp. right) R-modules. If $Y \subseteq R$, then $r(Y) = \{ r \in$ $R | Yr = 0$ (resp. $l(Y) = \{r \in R | rY = 0\}$) stands for the right (resp. left) annihilator of Y in R . We will use M^* to denote the character module $\text{Hom}_{\mathbb{Z}}(M,\mathbb{Q}/\mathbb{Z})$ of a module M. Let G (resp. F) be a class of right (resp. left) R-modules. A pair (F, G) is called almost dual pair if the class $\mathcal G$ is closed under direct products and summands, and for any left R-module M, $M \in \mathcal{F}$ if and only if $M^* \in \mathcal{G}$ [11, p. 66]. An exact sequence $0 \rightarrow A \stackrel{\alpha}{\rightarrow} B \stackrel{\beta}{\rightarrow} C \rightarrow 0$ of right R -modules is said to be pure if the sequence $0 \to \text{Hom}_R(N, A) \to \text{Hom}_R(N, B) \to$

 $\text{Hom}_R(N, C) \to 0$ is exact, for every finitely presented right R -module N and we called that $\alpha(A)$ is a pure submodule of B [18]. A right Rmodule M is called FP -injective if every monomorphism $\alpha: M \to N$ is pure. A right Rmodule M is called pure injective if M is injective with respect to all pure short exact sequences [18]. Recall that a subclass G of Mod-R is called definable if it is closed under pure submodules, direct limits and direct products $[14]$. A right ideal X of a ring R is called small in R if $X + Y \neq R$, for any proper right ideal Y of R [8]. A right R -module M is called small injective if $Ext^1(R/K, M) = 0$, for any small right ideal K of R . A right ideal I of R is called annihilator-small (a-small) and denoted by $I \subseteq^a R_R$ if for any right ideal K of R with $I + K =$ R, then $l(K) = 0$ [13].

The sum of all the annihilator-small right ideals of a ring R is called the right AS -ideal of a ring R and denoted by A_r [13].

We refer the reader to [1, 7, 8, 14, 18], for general background materials.

 In section 2 of this paper, we introduce the class of AS-injective modules. This class of modules lies between injective modules and small injective modules. We first characterize rings over which every module is AS-injective. Over a commutative ring R , we prove the equivalence of the following statements: (1) $A_r = 0$. (2) Every module is ASinjective. (3) Every principal a-small right ideal of R is AS -injective. (4) Every simple module is AS injective and $A_r \subseteq^a R_R$. Conditions under which the class of AS-injective right R-modules (ASI_R) is closed under quotient are given. For instance, we prove that the following statements are equivalent: (1) The class ASI_R is closed under quotient. (2) If $K \subseteq^a R$, then K is projective. (3) ASI_R contains all sums of any two AS -injective submodules of any module. Also, we show that the class ASI_R is closed under pure submodules if and only if all a-small right ideals in R are finitely generated if and only if all FP -injective modules are AS -injective. Finally, we give conditions such that any direct sum of modules in the class ASI_R is also belong to ASI_R . For instance, we prove that if $A_r \subseteq^a R_R$, then the following are equivalent. (1) A_r is a noetherian module. (2) The class ASI_R is closed under direct sums.

 Section 3 studies the definability of the class ASI_R . It is shown that the following assertions are equivalent: (1) ASI_R is definable. (2) The class ASI_R is closed under pure submodules and pure homomorphic images.

Akeel .R

(3) Every a-small right ideal in R is finitely presented. (4) A module $M \in ASI_R$ if and only if $M^{**} \in ASI_R$. Finally, we prove that if the class ASI_R is a definable, then the following are equivalent. (1) The class of flat left R -modules and the class ${M \in R\text{-Mod} \mid M^* = \text{Hom}_{\mathbb{Z}}(M, \mathbb{Q}/\mathbb{Z}) \in ASI_R}$ are coincide. (2) Each module in ASI_R is FP -injective. (3) Each pure-injective module in ASI_R is injective.

2. -Injective modules

Definition 2.1. A module *M* is said to be annihilator-small injective (shortly, AS injective), if $^{1}(R/K, M) = 0$, for any annihilator-small right ideal K of R ; equivalently, if K is any annihilator-small right ideal in R , then any R-homomorphism $f: K \longrightarrow M$ extends to R_R . A ring \overline{R} is said to be right \overline{AS} -injective if R_R is AS-injective.

We will use ASI_R to denote to the class of ASinjective right R -modules.

Examples 2.2.

- (1) It is clear that AS -injectivity implies small injectivity, but $\mathbb Z$ is a small injective $\mathbb Z$ -module $[17]$ and clearly, it is not AS-injective. Thus the class of small injective modules contains properly the class of AS-injective modules.
- (2) All injective modules are AS -injective and generally the converse is not true, for example, let ${F_i}_{i \in I}$ be a family of fields and let $\prod_{i \in \Lambda} F_i$ be the ring product of F_i , for all where addition and multiplication are define componentwise and let $K = \bigoplus_{i \in \Lambda} F_i$. If Λ is infinite, then K_R is not itself injective by [8, p. 140], but K_R is AS -injective, since $A_r = 0$. Therefore, AS-injective module is a proper generalization of injective modules.

Hence $Inj_R \subsetneq ASI_R \subsetneq SI_R$, where Inj_R (resp. SI_R) is the class of injective (resp. small injective) right R -modules.

Remarks 2.3.

- (1) The two classes Inj_R and ASI_R are coinciding, when R is an integral domain, since all proper right ideals are a-small in any integral domain.
- (2) All finitely generated \mathbb{Z} -modules are not AS injective and this follows from (1) and the fact that every non-trivial finitely generated \mathbb{Z} module is not injective [7, p.31]. Also, we have from $[17,$ Theorem 2.8] that any \mathbb{Z} -module is small injective.
- **(3)** From (1) and [9, p.410], we have that any ring \overline{R} is a field if and only if it is an \overline{AS} -injective integral domain.

Proposition 2.4. The class of AS-injective modules (ASI_R) is closed under direct summands, direct products and isomorphic copies.

Proof. Clear.

Theorem 2.5. Consider the following conditions for a ring *.*

- (1) $A_r = 0$.
- (2) All modules are AS-injective.
- **(3)** All principal a-small right ideals of R are AS injective.
- **(4)** All principal a-small right ideals of R are direct summand in R_p .
- (5) All simple modules are AS-injective and $A_r \subseteq^a R_R$.

Then (1) and (5) are equivalent and (1) \Rightarrow (2) \Rightarrow $(3) \Rightarrow (4)$. Moreover, if R is commutative, then (4) implies (1).

Akeel .R

Proof. (1) \Rightarrow (2) \Rightarrow (3) and (1) \Rightarrow (5) are obvious.

 $(3) \implies (4)$. Let $aR \subseteq aR$, where $a \in R$. By hypothesis, aR is AS -injective and so there is a homomorphism $\alpha: R \to aR$ such that $\alpha i = I_{aR}$, where $I_{\alpha R}$: $\alpha R \rightarrow \alpha R$ is the identity homomorphism and $i: aR \rightarrow R$ is the inclusion mapping. Thus aR is a direct summand in R_R .

 $(4) \Rightarrow (1)$. Let R be a commutative ring. Assume that $A_r \neq 0$, thus there is $(0 \neq)a \in A_r$. By hypothesis, $A_r \subseteq^a R_R$ and hence Lemma 1 in [13] implies $aR \subseteq^a R_R$. By hypothesis, aR is a direct summand in R_R and hence there exist a right ideal K with $aR\oplus K = R_R$. Since $aR \subseteq^a R_R$, $r(K) = 0$. Since $aR + K = R$, we have $r(aR \cap K) = r(aR) +$ $r(K)$ and hence $r(aR) = R$. Thus $aR = 0$, a contradiction. Therefore, $A_r = 0$.

 $(5) \Rightarrow (1)$ Assume that $A_r \neq 0$, thus there is $(0 \neq)a \in A_r$. If $A_r + r(a) \neq R$, then $A_r + r(a) \subseteq$ C, for some maximal right ideal C of R. Thus R/C is a simple right R -module. By hypothesis, R/C is an AS-injective module. Define α : $aR \rightarrow R/C$ by $\alpha(ar) = r + C$. Clearly, α is a well-defined right R -homomorphism. By AS injectivity, there exist $b \in R$ with $1 + C = ba + C$ and hence $1 - ba \in C$. Since $a \in A_r$ and A_r is a two sided ideal (by [13, Theorem 9 (1)]), we have $ba \in C$. Thus $C = R$, a contradiction. Therefore, $A_r + r(a) = R.$ Since $A_r \subseteq^a R_R$ (by hypothesis), $l(r(a)) = 0$, so that $r(l(r(a))) = R$. By [1, Proposition 2.15, p.37], $r(a) = R$ and hence $a = 0$, a contradiction. Thus $A_r = 0$. \Box

Recall that a ring R is called regular if for any $x \in R$, there is an element $y \in R$ such that $x = xyx$ [8]

Corollary 2.6. If R is a commutative regular ring, then every module is AS -injective and $A_r = 0.$

Proof. By [8, Theorem 10.4.9, p. 262] and

Theorem 2.5. \Box

It is not true in general that if $K \subseteq^a R_R$, then K is a projective right R-module, for example, if $R = Z₄$ and $K = 2R$, then $K \subseteq^a R_R$ but it is not projective $right$ R -module.

Theorem 2.7. For a ring R , the following are equivalent.

- **(1)** If $K \subseteq^a R_R$, then K is projective.
- (2) The class ASI_R is closed under quotient.
- **(3)** ASI_R contains all quotients of injective modules.
- **(4)** ASI_R contains all sums of any two AS injective submodules of any module.
- **(5)** ASI_R contains all sums of any two injective submodules of any module.

Proof. (2) \Rightarrow (3) and (4) \Rightarrow (5) are obvious.

 $(1) \Rightarrow (2)$ Let $\alpha: N \rightarrow M$ be any epimorphism, where N is an AS -injective module and M is any module. Let $\lambda: K \longrightarrow M$ be any homomorphism, where $K \subseteq^a R_R$. By hypothesis, K is projective and hence there is a homomorphism $\beta: K \longrightarrow N$ such that $\alpha \beta = \lambda$. By AS-injectivity of N, there is a homomorphism $\gamma: R \to N$ with $\gamma i = \beta$, where $i: K \to R$ is the inclusion mapping. Put $\varphi =$ $\alpha y: R \to M$, so that $\varphi i = \alpha \gamma i = \alpha \beta = \lambda$ and hence M is an AS -injective module.

(3) \Rightarrow (1) Let $K \subseteq^a R_R$. Let $\alpha: E \to N$ be an epimorphism (where E is an injective module) and $\beta: K \to N$ a homomorphism. By hypothesis, $N \in ASI_R$ and hence there is a homomorphism $\lambda: R \longrightarrow N$ with $\lambda i = \beta$, where $i: K \to R$ is the inclusion mapping. By projectivity of R_R , there is a

Akeel .R

Akeel .R

homomorphism $\gamma: R \to E$ such that $\alpha \gamma = \lambda$. Let $\tilde{\alpha}: K \longrightarrow E$ be the restriction of γ over K. Clearly, $\alpha \tilde{\alpha} = \beta$ and hence from Proposition 5.2.10 in [2, p.148] we get that K is projective.

 $(2) \implies (4)$ Let M_1 and M_2 be two AS -

injective submodules of module M . By Proposition 2.4, $M_1 \oplus M_2 \in ASI_R$. Since $M_1 + M_2$ is a homomorphic image of $M_1 \oplus M_2$, we have $M_1 + M_2 \in ASI_R$, by hypothesis.

 $(5) \Rightarrow (3)$. By similar argument as in the proof of Theorem 2.14 $((6) \implies (3))$ in [12]. \Box

Proposition 2.8. For a ring R , consider the following conditions.

- **(1)** Every module is AS-injective.
- (2) R_R is AS-injective and the class ASI_R is closed under quotient.
- **(3)** For any $x \in R$, if $xR \subseteq a R$, then there is $y \in R$ such that $x = xyx$.

Then $(1) \implies (2) \implies (3)$ and if R is commutative, then (3) implies (1) .

Proof. (1) \Rightarrow (2). Clear.

 $(2) \implies (3)$. Let $x \in R$ such that $xR \subseteq^a R_R$. Since ASI_R is closed under quotient (by hypothesis), xR is projective, by Theorem 2.7. Define $\alpha: R \to xR$ by $\alpha(r) = xr$, for all $r \in R$. Clearly, α is an epimorphism, so that there is a homomorphism $f: xR \to R$ with $\alpha f(a) = a$, for all $a \in xR$. Since R_R is AS-injective (by hypothesis), there is a homomorphism $g: R \to R$ such that $gi = f$, where $i: xR \rightarrow R$ is the inclusion mapping. Thus $x =$ $\alpha(f(x)) = \alpha(g(x)) = xyx$, where $y = g(1) \in R$. $(3) \Rightarrow (1)$. Suppose that R is a commutative ring. Let $xR \subseteq^a R_R$, where $x \in R$. By hypothesis, there is $y \in R$ with $x = xyx$. Let $e = xy$. Clearly, e is an idempotent of R and $xR = eR$, so that xR is a direct summand of R_R . Therefore, the result follows by Theorem 2.5. \Box

Proposition 2.9. For a ring R , the following are equivalent.

- (1) All a-small right ideals in R are finitely generated.
- (2) The class ASI_R is closed under pure submodules.
- **(3)** All *FP*-injective modules are AS injective.

Proof. (1) \Rightarrow (2). Let $M \in ASI_R$ and K a pure submodule of M. Let $I \subseteq^a R_R$, thus the hypothesis implies that I is finitely generated and so R/I is a finitely presented. Hence the sequence $\text{Hom}_R(R/I, M) \rightarrow$ $\text{Hom}_R(R/I, M/K) \to 0$ is exact. By [6, Theorem XII.4.4 (4), p. 491], the exact sequence $\text{Hom}_R(R/I, M) \longrightarrow \text{Hom}_R(R/I, M/K) \longrightarrow$ $Ext^1(R/I, K) \longrightarrow Ext^1(R/I, M)$ and so $Ext^1(R/I, K) = 0$. Thus, $K \in ASI_R$ and hence the class ASI_R is closed under pure submodules.

 $(2) \implies (3)$. If M is any FP-injective module, then M is a pure submodule of an AS -injective module. By hypothesis, $M \in ASI_R$.

(3) \Rightarrow (1). Let $I \subseteq^a R_R$ and $\alpha: I \rightarrow M$ a homomorphism, where M is an FP injective module. By hypothesis, M is AS -injective and hence α extends to R_R . By [4], *I* is finitely generated. \Box

Corollary 2.10. If each a-small right ideal in a ring R is finitely generated, then the class ASI_R is closed under direct sums.

Proof. Let $\{M_i | i \in I\}$ be a subclass of ASI_R . By Proposition 2.4, $\prod_{i \in I} M_i \in ASI_R$. By [14, Proposition 2.1.10, p. 57], $\bigoplus_{i \in I} M_i$ is a pure submodule in $\prod_{i \in I} M_i$ and hence $\bigoplus_{i \in I} M_i \in ASI_R$, by Proposition 2.9. \Box

Theorem 2.11. For a ring R, consider the following conditions.

- (1) A_r is a noetherian module.
- (2) The class ASI_R is closed under direct sums.
- **(3)** $M^{\mathbb{N}}$ is AS-injective, for any AS injective module M_R .
- (4) $M^{\mathbb{N}}$ is AS-injective, for any injective module M_R .

Then $(1) \implies (2) \implies (3) \implies (4)$ and if $A_r \subseteq^a R_R$, then $(4) \Rightarrow (1)$.

Proof. (2) \Rightarrow (3) and (3) \Rightarrow (4) are clear.

 $(1) \Rightarrow (2)$. By [13, Theorem 9(1)] and Corollary 2.10.

 $(4) \implies (1)$. Let $A_r \subseteq^a R_R$ and let $K_1 \subseteq K_2 \subseteq \cdots$ be a chain of right ideals of R with $K_i \subseteq A_r$. Let $E = \bigoplus_{i=1}^{\infty} E_i$, where $E_i = E(R/K_i)$. For every $i \ge 1$, put $M_i = \prod_{j=1}^{\infty} E_j = E_i \oplus \left(\prod_{\substack{j=1 \ j \neq i}}^{\infty} E_j \right)$, thus M_i is injective. By hypothesis, $\bigoplus_{i=1}^{\infty} M_i =$ $(\bigoplus_{i=1}^{\infty} E_i) \bigoplus \left(\bigoplus_{i=1}^{\infty} \prod_{\substack{j=1 \ j \neq i}}^{\infty} E_j \right)$ is AS-injective. By Proposition 2.4, E is AS -injective. Define

 $\alpha: \bigcup_{i=1}^{\infty} K_i \longrightarrow E$ by $\alpha(x) = (x + K_i)_i$. Clearly, α is a well-defined homomorphism. By hypothesis, $A_r \subseteq^a R_R$ and hence Lemma 1 in [13] implies that $\bigcup_{i=1}^{\infty} K_i \subseteq^a R_R$. Thus α extends to a homomorphism $\beta: R \to E$ and hence $\beta(R) \subseteq \bigoplus_{i=1}^n E(R/K_i)$ for some $n \in \mathbb{N}$, since R is finitely generated. Then $\alpha(\bigcup_{i=1}^{\infty} K_i) \subseteq \bigoplus_{j=1}^{n} E(R/K_i).$

So, if $a \in \bigcup_{i=1}^{\infty} K_i$, then $a \in K_m$ for all $m > n$, and hence $\bigcup_{i=1}^{\infty} K_i = K_{n+1}$. Therefore, the chain $K_2 \subseteq \cdots$ terminates at K_{n+1} and hence A_r is a noetherian module. \Box

Corollary 2.12. If $A_r \subseteq a R_R$, then the following are equivalent.

- (1) A_r is a noetherian module.
- **(2)** Direct sum of injective modules is injective.

Lemma 2.13. If R satisfies ACC (ascending chain condition) on a-small right ideals of R , then $A_r \subseteq^a R_R$

Proof. Let $\mathcal{H} = \{K | K \subseteq^a R_R\}$. Thus \mathcal{H} has a maximal element, say N (by Zorn's lemma). Since $A_r = \sum_{K \in \mathcal{H}} K$, it follows that $A_r = N$ and so $A_r \subseteq^a R_R$. \Box

Proposition 2.14. For a ring R , the following are equivalent.

- **(1)** satisfies ACC on a-small right ideals.
- (2) A_r is a noetherian R-module.
- **(3)** $M^{\mathbb{N}}$ is AS-injective, for any injective module M_R and $A_r \subseteq^a R_R$.

Proof. (1) \Rightarrow (2). Let $N_1 \subseteq N_2 \subseteq \cdots$ be a chain of right ideals of R in A_r . By Lemma 2.13, $A_r \subseteq^a R_R$. By [13, Lemma 1], N_i are a-small right ideals. By hypothesis, the chain $N_1 \subseteq N_2 \subseteq \cdots$ terminates and hence A_r is a noetherian R-module. $(2) \Rightarrow (1)$. By [13, Theorem 9(1)].

 $(2) \Rightarrow (3)$. By Theorem 2.11 and Lemma 2.13.

 $(3) \Rightarrow (2)$. By Theorem 2.11. \Box

3. Definability of the class

For any class G of right R -modules, we will set $\mathcal{G}^+ = \{M \in \text{Mod-}R \mid M \text{ is a pure submodule of a }\}$ module in G and $G^{\ominus} = \{M \in R - M\}$ $\text{Hom}_{\mathbb{Z}}(M,\mathbb{Q}/\mathbb{Z}) \in \mathcal{G}$.

Proposition 3.1. The pair $((ASI_R)^{\ominus}, ASI_R)$ is an almost dual pair over a ring *.*

Proof. By proposition 2.4, the class ASI_R is closed under direct summands and direct products. By [11, Proposition 4.2.11, p.72], the pair $((ASI_R)^{\ominus}, ASI_R)$ is an almost dual pair over a ring *.* \Box

Akeel .R

Corollary 3.2. Consider the following conditions

for the class ASI_R over a ring R.

- **(1)** The class ASI_R is definable.
- (2) $(ASI_R, (ASI_R)^{\ominus})$ is an almost dual pair over a ring *.*
- **(3)** $(ASI_R)^* \subseteq (ASI_R)^{\Theta}$.
- **(4)** $(ASI_R)^{**} \subseteq ASI_R$.
- **(5)** The class ASI_R is closed under pure homomorphic images.

Then $(1) \Leftrightarrow (2)$, $(1) \Rightarrow (3)$, $(1) \Rightarrow (5)$ and $(3) \Leftrightarrow (4)$. Moreover, if all a-small right ideals in R are finitely generated, then all five conditions are equivalent.

Proof. (1) \Leftrightarrow (2). By Proposition 3.1 and [11, Proposition 4.3.8, p. 89].

 $(1) \Rightarrow (3)$. Since ASI_R is a definable class, it is closed under pure submodules and hence $(ASI_R)^+$ ASI_R. Since $((ASI_R)^{\ominus}, ASI_R)$ is an almost dual (by Proposition 3.1), it follows from [11, Theorem 4.3.2, p.85], that $(ASI_R)^* \subseteq (ASI_R)^\ominus$

 $(1) \Rightarrow (5)$. By [14, 3.4.8, p. 109].

 $(3) \Leftrightarrow (4)$. By Proposition 3.1 and [11, Theorem 4.3.2, p.85].

 $(4) \Rightarrow (1)$ and $(5) \Rightarrow (1)$. Suppose that all a-small right ideals in R are finitely generated. By Proposition 2.9, the class ASI_R is closed under pure submodules and hence $(ASI_R)^+ = ASI_R$. Thus the results follow from [11, Theorem 4.3.2, p.85]. \Box

Corollary 3.3. If every AS-injective modules is pure-injective, then the following statements are equivalent for a class ASI_R over a ring R.

- (1) ASI_R is definable.
- (2) ASI_R is closed under direct sums.
- (3) $(ASI_R)^+ = ASI_R$.
- (4) Each a-small right ideal in R is finitely generated.

Proof. The equivalence of (1) , (2) and (3) follows from Proposition 3.1 and [11, Theorem 4.5.1, p.103].

 $(1) \Leftrightarrow (4)$. By Proposition 3.1, Proposition 2.9 and $[11, Theorem 4.5.1, p.103]$. \square

Lemma 3.4. A left R-module $M \in (ASI_R)^{\ominus}$ if and only if $Tor_1(R/I, M) = 0$, for any a-small right ideal I of a ring R .

Proof. Let M be a left R-module and $I \subseteq^a R_R$. By [5, Theorem 3.2.1, p.75], $Ext¹(R)$ $(I, M^*) \cong (Tor_1(R/I, M))^*$, so that $Tor_1(R/I, M) =$ 0 if and only if $M^* \in ASI_R$. Hence $(_RASF, ASI_R)$ is an almost dual, where $RASF = \{M \in R\text{-Mod}\}\$ $Tor_1(R/I, M) = 0$, for any a-small right ideal I of R . By [11, Proposition 4.2.11, $p.72$], $(ASI_R)^{\ominus} =_R ASF$. \Box

A right R -module M is called n -presented if there is an exact sequence $F_n \to F_{n-1} \to \cdots \to F_0 \to$ $M \rightarrow 0$, with each F_i is a finitely generated free right R -modules [3].

Theorem 3.5. The following statements are equivalent for a class ASI_R over a ring R.

- **(1)** ASI_R is definable.
- (2) The class ASI_R is closed under pure submodules and pure homomorphic images.
- **(3)** Every a-small right ideal in R is finitely presented.
- (4) A module $M \in ASI_R$ if and only if $M^* \in$ $(ASI_R)^\ominus$
- **(5)** A module $M \in ASI_R$ if and only if $M^{**} \in ASI_R$.

Proof. (1) \Rightarrow (2). By [14, 3.4.8, p. 109].

 $(2) \implies (3)$. Let M be any FP-injective module, thus there is a pure exact sequence $0 \rightarrow M \rightarrow$ $\stackrel{\pi}{\rightarrow} E/M \rightarrow 0$, where E is an injective right Rmodule. By hypothesis, $E/M \in ASI_R$.

Akeel .R

Let $K \subseteq^a R_R$, thus $\text{Ext}^1(R/K, E/M) = 0$. By [6, Theorem 4.4 (4), p. 491], the sequence $0 =$ $\text{Ext}^1(R/K, E/M) \longrightarrow \text{Ext}^2(R/K, M) \longrightarrow$

 $\text{Ext}^2(R/K, E) = 0$ is exact and hence $Ext²(R/K, M) = 0$. By [13, Theorem 4.4 (3), p. 491], the sequence

 $0 = \text{Ext}^1(R, M) \longrightarrow \text{Ext}^1(K, M) \longrightarrow$

 $Ext²$ is exact, so that $Ext¹(K, M) = 0$. By hypothesis, ASI_R is closed under pure submodules, so that K is finitely generated by Proposition 2.9 and hence [4, Proposition, p. 361] implies that K is finitely presented.

 $(3) \Rightarrow (1)$. Let $M \in ASI_R$. Let $K \subseteq \mathbb{R}^n$, thus K is finitely presented (by hypothesis) and hence there is an exact sequence $F_2 \xrightarrow{\alpha_2} F_1 \xrightarrow{\alpha_1} K \longrightarrow 0$, where F_1, F_2 are finitely generated free right R modules. Let $\beta = i\alpha_1$, where $i: K \rightarrow R$ is the inclusion mapping, thus the sequence $F_2 \stackrel{\alpha}{}$ $\stackrel{\beta}{\longrightarrow} R \stackrel{\pi}{\longrightarrow} R/K \longrightarrow 0$ is exact, where $\pi: R \longrightarrow R/K$ is the natural epimorphism. Hence R/K is a 2-presented module, so that from [3, Lemma 2.7 (2)] we have $Tor_1(R/K, M^*) \cong (Ext^1(R/K, M))^*$ By Lemma 3.4, $M^* \in (ASI_R)^{\ominus}$ and hence $(ASI_R)^* \subseteq (ASI_R)^{\ominus}$. By hypothesis, every a-small right ideal in R is finitely generated, so that ASI_R is closed under pure submodules by Proposition 2.9. By Theorem 3.2, ASI_R is a definable class.

 $(1) \Rightarrow (4)$. By Corollary 3.2, $(ASI_R, (ASI_R)^{\ominus})$ is an almost dual pair and hence a module $M \in ASI_R$ if and only if $M^* \in (ASI_R)^\Theta$

 $(4) \implies (5)$. By hypothesis, $(ASI_R)^* \subseteq (ASI_R)^{\ominus}$. By Corollary 3.2, $(ASI_R)^{**} \subseteq ASI_R$. Hence for any right R-module M, if $M \in ASI_R$, then $M^{**} \in ASI_R$.

Conversely, if $M^{**} \in ASI_R$, then $M^* \in (ASI_R)^{\ominus}$. By hypothesis, $M \in ASI_R$.

 $(5) \Rightarrow (1)$. Let N be a FP-injective module, thus there is a pure exact sequence $0 \rightarrow N \rightarrow E$ $\rightarrow E/N \rightarrow 0$, where E is an injective right Rmodule. By [18, 34.5, p.286], the sequence $0 \rightarrow N^*$ $\rightarrow E^{**} \rightarrow (E/N)^{**} \rightarrow 0$ is split. By hypothesis, $E^{**} \in ASI_R$ and hence $N^{**} \in ASI_R$. By hypothesis, $N \in ASI_R$ so that ASI_R is closed under pure submodules by Proposition 2.9. Thus ASI_R is definable class by Corollary 3.2. \Box

Note that if the class ASI_R is closed under pure submodules, then $(ASI_R)^+ = ASI_R$. Thus we have the following corollary.

Corollary 3.6. The class ASI_R is a definable if and only if it is closed under pure submodules and the class $(ASI_R)^+$ is a definable.

Corollary 3.7. If the class ASI_R is a definable, then the following are equivalent.

- (1) The class of flat left R -modules and the class $(ASI_R)^{\ominus}$ are coincide.
- **(2)** Every module in ASI_R is FP -injective.
- **(3)** Every pure-injective module in ASI_R is injective.

Proof. (1) \Rightarrow (2). Let $M \in ASI_R$, thus $M^* \in$ $(ASI_R)^\Theta$ by Corollary 3.2. By hypothesis, M^* is a flat left R-module and hence Proposition 3.54 in $[15, p.136]$ implies that M^{**} is injective. Since M is a pure submodule in M^{**} , we have M is FP -injective by [18, 35.8, p.301].

 $(2) \implies (3)$. Let M be any pure-injective module in ASI_R . Let $\mathcal{E}: 0 \to M \to M' \to M'' \to 0$ be any exact sequence. By hypothesis, M is FP -injective. By [16, Proposition 2.6], the sequence $\mathcal E$ is pure and hence pure-injectivity of M implies that the sequence $\mathcal E$ is split by $[18, 33.7, p. 279]$. Therefore, M is injective.

Akeel .R

 $(3) \implies (1)$. Let M be a flat left R-module, thus $Tor_1(N, M) = 0$, for any right R module *N*. By Lemma 3.4, $M \in (ASI_R)^{\ominus}$. Conversely, if $M \in (ASI_R)^{\ominus}$, then $M^* \in ASI_R$. By [14, Proposition 4.3.29, p. 149], M^* is a pure injective module. By hypothesis, M^* is injective and hence M is flat by [10, Theorem, p.239]. \Box

References:

[1] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, Grad. Texts in Math., Vol. 13, Springer, 1974.

[2] P. E. Bland, Rings and Their Modules, Walter de Gruyter & Co., Berlin, 2011.

[3] J. L. Chen and N. Q. Ding, On $n-$

coherent rings, Comm. Algebra 24 (1996), 3211- 3216.

[4] E. E. Enochs, A note on absolutely pure modules, Canad. Math. Bull. 19 (1976), 361-362.

[5] E. E. Enochs and O. M. G. Jenda, Relative Homological Algebra, Walter de Gruyter, 2000.

[6] P. A. Grillet, Abstract Algebra, 2nd edition, GTM 242, Springer, 2007.

[7] P. J. Hilton and U. Stammbach, A

course in homological algebra, Springer-Verlag, New York, 1971.

[8] F. Kasch, Modules and Rings, Academic Press, London, New York, 1982.

[9] G. B. Klatt and L. S. Levy, Pre-self-injective rings, Tran. Amer. Math .Soc., 122 (1969), 407-419. [10] J. Lambek, A module is flat if and only if its character module is injective, Canad. Math. Bull., 7 (1964), 237-243.

[11] A. R. Mehdi, Purity relative to classes of finitely presented modules, PhD Thesis, Manchester University, 2013.

Injective Modules and Rings, J. AL-

Qadisiyah for Comp. Sci. and Math., 9 (2) 2017, 57 $-70.$

[13] W. K. Nicholson and Y. Zhou, Annihilator– small right ideals, Algebra Colloq., 18(1) (2011), 785-800.

[14] M. Prest, Purity, Spectra and Localisation, Cambridge University Press, 2009.

[15] J. J. Rotman, An Introduction to Homological Algebra, Springer, 2009.

[16] B. Stenström, Coherent rings and FPinjective modules, J. London. Math. Soc. 2 (1970), 323-329.

[17] L.V. Thuyet and T. C. Quynh, On small injective rings and modules, J. Algebra and Its Applications 8 (2009), 379-387.

[18] R. Wisbauer, Foundations of Module and Ring Theory, Gordon and Breach, 1991.

Akeel .R

صنف من المقاسات األغمارية الصغيرة

عقيل رمضان مهدي جامعة القادسية/ كلية التربية/ قسم الرياضيات

المستخلص:

 $AS - A$ حلقة. في هذا البحث المقاس الإيمن M على الحلقة R عرف ليكون اغماري من النمط اذا كان $0=0,\,$ $\hbox{Ext}^1(R/K,M)=0$ لأي مثالي صغير - مبطل ايمن K من الحلقة R . تشخيص الحلقات التي يكون كل مقاس معرف عليها هو اغماري من النمط – AS. الشروط التي بموجبها يكون صنف المقاسات الأغمارية من النمط – AS اليمنى على الحلقة ASIR) R مغلق تحت القسمة (بالنسبة الى: المقاسات الجزئية النقية، الجمع المباشر) قد اعطيت. اخيراً، ندرس قابلية التعريف للصنف (ASI_B).