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1. Introduction
Let R be a commutative ring with unity and M be

a right R-module. A submodule N of M is called
quasi-invertible if Hom (%M) =0 [10]. M is
called quasi-Dedekind if every nonzero submodule
N of M is quasi-invertible, that is Hom (%M) =0

for each nonzero submodule N of M. Equivalently
M is quasi-Dedekind if for each f € End(M), f #
0, then Ker(f) =0 [10]. As a generalization of
quasi-Dedekind modules. Tha’ar in [14] introduced
the concept essentially quasi-Dedekind (briefly,
ess.g-Ded.) by restricting the definition of quasi-
Dedekind on essential submodules, where a
submodule N of M is called essential in M (denoted
by N <, M) if NnW #0 for each nonzero
submodule W of M[7]. However, the concept
essentially quasi-Dedekind is equivalently to k-
nonsingular which is introduced by Roman C.S[12],
that M is ess-g-Ded. Module if for each f €
End(M),Ker(f) <.ss M implies f = 0.

In [3] introduced the concept t-essential
submodule, a submodule N of M is called t-essential
submodule (denoted by N <;.,c M) if NnW <
Z,(M), then W < Z,(M), where Z,(M) is the

second singular submodule of M and defined by

M _ Zx(M) _ o
(m ) = M)’ Z(M) = {m € M:mI=0 for some

I<ess RM7]. It is clear that Z(M)={me€
M: ann(m) <.z R}.AIS0,Z,(M) = {m € M:ml =

0 for some I < R} = {m€ M:ann(m) <. R}".
It is obvious; every essential submodule is t-
essential, but not conversely.

In section two, we define t-essentially quasi-
Dedekind module, where an R-module M is called t-
essentially quasi-Dedekind if every nonzero t-

essential submodule is quasi-invertible, that is

M
N’

Hom( M) = 0 for each (0) # N <;.;s M.
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Analogus characterization of ess.q-Ded. module we
have . An R-module M is t-ess.g-Ded. if for each
f € End(M),Ker(f) <ies M implies f =0. We
study t-essentially quasi-Dedekind module. It is
clear that every t-essentially quasi-Dedekind module
is essentially qusi-Dedekind but not conversely
(Remarks and Examples 2.2(2) and every quasi-
Dedekind module is t-essentially quasi-Dedekind,
but the converse may be not true (Remarks and
Examples 2.2(4)). Also we see that every
nonsingular module is  t-essentially  quasi-
Dedekind( Remarks and Examples 2.2(3)).

The property of t-essentially quasi-Dedekind is
inherited by direct summand (Proposition 2.3);
however it is not inherited by direct sum. So we
provide necessary and sufficient conditions for a
direct sum of t-essentially quasi-Dedekind to be t-
essentially quasi-Dedekind.

Beside these some connections between t-
essentially quasi-Dedekind modules and other types
of modules are investigated.

It is known that every quasi-Dedekind module M is
a prime module (that is annM = annN for each
(0)= N < M) but the converse may be not true [11].
However implies that every prime modules is
ess.g.Ded.. Also, every essentially quasi-Dedekind
module M is essentially prime module (that is
annM = annN for each N <, M) and the
converse is not true in general [14, Proposition
2.1.8]. We notice that every t-ess.q.Ded. module M
implies annM = annN for each (0) # N <;.s M,
so this note lead us in section three to introduce and
study the concept of t-essentially prime module (that
is annM = annN for each, (0) # N <., M). Thus

for a module M, we have the following implications.

t—ess.q-Ded.:’t—ess.prime => ess.prime.
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But none of these implications is reversible(
Remarks and Examples 3.3(2),(3)). The concepts
essentially prime module and t-essentially prime
module are equivalent, under certain
conditions(Propositions 3.4,3.7). Also we have that
for an R-module , with annM = annM (M is the
quasi-injective hull of M) then M is t-essentially
prime if and only if M is t-essentially prime
(Proposition 3.9). Beside these many other
properties of t-essentially prime modules, also
several connections between this type of modules
and other modules are presented.

We list some known results, which will be needed
for future use.

Proposition 1.1:[3, Proposition 2.2]. The following
statements are equivalent for a submodule A of an
R-module M:

(1) Aist-essential in M;

(A+Z(M) . ..M
2) —=—isessential in ——;
( ) Z2(M) Z2(M)

(3) (A+ Z,(M) is essential in M;

4) % is Z,-torsion.

Remark 1.2: [2, Corollary 1.3] Let A; be a
submodule of M, for each A €A
(1) If Ais a finite set and A, <;s M; then
Naen Ar StesNaer Ma;
(2) @irendr Stes ®acaM; if and only if
Aj <;es M, for each 1 €A,

Proposition 1.3: [2, Corollaryl.2] Let A< B < M.
Then A <;,c M if and only if A<,,B and
B <o M.

2. T-essentially Quasi-Dedekind modules
Definition 2.1: An R-module M is called t-
essentially quasi-Dedekind (brifly t-ess.q.Ded.) if
every nonzero t-essential submodule N of M is

quasi-invertible, that is M is t-ess.g-Ded. if
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M
E)

Hom( M)=0 for all nonzero t-essential

submodule N of M. A ring R is t-ess.q-Ded. if it is t-

ess.q-Ded R-module.

Remarks and Examples 2.2:

(1) It is clear that every simple is t-ess.q-Ded.
module.

(2) Every t-ess.g-Ded. module is ess.q-Ded.
module, since every essential submodule is t-
essential. However the converse may be not
true, for example: Let M =Q®Z, as Z-
module. M is ess.q-Ded. let N = Q@(0). Then
N+ Z,(M) = (@&(0) + (0)8Z,) =
Q®Z, = M <., M and so by Proposition 1.1,
N <;es M. 1t follows that Hom(%,M) =

Hom(Z,,Q®Z,) # 0 and hence M is not t-
ess.q-Ded.

(3) Every nonsingular module is t-ess.q-Ded.

Proof: Let M be a nonsingular module. Then by
[11, Proposition 3.13], every essential submodule is
quasi-invertible. Hence every t-essential submodule

is quasi-invertible by Remark 1.2, and so M is t-
ess.q-Ded.. O

(4) It is obvious that every quasi-Dedekind is t-
ess.q-Ded, but the converse is not true in
general, for example: The Z-module Z®Z is
nonsingular, so it is t-ess.g-Ded. (see part
(3)), but M is not quasi-Dedekind since

M

Hom(zea(O) ’

M) =~ Hom(Z,Z®Z) # 0.

Similarly each of the Z-module Q®Z,Q®Q is t-
ess.q-Ded., but not quasi-Ded.
(5) Let R be a ring. Then the following are
equivalent:
(1) R ist-ess.q.-Ded.;
(2) Risess. Q-Ded.
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(3) Ris a

semiprime)ring.

nonsingular(R is a

Proof: (1)=(2) It follows by Remarks
and Examples 2.2(2).

(2)=(3) It follows by [14, Proposition
2.2.6]

(3)=(@) It follows by Remarks and

Example 2.2(3). O

(6) For R-module M, % is t-ess.q-Ded. for

each t-closed submodule C of M,  where
a submodule C of M is called t-closed if C
has no proper t-essential extension in M
[3].

Proof: If C is a t-closed submodule, then

by [3, Proposition 2.6] % is nonsingular.

Hence by Remarks and Examples

2.2(4), % is t-ess.q-Ded. O

In particular, M s t-ess.g-Ded. for any R-module
Z3,(M)

M.

(7)Let M be a t-uniform module ( that is, for
submodule of M is t-essential[8] . Then M is t-
ess.g-Ded. if and only if M is ess.g-Ded.

(8) A homomorphic image of t-ess.q-Ded. need not

be a t-ess.q-Ded. for example : Z as a Z-module

is t-ess.g-Ded. let m:Z — 2~ Z, be the
<4>

natural projection, hence w(Z) = Z, is not t-

ess.q-Ded.  since Hom(%,z4)¢0 and

(2) <tes Za.

(9) Let M and M'be two isomorphic R-
module. Then M is t-ess.q.Ded. if and
only if M' is t-ess.q-Ded.

(10)If M is t-ess.g-Ded., then annM = annN for

each N <;es Mand N # 0
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Proof: Since M is t-ess.g-Ded., every
N <(es M, N=+0 is quasi-invertible

submodule. Hence annM = annN for each
0# N <;,,c Mby[11] O

(11)Let M be an R-module such that Z,(M) < N
for all N < M. Then M is t-ess.q.Ded. if nd
only if M is ess.g-Ded.

Proof:= It is clear.
&< Let N <;,s M. Then by Remark 1.2, N+
Z,(M) <,ss M, hence N <, M (since Z,(M) <

N). As M is ess.q-Ded., thus Hom (%M) =0.0

The property of t-ess.q-Ded. is inherited by direct
summand.

Proposition 2.3: A direct summand of t-ess.g-Ded.
module M is t-ess.g-Ded.

Proof: Let N be a direct summand of M(N <® M).
To prove N is a t-ess.q.Ded. Let (0)# K <;.s N. As
N <® M,M = N®W, for some W < M. Since

K <tes N and W <ies W, then

K®W <., N@W =M. By t-essentially quasi-

Dedekind of M, Hom(——,M)=0; thus |,
Kew

N N
Hom (E'M) = 0. Suppose , Hom (E'N) # 0 that
is there exist f:%i—» N,f # 0. Hence iof:%r—»
M,io f # 0, where i is the inclusion mapping. Thus

Hom(%,M)th, which is a contradiction. It

follows that Hom (%N) =0 and N is t-ess.q-Ded.

d

Thaa’r in [14, Theoreml.2.3] an R-module is
ess.g.Ded. if and only if M is K-nonsingular that is
for each f € End(M) implies f = 0.

By similar proof of this result, we get the following.
Theorem 2.4: Let M be an R-module. Then M is t-
ess. Q-Ded., if and only if for each f € End(M) ,
0 # Kerf <;ec M implies f = 0.
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Note 2.5: Every semisimple module is ess.g-Ded.
[14, Proposition 1.2.4]. However semisimple

module may not t-ess. Q-Ded., since

Hom(Z%-, Zs) = Hom(Zs, Zs) # 0 and
(3) <tes Zg(because (3) + Z,(Zg) = (3) + Z¢ =
Ze Sess Ze)-

"Asgari in [4] introduced t-semisimple module,
where an R-module M is called t-semisimple if for
each N <M, there exists K <® M such that
K <tes N. It is clear that every semisimple is t-
semisimple but the converse may be not true " [4].
Proposition 2.6: Let M be t-semisimple module and
t-ess.g-Ded. module. Then t-closed submodule of M
is t-ess.q-Ded.

Proof: Let N be t-closed submodule of M. Then by
[3, Lemma 2.5(1)]N = Z,(M), and so[4, Theorem
2.3], N is direct summand . Thus by Proposition 2.3,

N is at-ess. Q-Ded. O

Corollary 2.7: Let R be a t-semisimple ring and t-
ess.g-Ded.. Then R is semisimple.
Proof: Since R is t-ess. Q-Ded, R is nonsingular by
Remarks and Examples 2.2(5). But R is nonsingular
and t-semisimple ring implies R is semisimple. O
"Recall that a module M over a commutative ring
R is called scalar module if for each f € End(M),
there exists 0 # r € R such that f(x) = xr for each
x € M" [13].
" An R-module M is called quasi-prime if ann(m)
is a prime ideal of R, for each m # 0 and m € M”
[1].
Theorem 2.8: Let M be a scalar quasi-prime
module. Then M is t-ess.g-Ded.
Proof: Let f € End(M) and suppose that #0 .
Since m is a scalar module, there exists 0 #r € R
and f(x) =xr for each xeM. Assume
Ker(f) <(es M, hence Ker(f) + Z,(M) <., M by
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Proposition 1.1. So that for any m € M, there exist
a €R such that 0 =% ma € Ker(f) + Z,(M). It
follows that ma =m; +m, for some m, €
Kerf,m, € Z,(M). Thus
fm) + f(m,) = f(my) € Z,(M). If mar =0,

then ar € ann(m). But ann(m) is a prime ideal of

f(ma) = mar =

R since M is quasi-prime, so either a € ann(m) or
r € ann(m). If a € ann(m), then ma = 0, which
is a contradiction. If r € ann(m) then mr = 0 for
each meM and Mr = f(M) =0 (that is f = 0)
which is a contradiction. Thus 0 # mar € Z,(M)
which implies that Z,(M) <,,c M and so
Z,(M) <;,s M which a contradiction is since Z,(M)
is t-closed by [3, Corollary 2.7(1)]. Therefor

Ker(f) £ies M. Thus M is t-ess.q-Ded. O

Remark 2.9: If M is a t-ess.g-Ded. module, then
either M or E(M) (quasi-injective hull or injective
hull of M) is t-ess.g-Ded. The following example
explain this: Let M = Z5 as Z-module. M is t-ess.g-
Ded, but M = E(M) = Z;” is not t-ess g-Ded.

The converse of Remark 2.8 follows directly by the
following result, which is an analogous to [14,
Proposition 1.2.15].

Proposition 2.10:Let M be a t-ess. g-Ded R-module
and it is quasi-injective. If N <,,; M, then N is a t-
ess. Q-Ded R-module.

Proof: It is similar to the proof of [14, Proposition
1.2.15] and so is omitted. O

Corollary 2.11: Let M be an R-module. If M(or
E(M) is a t-ess.g-Ded R-module. Then M is tes.g-
Ded.

Proof: Since M <, M(M <, E(M)),
SOM <,ps M(M <,os E(M))), the result follows by

Proposition 2.10. O
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Now we turn our attention to the direct sum of t-
ess.q-Ded modules. First we notice that the direct
sum of two t-ess.q-Ded modules need not be t-ess.q-
Ded, as the following example: The Z-module Z,
and Z; are t-ess.g-Ded. module, but Z,®Z; = Z, is
not t-ess.q-Ded.

Definition 2.12: Let M and W be R-module. M is
said to be t-ess.g-Ded relative to W for all f €
Hom(M, W), f # 0 implies Kerf <£;,s M.
Remarks and Examples 2.13:

(1) Let M be an R-module. M is a t-ess.g-Ded
module if and only if M is a t-ess. Q-Ded
relative to M.

(2) Let M be at-ess.q-Ded . Then M is a t-ess.
g-Ded. relative to N, foreach N < M.

(3) Zg is not t-ess. g-Ded relative to Z,, since
there exists f:Zg,+— Z, defined by
f0) =f(2) =f(4) =0q, f=
f(g) = f(é) = Iz2

Thus Ker(f) = {0,2,3} <;es Zs and f # 0.

The following Theorem is analogous to [14,
Theorem 1.3.5].

Theorem 2.14: Let {M;} ;c, be a family of R-
modules. Then M = {M;} ;c, Iis t-ess. g-Ded if and
only if M; t-ess. g-Ded relative to M; for i,j € A.

Proof: It is similar to Theorem 1.3.5 in [14] and so

is omitted. O

3. t-essentially prime Modules

Ali Saba in [11] prove that: If M is a prime
module, then for each f € End(M) and
Ker(f) <.,ss M then =0 ; that is every prime
module is ess. g-Ded module. However prime
module does not imply t-ess. g-Ded. for example :
Let M be the Z-module Z,& Z,. M is a prime
module but M is not t-ess. g-Ded since M is

singular and so every submodule N of M,
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N <o M. Take N = Z,®(0). Then Hom(s, M) #

0.

We have the following:

Proposition 3.1: Every faithful prime module is t-
ess. g-Ded.

Proof: First we shall show that M is nonsingular.
Let x € Z(M) and suppose that x # 0. Then
ann(x) <.ss R. Hence there exists x € R,r # 0 and
r € ann(x) and so xr = 0. As M is a prime module
and x # 0,7 € annM = 0 which is a contradiction.
Thus Z(M) =0 (M is nonsingular) and so by

Remarks and Examples 2.2(3), M is t-ess. g-Ded. O

Notice that the condition M is faithful is
necessary in Proposition 3.1 as we have seen
M = Z,®Z, as Z-module is prime, not faithful and
M is not t-ess. g-Ded.

Now it is known by [14, Proposition 2.1.8], every
ess. g-Ded module is an essentially prime module (
that is anngkM = anngyN for each N <., M). Also,
by Remarks and Examples 2.2(9), if M is a t-ess. g-
ded module, then annzyM = annzyN for each
(0) # N <;,c M. This leads us to introduce the
following.

Definition 3.2: An R-module is called t-essentially
prime (briefly t-ess.prime) if anng M = anniyN for
each (0) = N <;.s M.

Remarks and Examples 3.3:

(1) Itis clear that every prime module is t-ess.
prime is, but the converse is not true in
general (see part(3), I1).

(2) Every t-ess. prime module is ess. prime,
since every essential submodule is t-
essential. But the converse may not be true
in general, for example. The Z-module Z,
is ess. prime module, but it is not t-ess.
prime since annyZ, # ann,y(2) and

(2) Stes Z6'
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(3) A t-ess. prime module need not be t-ess. g-
Ded module, as the following examples
show :

0] Let M be the Z-module Z,®Z,. M
is t-ess. prime, but M is not t-ess.
g-Ded as we have seen in the
beginning of section three.

) Let M = Z,®Z, as Z-module . M
is not t-ess. g-Ded , since if
N = Z®(0), then N+ Z,(M) =
M <, M and so by Proposition
1.1, N <es M. But
Hom(x, M) =
Hom(Z,,Z®Z,) #0. On the
other hand, we can show that M is
t-ess. prime as follows: Let
W <ies M then W+
Z,(M) <, M( by Proposition
1.1). As M is an ess. prime
module by [14, Example 2.1.12],
hence annz(W + Z,(M)) =
ann;M = (0). It follows that
ann;W nannzZ,(M) = 0 and so
ann,W N 2Z = 0. (since
Z,(M) = (0)®Z, and
annyZ,(M) = 2Z). Since
2Z <44 Z then ann,W = 0. This
implies ann;W = anny;M and M
is t-ess. prime. Also, note that M
is not prime module.

(4) Let M be a nonsingular module. Then M is
an ess. prime if and only if M is a t-ess.

prime module.

Proposition 3.4: Let M be a faithful R-module such
that anng (Z,(M)) <. R. Then M is an ess. prime

module if and only if M is t-ess. prime.
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Proof: < Itis clear.

= Let 0 # N <;es M. Then N+ Z,(M) <., M.
As M is ess. prime, ann(N + Z,(M)) = annM =
(0). Hence annNn ann(22 (M)) =0. By
hypothesis, ann(Z,(M)) <. R, so that annN =

0 = annM. It follows that M is t-ess. prime. O

"Recall that an R-module M is bounded if there
exists x € M such that anngM = anng(x) " [6].
Proposition 3.5: Let M be a bounded module with
anngM is a prime ideal of R and annygM <
ann(Z,(M)). Then M is t-ess. prime.

Proof: Let (0)# N <¢(,,sM. Then N+
Z,(M) <,,s M by proposition 1.1. Since M is
bounded with annM is a prime ideal, then by [14,
Lemma 2.1.11], M is ess. prime. Hence annR(N +
ZZ(M)) =anngM. It follows that annizn
anng(Z,(M)) = anngM. As anngM is a prime
ideal, either annyN < annygM or annzZ,(M) =
anngM. Thus either annzN < anngM or
anng(Z,(M)) = anngM. But by
hypothesis anngM # anng(Z,(M)), o) that

anngN = anngM and so M is t-ess. prime. O

Corollary 3.6: Let M be a bounded quasi-prime R-
module with annyM € anng(Z,(M)). Then M is t-
€ss. prime.

Proof : As M is a quasi-prime module, then annyM
is a prime ideal of R and so by [14, Lemma 2.1.11]
M is an ess. prime module. Then by the same
procedure of Proposition 3.5, M is a t-ess. prime
module. O

As application of Corollary 3.6, M = Q®Z, as Z-
module is t-ess. prime module since M is bounded
(where ann;M = ann,z(1,1), also it is easy to
check that M is quasi-prime, and O=ann,M &

anny(Z,(M)) = ann,Z, = 2Z.



Journal of AL-Qadisiyah for computer science and mathematics Vol.11 No.1 Year 2019

ISSN (Print): 2074 — 0204

ISSN (Online): 2521 — 3504

" Recall that an R-module is called multiplication if
foreach N < M, N = MI for some ideal I of R" [5].
Proposition 3.7: Let M be a faithful multiplication
R-module. Consider the following statements:

(1) M isat-ess. prime.

(2) M is t-ess.g-Ded.

(3) M isess.prime;

(4) R ist-ess. g-Ded,;

(5) R isess. g-Ded;

(6) Endgr(M) is t-ess.q-Ded.

Then (1) < (2) ©(3)< (5) < (6) and (4) < (6) if
M is a finitely generated module.

Proof: (1) =(2) Since M is t-ess. prime, M is ess.
prime. Hence by [14, Proposition 2.1.16], R is ess.
g-Ded and so R is nonsingular by [14, Proposition
1.2.6]. On the other hand, M is faithful
mulitiplication implies Z(M) = MZ(R) by [5,
Corollary 2.1.4]. It follows that Z(M) = M(0) = 0;
that is M is nonsingular and hence by Remarks and
Examples 2.3(3), M is t-ess. g-Ded.

(2)=(1) 1t follows by Remarks and Examples
3.3(3).

(2)=(3) M is t-ess.q-Ded implies M is t-ess. prime
and hence M ess. Prime
Examples 3.3(2),(3)).
(3)=(5) Since M is an ess. prime faithful module
then by [14,Lemma 2.1.16], R is ess. g-Ded.

(see Remarks and

(5)=(2) Since R is ess. g-Ded, R is nonsingular
which implies M is nonsingular because Z(M) =
MZ(R) = 0. Thus M is t-ess g-Ded by Remarks and
Examples 2.2(3).

(4)=(5) It follows by Remarks and Examples
2.2(5).
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(4)=(6) Since M is a finitely generated

multiplication module, then M is scalar R-module

[13]. Hence by [10], E(M) ~ —— ~ = ~ R. Thus

~ annM (0)

End(M) is t-ess. g-Ded if and only if R is t-ess. g-
Ded. O

Remark 3.8: The condition M is a multiplication
module cannot be dropped from Theorem 3.7. The
following example explains this:

Let M = Z&@®Z, as Z-module but not multiplication
module. However, M is t-ess. prime Z-module and it
is not t-ess. g-Ded (see Remarks and Examples
3.3(3(11)). Also note that R is t-ess. g-Ded.
Proposition 3.9: Let M be an R-module. Then M is
t-ess prime and annM = annM if and only if M is
tes- prime. Where M is the quasi-injective hull of M.
Proof: = Let (0) # N <;,s M. To prove annyN =
anngM. Since M <, M, then M <, M and so
NNM <..; M by Proposition 1.3. Let B <M and
(NNM)NB € Z,(M) — — — — — — — (.  Then
NNB <€ Z,(M) € Z,(M). It follows that B <
Z,(M), since N <., M and B<M < M. Thus
B S Z,(M)NM = Z,(M); and so by (I) implies
NNB < s M. On the other hand M is t-ess. prime,
which implies that anng(NNM) = anng(M) =
anng(NNM) 2 anng(N)(
because (NNM) < N, hence anngz(M) 2 anngN.

anng (M) =

anng(M).  Since

But anng(M) € anngN. Thus
anng(N) and so M is t-ess. prime.

< Since M <., M, then M <, M. So that by t-
essentially prime of M, anny(M) = annz(M).
Now, let (0) # N <;s M, hence N <;os M <(,s M
which implies N <, M. It follows that
anng(N) = anng (M) ( since M is t-ess. prime), but

by the proof anng (M) = anng(N). Thus

anngN = anngM and M is t-ess. prime. O
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Remark 3.10: The condition anngM = anngM
can’t be dropped from Proposition 3.9 and the
following example explains this: Let M be the Z-
module Z, (where P is a prime number). M is a
prime module, so it is t-ess. prime, but M = Zpe is
not t-ess. prime ( since (0) = ann,M #
anng (%+Z) =PZ. Also notice that PZ =

anny;M # anny,M = 0.

——p
=

ess-q-Ded.
ess.prime

—p
-

I+

t-ess.q-
Ded
t-ess-prime

[

-

prime

g-Ded
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