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Abstract: 

 In this research, we introduce new iteration process for different types of mappings and 

introduce a concept of expansion  mapping, it is independent of                       . 
Also, we study the convergences for these iterations to common fixed point in real Hilbert 

spaces. 
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1. Introduction 

Let   be         Hilbert space       , and  

   
        
→   is                 Mapping. That is, 

if  ‖   ‖   ‖ ( )   ( )‖  for each     

   Also any multivalued operator      called 

monotone if the following condition hold: 

                                  (  )    

 (  )   And it is called maximal monotone if for 

all (   )     ,〈         〉    and for 

all (   )     ( ) then we get    ( ). The 

monotone operators has an important role in 

different branches of mathematics     ( [1]-

[5])  On other hand, The convergence of the iteration 

method studied by many researchers see ([6]-[16]). 

Define the following mapping as follows:  

     (     
  )( ) this mapping is called 

resolvet mapping where      be a sequence of 

positive real numbers. Also, the metric projection 

  ( ) from   onto   is defined as follows: 

 For any     there exists a unique element 

  ( )     satisfies the following  

  

‖    ( )‖  ‖   ‖            .That is, for 

each           ( )    iff     and ‖   ‖  

   *‖   ‖    +  

                                                              

Now,  the following definitions and lemmas are 

interesting to area of research: 

 

 

 

 

 

 

 

 

 

 

 

 

Lemma(1.1) [16] 

Let        and       a   sequences 

o  nonnegative real number such that 

           , for each.    . If   ∑   
 
    

converge,then            exists. 

 Definition(1.2) : [17] 

          Let    
        
→   be a mapping then every     

is called                        of   if there exists 

〈  〉 is sequence in   such that      and 

‖    (  )‖
        
→  .  

Lemma (1.3) : [18] 

Let   be a nonempty convex closed subset of  real 

Hilbert space   and   is non-expansive multivalued 

mapping such that    ( )   .Then   is demi-

closed,  i.e.,                    (    (  ))  

  Then    ( )  

Lemma(1.4) : [19] 

If 〈  〉 be a sequence in   and ‖      ‖  

‖    ‖ for all     . Then 〈  (  )〉 converges 

strongly to a point in  . 

 

Now, we introduce the concept of            

mapping 

   

Main Results 

In this section, we define a new            

for sequence of expansion mapping. Also, we  study 

the convergence for these iterations. 
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Definition(2.1)  

Any mapping   is called expansion 

mapping if for each sequence,〈  〉 in  (   ) 

converges to zero then there exists a  nonnegative 

real number   such that 

 

(      )        
    〈         〉

    

            ,for all               

 

 The concept of expansion mapping is 

independent of                

mapping. As shown by the following examples: 

 

Example  (2.2)   

If    (   )
         
→  (   ) be a mapping such that 

  ( )    Then the mapping   is not  non-expansive 

but  it is expansion,mapping. Since, for each 

sequence 〈  〉 in  [0,1] converges to zero then there 

exists   such that,  

  
 

〈         〉
   

                       

(      )        
    〈         〉

    

Example (2.3)  

Let     
         
→                  such that  ( )   . 

It is clear that the mapping   is not expansion 

mapping  but it is                 

Theorem (2.4): 

 

 Let                      are maximal 

monotone multivalued mapping   nonempty convex 

closed in     〈  〉 be a sequence of non-expansive   

mapping and  〈  〉 is bounded sequence of  

expansion  mapping   on    Let 〈  〉 〈  〉 are 

sequences in (   ] converges to 0, such that  

        and ∑      
 
     . Define the iteration 

process〈  〉 as follows: 

 

 

        (    )∑           
     

 

   

 

            (    )     

If ⋂    .     
  / 

    (⋂    (  )
 
   )  

(⋂    (  )
 
   )   .Then 〈  〉 has converges 

weakly to an asymptotic common fixed point of 

                  Moreover 〈  (  )〉  converges 

strongly to a point in    

Proof :   

 Let   ⋂    .     
  / 

    (⋂    (  )
 
   )  

(⋂    (  )
 
   ) 

‖      ‖
  ‖

  (    )  (    ) 

(∑           
      

 

   

(  )   )
‖

 

 

                       ‖    ‖
 

 (    )∑      

 

   

‖    ‖
  

                       ‖    ‖  (    )‖    ‖
  

                     ‖    ‖
  

Now, for any sequence 〈  〉 in  [0,1] converges to 

zero then there exists  a nonnegative real number    

such that  

‖      ‖
  ‖     (    )      ‖

  

    ‖      ‖
 

 ( 

   )‖      ‖
                              

‖      ‖
    ‖      ‖

 

 (    )‖    ‖
      

‖      ‖
    (    )‖    ‖

 

     ‖(       )(     

 (     ))‖

     〈          〉
  

 (    )‖    ‖
    

‖      ‖
        *(    )‖    ‖

 +  

 (    )‖    ‖
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   ‖    ‖
   (    )‖    ‖

      

 ‖    ‖
  

By lemma (1.1), we get       ‖    ‖  exists and 

hence  〈  〉 is also bounded. So by lemma (1.4) we 

get  〈  ( )〉  converges strongly to the point in    

‖       ‖  ‖    (            

 (      )             )

 (      )             ‖

     ‖            

 (      )           ‖

     ‖             ‖ 

Since 〈  〉       〈  〉 are also bounded and 

〈  〉 〈  〉 are sequences in (   - converges to zero. 

As  
          
→    we get,   ‖       ‖

          
→    . 

Now, since 〈  〉 is bounded then there exists 

subsequence 〈   〉 of     such that       and 

‖       ‖
          
→   . Then we get   is an asymptotic 

common fixed of                   Then the 

iteration,〈  〉 has converges weakly to an 

asymptotic common fixed point of  

                         

 Now, we consider property    for any  

sequence as follows:  

Let  〈  〉 be a sequence, of mapping we say 

that 〈  〉  has property   if 〈  〉  satisfies the 

condition: 

‖    ‖
  ‖  ‖ 

 ,for each   (⋂    (  )
 
   ). 

 

 In the following theorem we study the 

convergence for the  iteration process 

     ́ [  ́   (    ́)∑           
      

 

   

]

 (    ́)     

    

   ́,                      -

   ́                                        (   ) 

 

 

where 〈  ́〉     〈  ́〉  are sequences in ,   - such 

that 〈  ́〉 〈  ́〉              zero,   ́    ́. Such 

that   ́    ́                ∑       
 
     

 

Theorem (2.5) : 

 Let                      are maximal 

monotone multivalued mapping and      convex 

closed in  , 〈  〉  is bounded,sequences of  

                    on       〈  〉  〈  〉 are  

sequences of non-expansive mapping on     If   the 

iteration process defined  as (2.1) and  

(   .     
 /)  (⋂    (  )

 
   )  (⋂    (  )

 
   )  

(⋂    (  )
 
   )   .Then   〈  〉 has converges 

weakly to an asymptotic common fixed point of  

                  Moreover 〈  (  )〉 converges 

strongly to a  point in    

Proof :  

   Let 

  (   .     
 /)  (⋂   (  )

 

   

)  (⋂   (  )

 

   

)

 (⋂   (  )

 

   

) 

  ‖    ‖
  

   
‖
‖  ́ [

  ́(    )  (    ́)

(∑           
      

 

   

  )
]  

(    ́)        

‖
‖

 

   ́ ‖

  ́(    )  (    ́)

(∑           
      

 

   

  )
‖

 

 (    ́)‖        ‖
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‖    ‖
      ́ [

  ́‖    ‖
  (    ́)

∑      

 

   

‖     
        ‖

 ]

 (    ́)‖    ‖
 

   ́,  ́‖    ‖
 

 (    ́)‖    ‖
 -

 (    ́)‖    ‖
  

‖    ‖
     ́‖    ‖

  (    ́)‖    ‖
  

                      ‖    ‖
  

Hence,        ‖    ‖
  ‖    ‖

  

Now, by (2.1) then we have  

‖      ‖
    ́‖                      

  ‖    ́‖      ‖
  

‖      ‖
    ́  ‖      ‖

 

   ́  ‖      ‖
 

   ́  ‖        ‖
 

   ́    ‖         ‖
 

   ́    ‖           ‖
 

   ́    ‖           ‖
 

   ́‖      ‖
         

   ́  ‖      ‖
    ́  ‖      ‖

 

   ́  ‖        ‖
 

   ́    ‖         ‖

   ́    ‖           ‖
  

   ́    ‖           ‖
 

   ́    ‖         ‖

   ́    ‖           ‖
 

   ́    ‖           ‖
 

   ́‖      ‖
  

For any sequence 〈  〉 in [0,1] converges to zero 

there exists  a nonn        r     n         such 

that 

 ‖      ‖
  

 

 

 

 

 

 

   ́  ,(    )‖    ‖
 

   ‖     ‖ ‖(     )(   

      (     ))‖

  (〈             〉)
   -

   ́  ‖    ‖
 

   ́  ‖    ‖
  

                              ́‖    ‖
  

Now,  

‖      ‖
    ́   

‖    ‖
    ́  ‖    ‖

    ́  ‖    ‖
 

   ́‖    ‖
  

‖      ‖
    ́‖    ‖

  (    )́ ‖    ‖
 

 ‖    ‖
  

By lemma (1.1), 

we get       ‖    ‖  exists. Hence, 〈  〉 is 

bounded sequence, so that   〈  〉      〈  〉 are also 

bounded sequences.  

So, by lemma (1.4) we deduce 〈  (  )〉  converges 

strongly to the point in    

‖       ‖  ‖    ́ ,            

             

                 -

     ́ ,        (        

         )

         (        

             )

         (            

         )               -

     ‖ 
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‖       ‖      ́ ‖            

             

                      ‖

     ́ ‖        (        

         )

         (        

             )

         (            

         )               

     ‖ 

Since    ́    ́
           
→      and 〈  〉 〈  〉    〈  〉 are 

bounded then we get 

‖       ‖
          
→        

          
→    

Now, since 〈  〉 is bounded sequence then there 

exists subsequence 〈   〉 of  〈  〉 such that       

and since  ‖       ‖
          
→    ,then we get, 

   is asymptotic common fixed point of 

                    . 

Then the iterations〈  〉 has converges weakly to an 

asymptotic common fixed point of                

      

 

 In the following theorem we give a new 

iteration process  and we study the convergence for 

this iteration to an asymptotic common fixed point. 

 

Theorem (2.6) : 

 

 If 〈  〉 be a sequence of non-expansive 

mapping on   and 〈  〉 be a bounded sequence of 

                    on  . Define the iteration 

   〈  〉 as follows:  

                ́     (    ́)(    ) 

       ∑           
      

 

   

 (    )                     (   ) 

 

 

 

where 〈  ́〉 〈  ́〉 〈  〉 〈  〉 are sequences in 

,   - such that〈  〉 〈  〉 converges to 0 such 

that        .⋂    .     
 / 

   /  (⋂    (  )
 
   )  

(⋂    (  )
 
   ) 

    Then the iteration process 〈  〉 has converges 

weakly to an asymptotic common fixed  point 

of                      Moreover 〈  (  )〉  

converges, strongly to a point in 

                                                                                                                                                       

Proof : 

 Let   (   (  ))  (⋂    (  )
 
   )  

(⋂    (  )
 
   ) 

Since         ́     (    ́)(  ́       

(    ́)        ) then we have,  

‖    ‖
   ́‖      ‖

 

 (    ́),‖      ‖
 - 

‖    ‖
    ́‖    ‖

 

 (    ́),‖      ‖
 -

   ́‖    ‖
 

 (    ́)‖      ‖
  

For any sequence 〈  〉 in  [0,1] converges to zero 

there exists  a  nonnegative r     n         such 

that 

 

‖    ‖
    ́‖    ‖

 

 (    ́),(    )‖    ‖
 

   ‖(     )(       

 (     ))‖

  (〈             〉)
 - 

 

‖    ‖
   ́‖    ‖

  (    ́)‖    ‖
  

                      ‖    ‖
      

Hence,   ‖    ‖
  ‖    ‖

 
 

 

‖      ‖
    ∑      

 

   

‖     
        ‖

 

 (    )‖      ‖
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‖      ‖
    ∑      

 

   

‖       ‖
 

 (    )‖    ‖
  

‖      ‖
    ‖       ‖

 

 (    )‖    ‖
               

                        ‖    ‖
         

By lemma (1.1), we get       ‖    ‖  exists      

  Hence, the iteration 〈  〉 is bounded sequence. So 

〈  〉 and 〈  〉 also bounded sequences. And hence, 

by lemma (1.4) we deduce 〈  (  )〉  converges 

strongly to a point in       
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 ةيت التوسعتطبيقاللالجديدة كرارات دراسة إجراءات الت
 

 رياض دلفي علي                         زينة حسين معيبد                          
 

 قسم الرياضيات                             قسم الرياضيات                              

 كلية التربية للعلوم الصرفة              كلية التربية للعلوم الصرفة ابن الهيثم             
 جامعة كربلاء                             جامعة بغداد                              

  المستخلص :

في هذا البحث سىقدم عملياث تكزاريت جديدة لاوىاع مختلفت مه التطبيقاث وسىقدم مفهىم التطبيقاث التىسعيت والتي تكىن        

 مستقلت عه التطبيقاث الغيز تىسيعيت  .ايضا سىدرس التقارب لهذا الىىع مه التكزاراث الى وقطت صامدة مشتزكت في فضاء هلبزث
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