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Abstract: In this paper, we suggest sufficied a method for solving a class of singularly 

perturbed boundary value problems (SPPBVP). The method is proposed the semi analytic, 

modest problem preparation and ready computer implementation. That is, we concerned with 

constructing polynomial solutions to two point second order of singularly perturbed problems 

of ordinary differential equation. A semi-analytic technique using two-point osculatory 

interpolation with the fit equal numbers of derivatives at the end points of an interval [0,1]. 

Numerical linear and non linear examples are given to illustrate the method. It is observed 

that the present method converges to the exact solution very well. 

Keywords: Singular perturbation problems, Two-point boundary-value problems, Osculatory 

interpolation. 
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1.Introdaction 

          Singularly perturbed boundary value 

problems (SPBVPs) are common in applied 

sciences and engineering. They often occur in, for 

example, fluid dynamics, quantum mechanics, 

chemical reactions, electrical networks, etc. A well 

known fact is that the solution of such problems 

has a multiscale character, i.e. there are thin 

transition layers where the solution varies very 

rapidly, while away from the layers the solution 

behaves regularly and varies slowly. For a detailed 

discussion on the analytical and numerical 

treatment of such problems one may refer to the 

books of O‟Malley [1]; Doolan et al. [2]; Roos et 

al.[3]; and Miller et al. [4]. Numerically, the  

 

presence of the perturbation parameter leads to 

difficulties when classical numerical techniques are 

used to solve such problems, this is due to the 

presence of the boundary layers in these problems; 

see for example O‟Malley [5]. Even in the case 

when only the approximate solution is required, 

finite difference schemes and finite element 

methods produced unsatisfactory results; see 

Samarski [6]. It was shown in [7,8] that the results 

of using classical methods are also unsatisfactory 

even when a very fine grid is used. Therefore, the 

numerical treatment of singular perturbation 

problems presents some major computational 

difficulties.  
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2. Singularly Perturbed Problems 

          The term "perturbation problem" is generally 

used in mathematics when one deals with the 

following situation: There is a family of problems 

depending on a small parameter  0, which we 

denote by   ,when  = 0, we have the reduced 

problem Po. We want to study the relationship 

between the solution of Pand the solution of Po 

under appropriate assumptions .The perturbation 

problem PP, may consist of an ordinary differential 

equation, or a system of differential equations, 

doing with some given conditions, such as  

boundary conditions. The general form of the 

2
nd

order singularly perturbed problems (SPPs) are: 

  {
                                           

                            
               

(1) 

such as boundary conditions are :           y    

                        , where f are n-dimensional 

vector functions, x is a scalar variable in a given 

interval. A perturbation problem (1) is called  a 

singular perturbation problem if   → 0, the solution         

      converges to       only in some interval of 

x, but not throughout the entire interval, thus giving 

rise to an "boundary layers" phenomena at both 

end-points. [9] 

         There is no loss in generality in taking a = 0 

and b = 1, and we will sometimes employ this 

slight simplification. In this paper we introduce a 

new technique for the qualitative and quantitative 

analysis of singular perturbation problems SPPBVP 

using two-points polynomial interpolation . 

  3. Osculatory Interpolation [10] 

         Given                  and values 

  
   

       
    

 ,where    are nonnegative integers  

 

 

and           ).We want to construct a 

polynomial      such that  . 

           
   

                          

             

Such a polynomial is said to be an osculatory 

interpolating polynomial of a function f  and              

The degree of      is at most      ∑          
   . 

          In this paper we use two-points osculatory  

interpolation for singular perturbation problems. 

Essentially this is a generalization of interpolation 

using Taylor polynomials and for that reason 

osculatory interpolation is sometimes referred to as 

two-point Taylor interpolation. The idea is to 

approximate a function       by a polynomial 

     in which values of      and any number of 

its derivatives at given points are fitted by the 

corresponding function values and derivatives of 

      

          And we are particularly concerned with 

fitting function values and derivatives at the two 

end points of a finite interval, say [0,1],wherein a 

useful and succinct way of writing a osculatory 

interpolate            of degree        was given 

for example by Phillips [11] as : 

                   ∑       
            

                                                                             

      (
  

  
)         ∑ (   

 
)

   
      

     

 
                                                        

(3) 

so that (2) with (3) satisfies : 

             
                     

       

          

implying that            agrees with the 

appropriately truncated Taylor series for      

about       x = 0 and x = 1.The error on [0, 1] is 

given by :  
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    The osculatory interplant for P2n+1(x) may 

converge to      in [0,1] irrespective of whether 

the intervals of convergence of the constituent 

series intersect or are disjoint .The important 

consideration here is whether R2n+1 → 0 as n→∞ 

for all x in [0,1]. In the application to the boundary 

value problems in this paper such convergence with 

n is always confirmed numerically .We observe 

that (2) fits an equal number of derivatives at each 

end point but it is possible and indeed sometimes 

desirable to use polynomials which fit different 

numbers of derivatives at the end points of an 

interval. 

        Finally we observe that (2) can be written 

directly in terms of the Taylor coefficients ai and bi 

about x = 0 and x = 1 respectively, as : 

            ∑                       
   

                            

 

4. Illustration of the Method 

       In this section we describe solution of SPPs 

using two-points polynomial interpolation . 

.To illustrate the method, we will consider the 

2
nd

order SPPs: 

                                                                                
(5)  

  i                                     

                                                         (6)  

where         are in general nonlinear functions of 

their arguments and    and    are given in three 

kinds [12] : 

1-                      …… (6a), and we 

say this kind Dirichlet condition (value 

specified). 

2-                                , and we 

say this kind Neumann condition (Derivative 

specified). 

3-                              

             …. (6c), where c0 ,c1 ,d0 ,d1 

are all positive constants not all are zero but  

 

c1 , d0 are equal to zero or c0 , d1are equal to 

zero and we say this kind Mixed condition 

(Gradient & value) . 

        The simple idea behind the use of two-point 

polynomials is to replace y(x) in problem (5)–(6), 

or an alternative formulation of it, by a P2n+1 which 

enables any unknown boundary values or 

derivatives of y(x) to be computed . The first step 

therefore is to construct the P2n+1 . To do this we 

need the Taylor coefficients of y (x) at      x = 0 :  

              ∑    
  

             (7a) 

 into (5)and equate coefficients of powers of x. The 

resulting system of equations can be solved to 

obtain ai (a0 , a1)for all i ≥ 2.  Also we need the 

Taylor coefficients of y (x) at x = 1. Using 

MATLAB throughout we simply insert the series 

forms : 

               ∑          
                                                         

(7b) into (5) and equate coefficients of powers of 

(x−1). The resulting system of equations can be 

solved to obtain bi (b0, b1 ) for all I ≥ 2.The notation 

implies that the coefficients depend only on the 

indicated unknowns a0, a1, b0, b1. The algebraic 

manipulations needed for this process .We are now 

in a position to construct a P2n+1(x) from (7) of the 

form (2) and use it as a replacement in the problem 

(5)–(6). Since we have only the four unknowns to 

compute for any n we only need to generate two 

equations from this procedure as two equations are 

already supplied by the boundary conditions (6). 

An obvious way to do this would be to satisfy the 

equation (5) itself at two selected points x = c1 , x = 

c2  in [0,1] so that the two required equations 

become : 

        
              

                    

                                                (8)  
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    An alternative approach is to recast the problem 

in an integral form before doing the replacement. 

Extensive computations have shown that this 

generally provides a more accurate polynomial 

representation for a given n. We therefore use this 

alternative formulation throughout this paper 

although we should keep in mind that the 

procedure based on (8) is a viable option and shares 

many common features with the approach outlined 

below. Of the many ways we could provide an 

integral formulation we adopt the following. We 

first integrate the formula (5) twice where a0 = y(0) 

and a1 = y' (0) and putting x = 1 then gives : 

       ∫                    
 

 
   (9) 

and 

          ∫                         
 

 
    

(10) 

where           and              

          The precise way we make the replacement of 

y(x) with a P2n+1(x) in (9) and (10) depends on the 

nature of f( y ,y',x ) and will be explained in the 

examples which follow. In any event the important 

point to note is that once this replacement has been 

made, the equations (6), (9) and (10) constitute the 

four equations we require to determine the set {a0, 

b0, a1, b1}. As we shall see the fact that the number 

of unknowns is independent of the number of 

derivatives fitted represents perhaps the most 

important feature of the method. 

5. Numerical results 

          To demonstrate the applicability of the 

method we have applied it on the linear and  

nonlinear singular perturbation problems. These 

examples have been chosen because they have been 

widely discussed in literature and because 

approximate solutions are available for 

comparison. Also, we test the accuracy of obtained 

solutions computing the mean square error 

(M.S.E). 

 

5.1 The linear example 

Example 1 

        Consider the following 2
nd

 order singular 

perturbed boundary-value problem  (S.P.Ps) : 

              with Dirishlit BC:         

                   . The analytic solution :  

    
    

  


   
  


  
  

  
   

  


   
  


 
      

        s.t  =0.03         

[13] 

Here (9) and (10) become                        

     ∫          
 

 
 (11) 

and 

           ∫               
 

 
 (12)        

        The coefficients : a2 ,b2, a3 , b3 ,…can be found 

from (7a) and (7b) .A initio inclusion of the 

boundary conditions of the problem has reduced 

the number of unknowns to two, namely {a1, b1}, 

which are computed by solving (11) and (12) with 

y(s) replaced by a P2n+1(s) and. If the value of n = 4 

we will get polynomial of degree  nine, which 

represents the resolution of the singular 

perturbation problem which are as follows 

   = (8712453704582529 x
9
)/4398046511104-

(2450045339036563x
8
)/274877906944+ 

(2376848378417523x
7
)/137438953472-

(1301316542224843x
6
)/68719476736+ 

(7067365088926747x
5
)/549755813888-

(6148040127986429x
4
)/1099511627776+ 

(6828527416826277x
3
)/4398046511104 - 

(2326170035692319 x
2
)/8796093022208 + 

(7038451686753859x)/281474976710656. 

        

        The results for n = 4 are displayed in Table 1. 

We can see that there is clear convergence with n 

to the „exact‟ values which are obtained using 

MATLAB boundary value software.    Figure 1 

gives the accuracy of the method.   
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Example 2              

                Consider the following 2
nd

 order 

homogeneous singular perturbed boundary-value 

problem  (S.P.Ps) : 

    (  
 

 
)    

 

 
              with Dirishlit 

BC                 and analytic solution 

:  
 

   
 

 

 
       

  

 
   

    

[14] Such that   =10
-3 

, If the value of n = 4 we will 

get polynomial of degree  nine, which represents 

the resolution of the singular perturbation problem 

which are as follows 

P9=(5770898234988837x
9
)/131072- 

(4126284522071755x
8
)/65536+ 

(5854518678880257x
7
)/262144- 

(3911524096275751x
6
)/1048576+ 

(5866447649961765x
5
)/16777216- 

(5251378322827223x
4
)/268435456+ 

(5646797071639953x
3
)/8589934592- 

(7008388454598599x
2
)/549755813888+ 

82378570341061x)/2199023255552. 

     The results of solution given in the following 

table : 

5.2 The non-linear example 

Example 3  

Consider the following 2
nd

 order nonlinear singular 

perturbed boundary-value problem 

                                       

 with Mixed BC s                   . 

The exact solution:  

     (
 

   
)         

   

    [ 16]  Such that  

 =10
-5

  . If the value of n = 4 we will get 

polynomial of degree  nine, which represents the 

resolution of the singular perturbation problem 

which are as follows 

 

 

  =-(6339216228566459x
9
)/281474976710656  +   

(1587385008841237x
8
)/17592186044416 -

(165257470682931x
7
)/1099511627776+ 

(4754109614451443x
6
)/35184372088832- 

(1251853984166609x
5
)/17592186044416+ 

(3135285418890191x
4
)/140737488355328- 

(1129098090681425x
3
)/281474976710656+ 

(424920472391205x
2
)/1125899906842624-    

(8041888101053153x)/576460752303423488. 

Example 4 

       Consider the following 2
nd

 order nonlinear 

singular perturbed boundary-value problem 

                 with Dirishlit BC s:       

                    , x[0,1] 

and the analytic  solution : 

                

 


   

 
     [17] 

                     

    
 

  

    
    

    
               

    . If the value of n = 3 we will get polynomial of 

degree  nine, which represents the resolution of the 

singular perturbation problem which are as follows 

 

  =(435411227217891x
7
)/2199023255552-

(7490497929480767x
6
) /8796093022208+ 

(6751639456538077x
5
)/4398046511104-

(6609553554849531x
4
)/ 

4398046511104+(7584009124791225x
3
) 

/8796093022208-(2547607450080331x
2
)/ 

8796093022208+ (7556089753371941x 

/140737488355328 – 1                                            

The results of solution given in the following table  
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TABLE 1: The result of the methods for n= 4 of example1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  Figure1:Comparison between the exact solution and semi-analytic method P9 

𝒂𝟏= -2.00000000312880 
Analytic solution 

ya(x) 
x 𝒃𝟏= -1.45223411074369e-09 

E(x)  | 𝑷𝟗  ya(x) | 𝑷𝟗 (N=4) 

0 0 0 0.0 

0.00358820966112500 0.960737796991716 
0.9643260066528

41 
0.1 

0 0.998727366201283 
0.9987273662012

83 
0.2 

1.11022302462516e-15 0.999954600143766 
0.9999546001437

67 
0.3 

1.11022302462516e-16 0.999995906986901 
0.9999983824643

61 
0.4 

1.11022302462516e-16 1.00000000000000 1 0.5 

2.47547746057286e-06 1.00000541840825 
1.0000016175356

39 
0.6 

0 1.00004539985623 
1.0000453998562

3 
0.7 

0.000152504762511052 1.00112012903621 
1.0012726337987

2 
0.8 

0 1.03567399334716 
1.0356739933471

6 
0.9 

0 2.00000000000000 2 1.0 

M.S.E= 1.1726e-06 
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TABLE 2: The result of the methods for n= 4 of example 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
  

 Figure2:Comparison between the exact solution and semi-analytic method P9 

 

 

 

present solution 

in  [15] 
𝒂𝟏= 1.10528545600124 

Analytic solution 

ya(x) 
x 𝒃𝟏=     1        

E(x)  | 𝑷𝟗  ya(x) | 𝑷𝟗 (N=4) 

0.000 000 0 0 0 0 0.0 

0.502 489 3 5.29653828684751e-07 0.502488758543014 0.502489288196842 0.01 

0.505 050 5 1.09260379473897e-05 0.505061429949489 0.505050503911542 0.02 

0.507 614 2 1.68922123041648e-05 0.507597320985607 0.507614213197911 0.03 

0.510 204 1 1.64130772173365e-06 0.510205722940375 0.510204081632653 0.04 

0.512 820 5 9.46572494886500e-06 0.512829978545462 0.512820512820513 0.05 

0.515 463 9 7.75370436068013e-06 0.515471671230134 0.515463917525773 0.06 

0.518 134 7 1.50725848346855e-06 0.518136222284390 0.518134715025907 0.07 

0.520 833 3 3.25983592175394e-06 0.520830073497412 0.520833333333333 0.08 

0.523 560 2 2.85693995349945e-07 0.523560495118079 0.523560209424084 0.09 

0.526 315 8 1.97232489379529e-05 0.526335512722622 0.526315789473684 0.10 

M.S.E= 8.721894117502932e-11 
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TABLE 3: The result of the methods for n= 4 of example3 

 

 

 

 

 

 

 

 

 

 

 

  Figure3:Comparison between the exact solution and semi-analytic method P9 

 

 

 

 

𝒂𝟏= 0 
Analytic solution 

ya(x) 
x 𝒃𝟎= 0           

E(x)  | 𝑷𝟗  ya(x) | 𝑷𝟗 (N=4) 

0 0 0 0.0 

1.13049069915272e-05 0.597825695848629 0.597837000755620 0.1 

3.80185136111821e-05 0.510863642279602 0.510825623765991 0.2 

0.000119704117363617 0.430663211975091 0.430782916092454 0.3 

0.000143398007879825 0.356818341946612 0.356674943938732 0.4 

7.63214487315977e-05 0.287605751003049 0.287682072451781 0.5 

0.000130669986984244 0.223012881327226 0.223143551314210 0.6 

1.06865804320455e-05 0.162529616078207 0.162518929497775 0.7 

7.71001139389105e-05 0.105437615771765 0.105360515657826 0.8 

1.66704055614558e-06 0.0512916273469943 0.0512932943875505 0.9 

0 0 0 1.0 

M.S.E = 5.883446236369177e-09 
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TABLE 4: The result of the methods for n= 3 of example4 

 

 

 

 

 

 

 

 

 

 

 

 

   Figure4:Comparison between the exact solution and semi-analytic method P7

Numerical 

method in      

[16] 

𝒂𝟏=5.99940860402658 
Analytic solution 

ya(x) 
x 𝒃𝟏=8.99877132674263         

E(x)  | 𝑷𝟕  ya(x) | 𝑷𝟗 (N=4) 

-1.000000 0 -1 -1 0.0 

3.0988336 3.74055701524156e-7 3.09950037405570 3.09950000000000 0.1 

3.1988096 5.44046066863757e-7 3.19950054404607 3.19950000000000 0.2 

3.2988017 2.07932483542450e-6 3.29949792067516 3.29950000000000 0.3 

3.3987978 1.02452333554659e-5 3.39951024523336 3.39950000000000 0.4 

3.4987953 1.08345683234035e-5 3.49948916543168 3.49950000000000 0.5 

3.5987937 5.54692596788087e-6 3.59949445307403 3.59950000000000 0.6 

3.6987927 7.83149178840148e-7 3.69949921685082 3.69950000000000 0.7 

3.7987916 2.99240115753108e-6 3.79950299240116 3.79950000000000 0.8 

3.8987911 3.51334945358772e-6 3.89950351334945 3.89950000000000 0.9 

3.9987905 0 3.99950000000000 3.99950000000000 1.0 

M.S.E=2.663488578194586e-11 
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 الاضطراب الشارة راث القيم الحذوديت حــــل مسائـللالطــريقت شـــبه التحـلـيليت 

 

 خالذ منذيل محمذ الآبراهيمي

 قسم الرياضياث /  كليت التربيتالقادسيت / جامعت                                   

 المستخلص :

بحاطث   رزيقطتال صطووج ُطذٍ  . لحل هسائل الاضطرزا  الاطا ة  اث القطان الحدّ يطت خديدة طزيقت ،البحث اُذ في            

.حاث اقخزحج الحل كوخعد ة حطدّ   لحطل هسطائل الاضطرزا  الاطا ة  اث  ّ اث أعدا  خاد للوسألت ،حكْى سِلت الاسخخدام 

اطت للوعطا لاث الخضاضطلات الاعخاا يطت .اسطخخدهج الخقٌاطت الاطبَ ححلالاطت باسطخخدام ًطْ  هطي أًطْا  القان الحدّ يت هي الزحبت الثاً

ق ائطالاًدراج ُّْ الاًدراج الخواسي لعد  هي هاخقاث ًقاطي ًِايت الضخزة الوذكْرة ّقْرًج الٌخائح هع الحطل باسطخخدام الرز

 ّالغاز خرات بأى الرزيقت الوقخزحت ُي الأسز  ّ الأ ق . الخقلاديت الأخزٓ ّأثبخٌا هي خلا هدوْعت هي الأهثلت الخرات
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