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ABSTRACT. 

            In this paper, necessary and sufficient conditions for oscillation are obtained, so that 

every solution of the linear impulsive neutral differential equation with variable delays and 

variable coefficients oscillates. Most of authors who study the oscillatory criteria of impulsive 

neutral differential equations, investigate the case of constant delays and variable coefficients. 

However the points of impulsive in this paper are more general. An illustrate example is given 

to demonstrate our claim and explain the results. 
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1. INTRODUTION 

        The investigation in the theory of impulsive 

differential equations is now not only wider than the 

theory of differential equations without impulses 

effect, but it describes many phenomena and 

processes more reality so it has a lot of applications 

in many natural and industrial fields to study 

different characters and it can used as a tool in 

mathematical models for instance, in medicine [1], 

control theory [2], population dynamics [3], in 

neural networks [4] and etc.  In fact, many evolution 

processes are often developed for immediate 

perturbations and sudden changes in specific 

moments of time such as in biological system in 

heart beats. This period of change is very small 

compared to the periods of operation, therefore the 

situation is quite different from what it is in 

differential equations without impulses in many 

physical phenomena, and it appears as a sudden 

change in its state. The consideration of oscillatory 

solutions for impulsive neutral differential equations 

is a new and wide object to find the qualitative 

properties. There is a lot of research and 

monographs that deal with the conditions to 

guarantee the oscillation of all solutions the 

impulsive neutral differential equations with 

coefficients such as variable coefficients and 

constant delays see [5, 6]. There are some results of 

oscillation for this type of equations [7-12] and we 

noted that the search of oscillation with impulsive 

neutral differential equations is more difficult than 

the type without it. Shen etc. al [13-17] obtained 

sufficient conditions for oscillation of all solutions 

of first order impulsive neutral differential equation 

of constant delay with positive and negative 

coefficients are obtained. Consider neutral 

differential equation: 

 [ ( )   ( ) ( ( ))]
 
  ( ) ( ( ))   ( ) ( ( ))    

                  

 (  
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the inverse of the functions 
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2. SOME BASIC LEMMAS 

      The following lemmas will be useful in the proof 

of our main results: Throughout the paper we 

assume that  ( )  ( )  ( )      for   

(       -                

Lemma 2.1. [8]  Suppose that      (     ), 

 ( )     for       , 
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                                    (   ) 

  then the inequality     ( )   ( ) ( ( ))        

has no eventually positive solutions. 

Lemma 2.2.  Let   ( )  be an eventually positive 

solution of equation (   ) and there exists a 

continuous function  ( ) such that:  
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Proof.     Let   ( )  be an eventually positive 

solution of equation(1.1) that is     ( )  

   ( ( ))       ( ( ))    and  ( ( ))     

      

Differentiate (2.2) for every interval (       - 

where          

and use (1.1) we get 

   ( )
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Hence  ( ) is nonincreasing function on each 

  (        - for         
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 )   (  )              In 

view of                        , we have 
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condition    when  (  )         , then:  
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So, we have two cases to consider: 

Case 1. If   ( ) is unbounded then there exists a 

sequence of points *  + such that 
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Leads to        which is a contradiction.  

Case 2. If   ( ) is bounded that is       
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Where   (  )     * (  )  (  )+, 
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Taking the superior limit as    , we get  

      , which is also a contradiction. 

Combining the cases 1 and 2, we see that  ( )     

for   (       -  k=       .  

Since  ( )  is nonincreasing, so  (  )   ( )  
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To prove  ( )   , we first prove that  (  )  

  for          . If it is not true, then there exists 

some     such that  (  )   , integrating (2.3) 

on (        - yield: 
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    . The proof  is complete.                                  

3. MAIN RESULTS 

       The next results provide sufficient conditions 

for the oscillation of all solutions of (1.1): 

Theorem 3.1.  Let  ( ) defined as in (2.2) and the 

assumptions       hold, and there exist a 

continuous function  ( )    such that  
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Where    ( ( ))    and    ( ( ))     then 

every solution of equation (1.1) oscillates.  

Proof.  Suppose that  ( ) is eventually positive 

solution of (1.1) then  by Lemma 2.2 it follows that  
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Substituting the last inequality (3.2) in (2.3) we get 
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By Lemma 2.1, and the condition (3.1) the last 

inequality cannot has eventually positive solution, 

which is a contradiction. The proof is complete.       

                                              

Corollary 3.2: Let  ( ) defined as in (2.2) and the 

assumptions H1-H3 hold, and there exist a 

continuous function  ( )    such that 
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Where    ( ( ))    and    ( ( ))     then 

every solution of equation (1.1) oscillates. 
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Which leads to condition (3.1) holds. Hence 

according to Theorem 3.1 every solution of (1.1) 

oscillates. 

 

              

 

 

4. EXAMPLE 

     In this section we give an example to illustrate 

the obtained results. 

Example 4.1.Consider the impulsive neutral 

differential equation: 

[ ( )  
 

 
(      ) (    )]

 

 

 
 

 
(     ) (  

  

 
)  

 

 
     (    )      

       and          

 (  
 )     (  )      (  )          and     

           (4.1) 

Where     
  

   
        

 

   
  we can see that 

          
  

   
 

 

   
 

 

   
   

Let  ( )  {
     .

 

 
 

 

 
    /      

  
 

   
                

 

Let  ( )    
  

 
,    ( ( ))    

 

 
  and 

     ( ( ))    
 

 
   to see condition H1 

 .   ( ( ))/ (   ( ( )))  

  .   ( ( ))/ .   ( ( ))/
 

 

 
 

 
.      

 
 /  

 

 
     

 
                   

 Let      ,  (  
 )   (  )          ( )  

   
    

.
 

 
 

 

 
    /  .

 

 
 

 

 
    /  

 

 
  

(      ) (  )  
 

   
 ( )   

 

   
 

 

   
 

                                
 

  (   )
      , and 

 
 

(      )
 (  )  

   

 
 ( )   

   

 
 

 

   
 

   

        , 

 so H2 holds. 

And the condition H3leads to 

       
   

∫, .   ( ( ))/ (   ( ( ))) 

 

 ( )

   

  .   ( ( ))/ .   ( ( ))/
 

-,   ( ( ))         

 ∫  ( )   ∫  ( )  -  
   . ( ( ))/

 ( )

 

   ( ( ( )))

 

       
 

 
     
   

∫ [      
  
 ] ,  

 

 
 

 

 
    

  
 

 

  
  
 

  

         
 

 
∫        

 

 
∫ (     )  -

  
  
 

  
  
 

  
  
 

  
   
 

   

                         
 

 
 

Hussain .A/Aqeel .F 



 

50 

 

Journal of AL-Qadisiyah for computer science and mathematics     Vol.11   No.1   Year  2019 

ISSN (Print): 2074 – 0204       ISSN (Online): 2521 –  3504 

. 

 

 

Hence all conditions of theorem 3.1 hold, so all 

solutions of equation (3.1) are oscillatory. For 

instance the solution  ( )  {
               

  
 

 
        

  is 

such a solution. 
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خاصية التذبذب لمعادلات تفاضلية محايدة متسارعة من الرتبة الاولى ذات المعاملات 

 الموجبة والسالبة
 

 

 

 عقيل فالح جدوع           حسين علي محمد       

 اد                      جامعة بغد

 كلية التربية للعلوم الصرفة /إبن الهيثم      كلية العلوم للبنات               

 قسم الرياضيات
 

 :المستخلص

في هذا البحث حصلنا على الشروط الضرورية والكافية للتذبذب، ذلك أنه كل حل لمعادلات تفاضلية محايدة  

ومعاملات متغيرة يتذبذب.إن أغلب المؤلفين والباحثين الذين درسوا ظاهرة متسارعة خطية ذات تباطؤات متغيرة 

التذبذب لمعادلات تفاضلية محايدة متسارعه كانوا قد اجروا دراسة لمعادلات ذات تباطؤات ثابتة ومعاملات ثابتة. 

 ئج.على اية حال، إن نقاط التسارع هنا أكثر عمومية. لقد قدمنا مثال توضيحي ليبرهن صحة النتا
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