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ABSTRACT.

In this paper, necessary and sufficient conditions for oscillation are obtained, so that
every solution of the linear impulsive neutral differential equation with variable delays and
variable coefficients oscillates. Most of authors who study the oscillatory criteria of impulsive
neutral differential equations, investigate the case of constant delays and variable coefficients.
However the points of impulsive in this paper are more general. An illustrate example is given
to demonstrate our claim and explain the results.
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1. INTRODUTION

The investigation in the theory of impulsive
differential equations is now not only wider than the
theory of differential equations without impulses
effect, but it describes many phenomena and
processes more reality so it has a lot of applications
in many natural and industrial fields to study
different characters and it can used as a tool in
mathematical models for instance, in medicine [1],
control theory [2], population dynamics [3], in
neural networks [4] and etc. In fact, many evolution
processes are often developed for immediate
perturbations and sudden changes in specific
moments of time such as in biological system in
heart beats. This period of change is very small
compared to the periods of operation, therefore the
situation is quite different from what it is in
differential equations without impulses in many
physical phenomena, and it appears as a sudden
change in its state. The consideration of oscillatory
solutions for impulsive neutral differential equations
is a new and wide object to find the qualitative
properties. There is a lot of research and
monographs that deal with the conditions to
guarantee the oscillation of all solutions the
impulsive neutral differential equations with
coefficients such as variable coefficients and
constant delays see [5, 6]. There are some results of
oscillation for this type of equations [7-12] and we
noted that the search of oscillation with impulsive
neutral differential equations is more difficult than
the type without it. Shen etc. al [13-17] obtained
sufficient conditions for oscillation of all solutions
of first order impulsive neutral differential equation
of constant delay with positive and negative
coefficients are obtained. Consider neutral
differential equation:

[y(®) = POy(z®)] + 0®)y(a(®) = R®y(a(®)) = 0,
t=t, k=12, ..

k=12,..
Where P € PC([ty,); Rt)andQ,R, €

C([tg, ©); RT), and (), a(t),o(t) €
C([ty, ); R), lim;_,q T(t) = 00, lim;_,, a(t) =
o, lim,_,, o(t) = co where 7,a,0 are  increasing
functions. The functions t=2(¢t), 0 ~1(t), a~1(t) are
the inverse of the functions
7(t), a(t), a(t) respectively.

}(1.1)
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2. SOME BASIC LEMMAS

The following lemmas will be useful in the proof
of our main results: Throughout the paper we
assume that t(t),a(t),o(t) <t, for ¢te
(ttrerd ti = to, k=12, ...
Lemma 2.1. [A] Suppose that g,h € C(R*, RY),
h(t) <t for t=t,,

lim;,, h(t) = and
t

1
lign inf fg(s)ds >; (2.1)
h{t)
then the inequality  y'(t) + g(®)y(h(t)) <0

has no eventually positive solutions.

Lemma 2.2. Let y(t) be an eventually positive
solution of equation (1.1) and there exists a
continuous function §(t) such that:

W(t)

—y(® - POY(E®) - | R @)

a"1(5(0)
- f Q(u)y(a(u))du (2.2)

Where &(t) <tandt € (t, trs1], 0<to <ty <
e <t > 00 as k - oo,

Also a™1(8(6)) < tand 6~(8(t)) > ¢, in addition
to the following assumptions:

H1:Q (a7(6(1)) (e7*(8(8)))’
~R(«(50)) (« (6®))’

>0,
t € (ty, iyl k=12,..
H2: There  exists  two positive real

numbers a; and by, such that
0<ak _bk < 1 ,k= 1,2,... And
P(t}) = (ay — bp)P(ty) for 7(ty) # t;,i <k,

Pt = P(ty) fort(t,) = t;,i <k,

ap — by
Where a;, = a; b, = b; when z(t,) =t;, i<k
H3: lirtn sup [P(t) + f;_l((s(t))R(u)du

o1 (8(t)
+f Qwdu]l <1, t
t

€ (tr teral.
Then W(t) is eventually positive and
nonincreasing function.
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Proof. Let y(t) be an eventually positive
solution of equation(1.1) that is y(t) >

0,y(x(t)) >0, y(o())>0 and y(a(t))>0,

t = to,

Differentiate (2.2) for every interval (t,tyx4q]
where k=1.2,..
and use (1.1) we get

w'(t)

=[y(®) — P@y(r(t))] — R(®)y(a(t))

+R(a ' (E(0))y (@) (a  (8(1))

— Qa7 (E®))y (@) (e~ (8(1)))

+ Q(®)y(a (1))

=—-Q®y(c(®) + R®y(a(®))
—R(®)y(a(®))
+R(@ (S (1)y (1) (a1 (5(1)))
— Qa7 (8())y () (e (8 (1))’
+ Q(®O)y(a(®))
=—[e(c*(6®)) @ ()’

~R(a(5®)) (a7 (6®)) | ¥(6®)

<0 (23
Hence W(t)is nonincreasing function on each
t € (ty, bty Jfork =12, ...
To prove that W(tf) < W(t,) fork=1,2,.. In
view of 0<a, —b, <1 ,k=12,.., we have
0 < a; — b, <1 and from (2.2) with regard to the
condition H2 when 7(t,) = t;, i < k, then:

W(tg) = (a, — bi)y(te) — Pt (ax
— b))y (z(t))

—fk Ry (@) du
a=1(8(ty)

a1 (8(tr))
—f QWy(ow)du
- k

¥(t) = Pty () -
[ 660y RaDY(@(@)) du

o 1(8
— o gy (e w)du
= W(t)
When 7(t,) # t;, i < k then from (2.2) with regard
to the condition H2:

W(td) = (a — b)y(te) — P&y (ty))
—f Ry (a(w))du
a~1(6(ty)

o~ 1(8(tk))
—f QWy(o(w)du

k

< (ax — by(ty) — (ax — bk)P(tk)y(T(tk))

Hussain .A/Aqgeel .F

tk

—(ay _bk)f-l(,;( ))R(u)y(a(u))du

a™1(8(tk)
—(ax — by) Qw)y(o(u))du

tk
= (ax — bW (ty)
< W(t,) (2.4)
W (t)is non-increasing on [t,, ©).Hence —oo < L <
co. Where |L| = sup{W (t;}), lim;_ W (t;)},
t € [t;, o0)for some [ = t,. We claim that W (t;,) =

0 for k=[,1+1,... . Otherwise there exists some
m = [ such that:

W(ty,) =—-u<0, implies that W(t)<—u
fort > ¢,, since W(t) is non-increasing on

[t;, o0),then for each
1,... we get

y() < —u+P@®)y((t))

+ f Rw)y(a(u))du
a=1(8(t)

t € (ty, tep L k=114
from (2.2):

a1(8(t)
+f Q(w)y(o(uw))du. (2.5)

So, we have two cases to consider:
Case 1. If y(t) is unbounded then there exists a
sequence of points {s,} such that

Sp =ty limy(s,) = o and

n—-oo
y(sp) = max{y(t), t,, <t < s,}.
Then (2.5) reduce to:

Y(Sn) <—-u+ P(Sn)y(f(sn))
+J Rw)y(a(uw))du
a=1(8(sn)

o 1(8(sn))
+f QWy(ow)du.

n
Sn

< —u+{P(sy) + f R(u)du

a~1(6(sn))

a7 1(8(sn))
+_f Q) du}y(s,)

< —pu+y(sy)
Leadsto 0 < —pu which is a contradiction.
Case 2. If y(t) is bounded that is limsup y(t) =M <

t—-oo
oo.We can choose a sequence of points {s,} such
that
lim y(s,) =M and y(n(sy)) = max{y(0): p;(s,) <
n—-oo
t < pa(sp)}-
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t

Where py (s,) = min{z(s,), o(s,)}, timint [ [Q(o™ () (@ (B
p2(s,) = max{t(s,), a(s,)} it is obvious that 5(t)
limy,, (sy) = c0 and limsup y(n(sy)) < M. —R(a7 ()@ (8())'][1 + P(8(s))
t—>oo
8(s) o~ 1(8(8()
y(sn) < —p JsrnP(sn)y(r(sn)) + f Rwdu + f ( )Q(u)du] ds
+f R(w)y(e(w))du e o
- 1(80sn) 1 (3.1)
a1 (8(sn)) e '
+| Q@)y(o(w))du
Sn o Where a1(5(t)) <t and o7 1(6(Y)) > ¢, then
< —u+{P(s,) + f R(w)du every solution of equation (1.1) oscillates.
a~(8(sn) Proof. Suppose that y(t) is eventually positive

solution of (1.1) then by Lemma 2.2 it follows that

0'_1(5(5n))
d
+£ Qwduy(isn)) W(t) is positive nonincreasing function fort €

n

< —pu+y((sy) (tis trsnl, k=1,2, ..., since W (t) < y(t), hence it
Taking the superior limit as n — oo, we get follows from (2.2):
M < —u + M, which is also a contradiction. y(&) = W) + P)y(z(®))
Combining the cases 1 and 2, we see that W (t) = 0 ¢
for t € (b tiesa], k=L 1+ 1, .o * L_l(a(t))R(u)y( a(w)du

Since W(t) is nonincreasing, so W (t,) = W(t) =
0 for t € (ty, tys1l

a1 (8(t)
[ ety
To prove W(t) > 0, we first prove that W (t;) > ¢

+
>W@E)+POW(®)

O0fork =1,2,.. . If it is not true, then there exists
some m = 0 such that W (t,,,) = 0, integrating (2.3) +f RW (a(w))du
on (tp, , tmeq] Yield: a~1(8(®)

a71(8(t)
+j Q)W (a(w))du

W (tms1) = W(tr;) >W(t) + P(t)W(T(t))
tm+1 .
- f [@(e (6t)) (e (6 (1))’ +W(a(®)) L—l(s(t))R(u)du
T a”1(5(t)
= R@(6ON @ () ]y(6(0) dt +W (5 (1)) f Q(w)du

<W(tH) <=w(t,) =0

This contradiction shows that W (t,) > 0fork = = W)+ POW()

t

1,2.., as well as W(t) = W(tgeq) >0, for +W(t)f R(u)du
t € (ty,tes1), k=1,2,... . Thus W(t) >0 for . a~1(s @)
N . g™ (8®)
t = t,. The proof is complete. [ + W(t)J 0(wdu
3. MAIN RESULTS ¢
The next results provide sufficient conditions =W()[1+P(t)

for the oscillation of all solutions of (1.1): t

. . + R(u)du
Theorem 3.1. Let W (t) defined as in (2.2) and the €150
assumptions H1 — H3 hold, and there exist a o=1(8(D)
continuous function §(t) < t such that + J- Q(uw)du]

t
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y(8@®)) =w(s®))[1+P(6(D))
f6(t) R
+ u)du
a=1(5(5(0)))

o~ (8(s(t))
+f Q(w)du] (3.2)
8()
Substituting the last inequality (3.2) in (2.3) we get
w' ) < —[Q(a7(8(0)) (67 (8(D))’

R (a2(5)) (a7 (5®)) 111 + P(5)

5(t)
+ J- R(uw)du
a~1@(6®)N

(s(s(0)
n f Qwdu] WD)
506

w'©) +[Q (a7(8(1))) (™ (8(8)))’
~R(a(5®)) (a*(6®)) 111 + P(5(0))

5(t)
+ J R(u)du
a=1(s(s(0)))

(8(3))
+f Qwdu] W(s(®))
5@

<0, (33)
By Lemma 2.1, and the condition (3.1) the last
inequality cannot has eventually positive solution,
which is a contradiction. The proof is complete. m

Corollary 3.2: Let W (t) defined as in (2.2) and the
assumptions H1-H3 hold, and there exist a
continuous function §(t) < t such that

[Q(a™"(5()) (e~ (1))’
—R(a™'(6(0)) (@' (8(0)))']
1

Where a~1(6(t)) <t and o~ 1(5(t)) > ¢, then
every solution of equation (1.1) oscillates.
Proof. It is obvious that condition (3.4) implies that

L NG CONCCON)
t
— R@ L)) @ (5()) ]ds

1 1
e mintZtO{t—c?(t)} (t - S(t)) = ;'

Which leads to condition (3.1) holds. Hence
according to Theorem 3.1 every solution of (1.1)
oscillates.
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4. EXAMPLE

In this section we give an example to illustrate
the obtained results.
Example 4.1.Consider the
differential equation:

@ 5+ ey -2m)|

impulsive neutral

+lg—en (t 5”) L ot —2m) = 0
g \PTy)Tge YT e =0

t#t,and k=12, ..
y(&) + by (te) = ary(te), t=tcand k=
12,.. (41
Where a, = —% and b, = —— we can see that
k+1 k+1

p o2k ko ko
BT T T T k1 k41

(1+3e‘f),t¢tk
Let P(t) = o °

20k’

Z071(8(1) =t +% and

t = tk
Lets(t) =t ——
al(6) =t —g to see condition H1

(71 (6®)) (02 (5’
~R(a(5®)) (a2(6))

1 —t-T 1 47
_5(8_6 4)—§e 7 > (0.5945.
Let t, =k, P(t) = P(k™) = lim,_+ P(t) =

o) =) =4

k 1
(ax — b)P(ty) = P + 1 P(k) = K120k
= < 0.025, and
20(k+1)
k+1 1 k+1
(ak o) (tk)_—P(k) E=ﬁﬁo.1,
s0 H2 holds.

And the condition H3leads to
t

tmint [ (0 (s7(6®)) @ (6®)

5(t)

(a7(5®)) (a1 (5®)) 111+ P(5®))
o1 (8((®))

R
t
+J R(u)du +J
a1(6(6®) 5(8)

Q(w)du]dg
1 X 1 1
o I
— i o [E g
= El)rg [8 e 4][1+9+99 4
t_g_n
z—— 1 5% B
9.[ 10” du+§f£_9—n(8—e )du] d§
4

1
=11.3662 > ’
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Hence all conditions of theorem 3.1 hold, so all
solutions of equation (3.1) are oscillatory. For
sint, t <+t

instance the solution y(t) ={ 1 _ is
24, t=1t

such a solution.
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