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Abstract:

E-convex sets and E-convex functions, which are considered as an important class of
generalized convex sets and convex functions, have been introduced and studied by Youness
[5] and other researchers. This class has recently extended, by Youness, to strongly E-convex
sets and strongly E-convex functions. In these generalized classes, the definitions of the
classical convex sets and convex functions are relaxed and introduced with respect to a
mapping E. In this paper, new properties of strongly E-convex sets are presented. We define
strongly E-convex hull, strongly E-convex cone, and strongly E-convex cone hull and we proof
some of their properties. Some examples to illustrate the aforementioned concepts and to
clarify the relationships between them are established.
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1. Introduction and Preliminaries

Classical convex analysis takes a considerable role
in pure and applied Mathematics. In particular,
convex sets and convex functions are mainly
employed in optimization and operation research
[1]. Many researchers have extended and
generalized convex sets and convex functions into
other kinds of less restrictive convexity and applied
them into optimization theory. For example, convex
functions are extended to the class of invex
functions [2] and B-vex functions [3, 4]. An
important type of generalized convexity is E-
convexity. Youness [5] introduced E- convex sets,
E-convex functions, and E-convex programmings,
defined in finite dimensional Euclidian space. In
these classes, Youness relaxed the definitions of the
classical convex sets and convex functions with
respect to a mapping E: R™ - R™. The research on
E-convexity is continued, improved and extended in
different directions. Further study of E-convex sets
are recently introduced by Sheiba and Thangavelu
[6] and Majeed and Abd Al-Majeed [7]. Youness [8]
studied some properties of E-convex programming
and established the necessary and sufficient
conditions of optimality for nonlinear E-convex
programming. Recently, Megahed et al. [9,10]
introduced duality in E-convex programming and
studied optimality conditions for E-convex
programming which has E-differentiable objective
function (see also [11], for more recent results on E-
convex functions and E-convex programming). The
initial results of Youness inspired a great deal of
subsequent work which has expanded the role of E-
convexity for which an extension class of the class
of E-convex sets and E-convex functions, called
strongly E-convex sets and strongly E-convex
functions, is established by Youness [12]. Some
results related to semi strongly E-convex functions
have established in [13]. The class of strongly E-
convex sets and strongly E-convex functions is
closely related to the class of E-convex sets and E-
convex functions in the sense that the new class
considers the effect of the images of any arbitrary
points x and y in R™ with respect to a mapping
E:R™ - R™ as well as the two arbitrary points. To
the best of my knowledge, there is not much work
has been obtained for the class of strongly E-convex
sets and functions. This gives a motivation to study
further this class and try to extract new results and
notions.
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Therefore, in this paper, we continue studying
strongly E-convex sets by proving new properties of
these sets. In addition, we define strongly (resp., E-
convex hull , E-cone, E-convex cone hull) sets, and
we discuss some of their properties. We show that
many results of (resp., E-convex, E-cone) sets hold
for the class of strongly (resp., E-convex, E-cone)
sets. Some examples are given to illustrate some of
these concepts and to clarify the relationships
between them. In section two, we recall the
definitions of E-convex and strongly E-convex sets
introduced in [5,12] and some properties of strongly
E-convex sets. We prove some new properties of
strongly E-convex sets. For an arbitrary set, we
define strongly E-convex hull. In section three, we
introduce the definition of strongly E-cone and
strongly E-convex cone sets, and we deduce some
of their properties. We also define strongly E-
convex cone hull and we show a characterization of
strongly E-convex cone. Some examples to discuss
the relationship between strongly (E-cone, E-convex
cone, E-convex) sets are given.

Throughout this paper, we assume that R™ is the n-
dimensional Euclidean space, all sets we consider
are non-empty subsets of R", and E: R"™ —» R" is a
given mapping.

2. Strongly E-convex Sets

Aset S € R™ is said to be convex in the "classical
sense" if the convex combinations of any two
elements of S retain in S [1]. This concept has been
extended by Youness [5,12] in which E-convex sets
and strongly E-convex sets are, respectively,
defined, and some of their basic properties are
introduced. In this section, we first recall the
definitions of E-convex sets and strongly E-convex
sets and review some existing results of strongly E-
convex sets. Then, we prove new properties of
strongly E-convex sets. Note that some of these

properties are satisfied for E-convex sets [5,6].
Finally, we define strongly E-convex hull and
deduce a property of this set.

Definition 2.1 [5] A non-empty set S is said to be
E-convex if Vs;,s, € S and for every 1 € [0,1] we
have AE(s;) + (1 —A)E(s,) € S.

Definition 2.2 [12] A non-empty set S is said to be
strongly E-convex if and only if Vs;,s, €S, for
every 1 € [0,1], and @ € [0,1] we have

Alas; + E(s1)) + (1 — D (as, + E(sy)) € S.
The relation between strongly E-convex sets and
E-convex (resp., convex) sets is given next.
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Remark 2.3

Every strongly E-convex set is an E-convex

(Choose a = 0). The converse does not hold, in

general [Example 2, 12].

Every strongly E-convex set is convex (Choose

a = 0and E = [ (the identity mapping)).
Proposition 2.4 [12] If aset S is a strongly E-
convex, then E(S) < S.

Proposition 2.5 [12] Let S; and S, be two strongly
E-convex sets, then

S1 NS, is E-convex set.

If E is a linear mapping, then S; + S, is strongly

E-convex set.

Remark 2.6 The intersection property, in the above
proposition, can be easily extended to an arbitrary
family of strongly E-convex sets.

The definition of strongly E-convex sets can be
generalized into the strongly  E-convex
combinations of any finite elements of these sets.
Definition 2.7 Let S ¢ R™. The set of strongly E-
convex combinations of p elements of S is denoted
by C(s,p) and is defined as

C(s,p) = {s = X0 A(as; + E(sp): {sy, ., 5p} ©
S, a€[0,1], ;=0 and XF_ A; = 1}.

Next, a sufficient condition, for a set S to be
strongly E-convex sets, is given in terms of the
strongly E-convex combinations of its elements.
Proposition 2.8 Assume that a set S < R" and
C(s,p) be the set of E-convex combinations of p
elements of S defined in Definition 3 such that
C(s,p) €S Vp €N. Then S is strongly E-convex
set.

Proof. assume that C(s,p) €S vp €N. In case
p = 2, then for each
s1,5, €S, a €[0,1]and A € [0,1] we have s =
Alas; +E(s1)) + (A =D (as, + E(sy)) €
S.Hence, S is E-convex. =
Proposition 2.9

If a set S is a strongly E-convex, then
as+ E(s) e Sforeachs € S and a € [0,1].

If S isaconvex setand as + E(s) € S for
eachs € S and a € [0,1], then S is strongly E-
convex.
Proof. The conclusion of part (i) directly follows
from the assumption, by choosing 4 = 1. To show
(i), let s;, s, € S and a € [0,1] then from the
assumption as; + E(s;) € Sand as, + E(s,) € S.
Since S is convex then for each A € [0,1] we have
Alas; + E(s)))+ (1 — D(as, + E(sy)) €S as
required to proof. m
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Note that Proposition 2.9(ii) provides a
condition under which the converse of Remark
2.3(ii) holds.

Some algebraic properties of strongly E-convex
sets are given next.
Proposition 2.10
If Sis strongly E-convex set,a € Rand E is
linear then as is strongly E-convex set.
Assume that E;: R? - RP and E,:R? — RY,
and E: RP*Y — RP*Y are mappings such that
E(s,5) = (E,(s),E2(5)) Vs €RP, Vs € RY.
Let S; € RP be a strongly E;-convex and
S, € RY be a strongly E,-convex. Then, S; X
S, € RP* jsstrongly E-convex set.

Let S; and S, be two strongly E-convex
sets, then S; X S, isstrongly E X E-convex set.
Proof. To show (i), suppose that as;, as, € a$S and
a, A € [0,1]. We must show that
Alaas; + E(asy)) + (1 — A)(aas, + E(as,)) €
aS. From the linearity of E,

A(cxas1 + E(asl)) +(1- /1)(05(152 + E(asz))

= a[A(as; + E(sy))

+(1- /1)(0(52 + E(sz))].
Since Sis strongly E-convex set, the right-hand
side of the above expression belongs to aS as we
want to show. Let us proof (ii). Let
(51,55),(51,5,) €S, xS,, thus, s;, s; €S; and
Sy, 5, €8,. Since S;(resp., S,)is strongly Ej;-
convex (resp., E,-convex), we have A(as;+
Ei(s1)) + (1 — D (as; + Ei(51)) € Sy and
Alas; + Ex(s2)) + (1 — D) (as; + Ex(52)) € Sz,
where A, a € [0,1]. Thus,
(A(asy + Ey(s1)) + (1 — D(as; +
Ei(51)), Aasz + Ex(s2)) + (1 — ) (as; +
E5(s3))) €51 X S;.
In other words, A(a(sy,sz) + (E1(51), E2(s32))) +
(1 =D)(a(sy,52) + (E1(51), E2(52))) € $1 X ;.
From the definition of E, the last term can be written
as
A(a(sy,s2) + E(sy,52)) + (1 — D) (alsy, sz) +
E(s1,5;)) € S; X S,, and this completes the proof.
Part (iii) can be considered as a special case of part
(iiysuchthat E =E, =FE,andp=q. =
Proposition 2.11 Assume that E;: R* — RP and
E,:RY — RY, and F: R? — RY are mappings such
that F is linear and FoE; = E,oF. Let S € R? be a
strongly E;-convex. Then, F(S) € RY is a strongly
E,-convex set.
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Proof. Let F(s;),F(s;) EF(S)SR? and a,1 €
[0,1] then
A(aF (sy) + E;(F(s1)))

+(1- /1)(“1:(52) + Ez(F(Sz)))
= A(aF (s;) + (E;0F)(s1))

+(1- l)(aF(sz) + (EzoF)(sz))
From the assumption FoE, = E,oF, the last
expression becomes
= A(aF(sl) + (FoEl)(sl)) +(1- A)(aF(sz) +
(FoE})(s2)),
= A(aF(sl) + F(El(sl))) +(1- A)(aF(sz) +
F(E, (52)))-
Applying the linearity of F and re-arranging the last
expression, we get
= AF(as; + E1(s1)) + (1 — DF(as; + E;(s3)),
= F(/l(ocs1 + El(sl)) +(1- /1)((152 + El(sz))) €
F(S).
The last conclusion is obtained since S is strongly
E;-convex set. m
Proposition 2.12 Let € R,,b € R", and E is an
idempotent and linear mapping then the upper E-
half space S={seR": <E(s),b>= B} is
strongly E-convex.
Proof. Let s;,5, €S and a,1 € [0,1] we aim to
prove  A(as; + E(sy)) + (1 — D (as, + E(sy)) €
S.
ie, we show <E(as;+E(sp))+(1-—
/1)(0(52 + E(sz))),b >> f,
where B €e€ER, andb € R™ Since E
idempotent and linear mapping, then

< E(/l(ozs1 + E(sl))

+(1- A)(asz + E(sz))), b >
=< AaE(s;) + (1 — A)aE(s,),b > +

<AE(s)) + (1 —A)E(sy), b >
=la <E(s;),b>+1—-Da<E(sy),b>+A1

<E(s)),b>+(1-2)

< E(sy),b >
Since sy, s, € S, the last expression yield
> Aaf+(A=-Daf+AB+ (A -V =af +
B=p.
Note that the right most inequality follows because
BeER,anda € [0,1]. m
Proposition 2.13 Let I be an index set and ; €
R,,b; € R for all i € . Assume also that E is an
idempotent and linear mapping then the set S = {s €
R": <E(s),b; >= B; Viel} is strongly E-
convex.
Proof. The conclusion follows from Proposition
2.12 and Remark 2.6 =
Proposition 2.14 Let S;,S,,...,S, be strongly E-
convex sets and E is a linear mapping. Then
S =y.8; + -+ y,S, is a strongly E-convex set
where y;, ..., ¥ € R.

is an
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Proof. Let s,s € S. Then s = y;5; + - + ¥,,5,, and
S=7V¥1S; + -+ VypS, such that s;,s;€S Vi=
1,..,n. Fora, A € [0,1] we have

A(as + E(s)) +(1- /1)(055 + E(E))

= Ma(yisy++ Vusp) + EQrasy + -+

ynsn)) + (1 - /1)(“()/15 + et yng) +
E(iSi++  ¥a5p))

Applying the linearity of E to the last expression
and re-arranging it, we get

= ]/1(}-(“51 +E(sy)) + (1 — D (as; + E@))) +
et yn(l(asn + E(sp)) + (1 — D(as, +

E(g))) EV1Si + -+ VSn =S,
where we used the fact that S, ..., S,, are strongly E-
convex which implies that each A(as; + E(s;)) +
A-MD(as; +E(G)ES; Vi=1,..,n. Thus,

Mas+E@B)+ A -D(as+EG)) €S,

therefore, S is strongly E-convex set. m

We pointed out in Remark 2.6 that the
intersection of arbitrary strongly E-convex sets is
strongly E-convex. This fact is used next to define
the smallest strongly E-convex set containing a
fixed set.
Definition 2.15 The strongly E-convex hull of a set
S c R", denoted by s.E-conv(S) is the smallest
strongly E-convex set contains S, that is,
s.E-conv(S) = Nyos N, N are strongly E-convex
sets.

Next, we provide an example of a strongly E-
convex hull of a non-strongly E-convex set S.
Example 2.16 Let S = (—2,0) U[1,2) c R and let
E:R — R is given by E(x) = —x Vx € R. Note
that, S is not strongly E-convex set. For instance, let
x=-1y=121= iand a= ; Then,
AMax+Ex)+ (A —-D(ay+E()=0¢S.
From Definition 2.15, s.E-conv(S) = (—2,2)
which is strongly E-convex. i.e., s. E-conv(S) is a
smallest strongly E-convex set in R contains S.
Indeed, for each x,y € S and a, 1 € [0,1], then

A(ax + E(x)) +(1- l)(ay + E(y)) =—(1-
a)(Ax+ (1A —-AyES.
Remark 2.17 From the above definition, it is clear
that

s.E-conv(S) is strongly E-convex set and

S € s.E-conv(S).

If S is strongly E-convex set then s. E-conv(S) =

S.

Proposition 2.18 Let S ¢ R™ and L be the set of all
strongly E-convex combinations of elements of S.
That is

t=|Jeen,



Journal of AL-Qadisiyah for computer science and mathematics

ISSN (Print): 2074 — 0204

Vol.11 No.1 Year 2019

ISSN (Online): 2521 — 3504

where C(s,p) is defined as in Definition 2.7. If
as+E(s)c L VseS and a €[0,1], then s.E-
conv(S) € L.

Proof. To prove s.E-conv(S) € L, it is enough to
show that £ is a convex set. Indeed, if £ is a convex
set and as+E(s)S L VseS. Then from
Proposition 2.9(ii), £ is strongly E-convex set. The
last conclusion with the fact that S € £ yield s.E-
conv(S) S L as required. Let us show that £ is a
convex set. Take x,y € L, then
x=Yr  A(ax; + E(x;))) andy =

S

Z vilay: + E(y1),
i=1
where (X1, s Xp, Y1y 0, Y5} €S and

{A1,., A, V1, -, ¥s} @re non-negative which satisfy

P A=land X y;=1.
Fix u € (0,1), then the convex combination

D
pr L=y = ) Ailax +EC) + (1

=1

—1) ) viay + EG)
i=1
Note that

LY A+ —-p Yy =1

Therefore, ux + (1 —u)y € L. i.e.,, Lis a convex
set, and using the assumption as + E(s) € L Vs €
S yield Lis E-convex set. Because S < £ and
S C s.E-conv(S).Then s.E-conv(S) € L. =

3. Strongly E-cone and Strongly E-convex cone
In this section, we define strongly (E-cone, E-
convex cone, E-convex cone hull) of arbitrary sets
and we discuss some properties of these sets. We
prove a new characterization of E-convex cone sets.
Some examples, to illustrate the concepts defined in
this section and to show the relationship between
them, are given.

Definition 3.1 A set € c R" is called strongly E-
cone if for every c€ C,a €[0,1], and y =0 we
have y(ac + E(c)) € C. If C is strongly E-cone and
strongly E-convex set, it is called strongly E-convex
cone.

Examples of strongly E-convex cone set,
strongly E-convex set (not strongly E-cone), and
strongly E-cone (not strongly E-convex set) are
shown, respectively, next.

Example 3.2 Let C c R?be defined by C =
{(x,y) ER?:x,y =0}, and let E:R? — R? is
givenby E(x,y) = (x,0) Vx,y € R

Forany (x,y) € C,a € [0,1], and y = 0, we have
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y(a(x,y) + E(x,y)) = (y(a + Dx,yay) € C.
Thus, C is strongly E-cone. Also, let (xi,y;),
(x,,¥,) € C and 4, a € [0,1], then
Ala(xy, y1) + E(xy, 1)) + (1 — D (alxz, y2)
+ E(x2, 7))
= ((a+ DA% + (1 = Dx),a(dy, + (1
—y)) €C
Thus, C is strongly E-convex set. Altogether, we
obtain that C is a strongly E-convex cone.
Example 3.3 Let C c R?be defined by C =
{(x,y)ER*: -1<x<1,-1<y<1},and let
E:R?* — R? be given by
E(x,y) = (—x,—y) Vx,y €R.
Note that a(x,y)+E(x,y) = ((a - Dx, (a —
1)y) =—((1-a)x,(1—a)y)eC and C is a
convex set. From Proposition 2.9(ii), C is strongly
E-convex set. To show that C is not strongly E-

cone, take for example (1,1) € C,a = é and y = 5.

Theny(a(x,y) + E(x,y)) = (_75,_75) ¢C.

Example 3.4 Let C={(x,y) ER?:x <

-1,-1<y<1}u{(x,y) ER?:x>1,-1<

y <1}, and let E: R? — R? be given by E(x,y) =

(x,0). For each (x,y) € C,a € [0,1],andy = 0, we

have y(a(x,y) + E(x,y) = y((a + Dx,ay) € C.

Thus, Cis  strongly E-cone.  However, take

(-1,1),(1,1) € C,and A =a = % Then

Aa(-1,1) +E(-LD) + (1 - D(a(1,1)
+E(1,1) =

1 31 + 1/,31 ~ (0 1 c

3 (-23)*2 (33) =09 @

Thus, C is not strongly E-convex.

Remark 3.5
Every strongly E-cone is an E-cone. (Take
a=0).
Every strongly E-cone is a cone. (Take

E=1Ia=0).

The converse of Remark 3.5(i) does not hold as
we show in the following examples.
Example 3.6 Consider C defined as in the Example
33. ie, C={(x,y)ER?*:-1<x<1,-1<
y <1}, and let E(x,y) =(0,0) Vx,y e R. We
show that C is E-cone but not strongly E-cone. For
any y =0 and any (x,y) € C, YE(x,y) =(0,0) €
C, thus, Cis E-cone. Now, if we takey = 5,a = %
and (x,y) = (1,1) € C, then
y(axy) +E(xy)) = 5G (1,1) + (0,0)) =
CHec.
Thus, C is not strongly E-cone.
Example 3.7 Suppose that E: R? — R? be defined
as E(x,y) = (x%,y?) Vx,y € Rand C = {(x,y) €
R?2:x <0,y <0}
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We show that C is a cone but not strongly E-cone.
For any a = 0 and for any (x,y) € C, we have,
a(x,y) = (ax,ay) € C. Thus, C is a cone. To show
C is not strongly E-cone. Let (x,y) = (—3,—-5) €
C,a= %, and y = 3, then y(a(x,y) + E(x,y)) =

3 (E,E) ¢ C as required.

22
Proposition 3.8
If a set C is strongly E-cone, then E(C) < C.

ii. If C be a convex cone and ax + E(x) € C for
each x € C and a € [0,1]. Then C is strongly E-
convex cone.

Proof. First, let us show (i). Let E(x) €
E(C) suchthat x € C. Since C is strongly E-cone,
then y(ax + E(x)) €C Yy =0 and a € [0,1]. If
y=1and a=0,theny(ax+E(x)) =E(x) € C
as required. To prove (ii), it is enough to prove that
C is strongly E-cone since C is already strongly E-
convex by Proposition 2.9(ii). Consider x € C, then
ax+ E(x) e C . Since C is a cone, then (ax +
E(x)) € C , for each y = 0. Thus, C is strongly E-
conc. m

Remark 3.9 The converse of Proposition 3.8(i) is
not true in general (see Example 3.4).

Proposition 3.10 Let S be a strongly E;-convex
cone (resp., strongly E,-convex cone) such that E,
(resp., E;) is constant, then S is a strongly (E;0E,)-
convex cone (resp., (E,0E;)-convex cone).

Proof. Assume that s;,s, €S, a,4€[0,1], and
y = 0. We must show that

/1(0(51 + (EloEz)(sl)) +(1- /’1)(0{52 +
(E10E,)(sy)) = Aas; + E(Ex(s1)) +

(1- /1)(0452 + El(Ez(sz)) es, and y(a51 +
(EIOEZ)(Sl)) = V(a51 + E1(E2(S1)) € S. Now, E,
is constant, then E,(s;) = s; € Sand E,(s,) = s, €
S. Using the last assertion and the fact that S is
strongly E;-convex cone, A(as; + E;(E(s)) +
(1- /1)(0452 + El(Ez(sz)) ES and y(a51 +
Ei(E;(sy)) € S. Similarly, one can show that S is
strongly (E,0E;)-convex cone. m

Proposition 3.11

i. Let{C;:i € I}beanon-empty family of strongly
E-cones, then U;¢; C; is strongly E-cone.

ii. Let{C;:i € I} be anon-empty family of strongly

E-cones, then N;¢; C; is strongly E-cone.

If C; and C, be two strongly E-cones and let E is
a linear mapping, then the set ¢, + C, is strongly
E- cone.

Let C be strongly E- cone, E is a linear
mapping, and a € R, then the set aC is strongly E-
cone.

V. If C; and C, be two strongly E-cones, then

C, X C, is strongly E X E- cone.

iv.
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Proof. We prove part (i) and in a similar way one
can show part (ii). Take an arbitrary x€
Uie; C; where C; is strongly E-cone for each i €
I. Then, for y = 0 and a € [0,1], we have y(ax +
E(x)) € C; for some i € I; hence y(ax + E(x)) €
Uie; C; - Thus, U;e C; is strongly E-cone. The
proof of parts (iii)-(v) proceed in a way similar to
that of Proposition 2.5, Proposition 2.10(i), and
Proposition 2.10(iii), respectively. Hence, the proof
of parts (iii)-(v) are omitted. m
Remark 2.6, Propositions 2.5, 2.10(i) and 2.10(iii)
together with Proposition 3.11 yield the following
result.
Proposition 3.12
Let {C;:i € I} be a non-empty family of strongly
E- convex cone sets, then N;¢; C; is strongly E-
convex cone set.
Let C be strongly E- convex cone, E is a linear
mapping, and a € R, then the set aC is strongly
E- convex cone set.
If ¢, and C, be two strongly E- convex cones,
then C; x C, is strongly E X E- convex cone set.
Moreover, if E is a linear mapping then C; + C,
is strongly E- convex cone set.
Proposition 3.13 Assume that b € R™ and E is an
idempotent and linear mapping then the upper E-
half space C={x€eR": <E(x),b>= 0} is
strongly E-convex cone.
Proof. From Proposition 2.12 and by choosing
B =0, the set C is strongly E-convex. Hence, we
only need to prove that C is strongly E-cone. Let
x €C,y 20,and a € [0,1] we show that
< E(y(ax + E(x)),b >> 0.
Since E is an idempotent and linear mapping and
x € C, then
< E(y(ax + E(x)),b ><yaE(x),b >+
<yEX),b =
ya <E(x),b>+y <E(x),b>>0. m
Proposition 3.14 Let I be an index set and b; € R"
for all i € I. Assume also that E is an idempotent
and linear mapping then C={xeR": <
E(x),b; >= 0 Vi € I}is strongly E-convex cone.
Proof. The required result follows from Proposition
3.12(i) and Proposition 3.13. =
The following proposition give an alternative
characterization of strongly E-convex cone.
Proposition 3.15 A set C is a strongly E-convex
cone if and only if C is a strongly E-closed (i.e., C is
closed with respect to the mapping E and an
arbitrary point in C) under addition and non-
negative scalar multiplication.
Proof. Assume that C is a strongly E-convex cone.
From the definition of strongly E-cone, we have
y(ax + E(x)) € C, foranyy =>0,a € [0,1], and
forany x € C.
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Thus, C is strongly E-closed for non-negative scalar
multiplication. Next, we show that C is strongly E-
closed under addition. Fix x,y € C which is
strongly E- convex set, then

u= %(ax+E(x)) + %(ay+E(y)) eC.

Hence, 2u = (ax +E()) + (ay+E(y)) €C as
required.  For proving the opposite direction,
assume that C is strongly E-closed with respect to
addition and non-negative scalar multiplication.
Then, C is strongly E-cone automatically holds. Let
ALa€f0,1]and x,y € C then
AMax+Ex)eCand (1 - A)(ay +EW)) €C.
This yield /1(0(x + E(x)) +(A-MD(ay+EW)) €
C. Hence, C is strongly E-convex cone set. m
Proposition 3.16 Let C be a subset of R™ and
K(x,p) is the set of strongly E-non-negative linear
combinations of p elements of C. That is

K(x,p) =

{x =30 vilax; + E(x)): {x1, .., xp} € Cy; =
0,a €[01] }. If K(x,p) =C Vp €N then C is
strongly E-convex cone.

Proof. Assume that K(x,p)cC Vp€E€N. In
particular, for each x;,x, €C, a>0,andy €
[0,1]we have x = y( ax; + E(x)) + (1 —
Y)(ax, +E(x;))€EC and  y(ax; + E(x;)) €
C. Hence, C is strongly E-convex cone.

Next, we introduce a smallest strongly E-convex

cone that contains a certain set.
Definition 3.17 The strongly E-convex cone hull of
a set C, denoted by s. E-cone(C) is the intersection
of all strongly E-convex cone sets containing C; that
is, E-cone(C) = Nysc N, N are strongly E-convex
cone sets.

The following result is analogue to the one
introduced in Proposition 2.18 for strongly E-
convex sets.

Proposition 3.18 Let € < R™ and J is the set of all
strongly E-non-negative linear combinations of
elements of C. That is

5= Jxem,

PEN

where K(x,p) is defined as in Proposition 3.16. If
ax+E(x) €3 vxeC and a € [0,1], then s.E-
cone(C) € 3.

Proof. First, we show that J is a convex cone set.
To show that J is a convex set, follow similar steps
that is used in Proposition 2.18 to show that £ is a
convex set. Next, we show that J is a cone. Let
x €3, then there exists p € N such that x =
P vilax; + E(x)) where {x, ...,xp} cC,ac€
[0,1], and {y;,..,¥,} are non-negative scalars. Fix
B = 0, then the non-negative E-linear combination
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P
Br =5 ) viax +E@))
i=1

P

= Zﬁ)’i(axi +E(x)) €3

i=1

Thus, J is a convex cone set, and since +E(x) € J
Vx € C, then from Proposition 3.8(ii), I is strongly
E-convex cone set. The last conclusion with the fact
that C € 3 yield s. E-cone(C) < J asrequired. m
Conclusion
This paper proposes some strongly E-convex sets,
namely, strongly E-convex hull, strongly E-convex
cone, and strongly E-convex cone hull and discusses
their properties with examples to illustrate the
aforementioned concepts and to clarify the
relationships among them. These sets are considered
as extension to convex sets and convex cone sets.
For possible future work, we suggest studying non-
linear optimization problem in which the objective
function is either convex function or strongly
convex function and the constraint set is strongly
closed cone. In addition, we can study the optimality
criteria of this optimization problem.
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