Math Page 60 - 69 Hazha .Z

A new subclasses of meromorphic univalent functions associated with a differential operator

Hazha Zirar Hussain

Department of Mathematics, College of Science, University of Salahaddin, Erbil,Iraq.

E-mail : hazhazirar@yahoo.com

Recived : 1\11\2018 Revised : 11\11\2018 Accepted : 27\11\2018

Available online : 24/1/2019

DOI: 10.29304/jqcm.2019.11.1.460

Abstract

 In this paper we have introduced and studied some new subclasses of meromorphic univalent functions which are defined by means of a differential operator. We have obtained numerous sharp results including coefficient conditions, extreme points, distortion bounds and convex combinations for the above classes of meromorphic univalent functions.

Keywords: Univalent Functions, Meromorphic Functions, Differential Operator, Distortion Inequality, Extreme Points.

Mathematics Subject Classification:64S40.

1. Introduction

Let \tilde{p} denote the class of functions which are analytic in the punctured disk $\mathcal{U}^* = \{z : 0 < |z| < \}$ 1 of the form

$$
f(z) = \frac{a_0}{z} + \sum_{n=1}^{\infty} a_n z^n, \quad a_0 > 0. \tag{1.1}
$$

Suppose that \tilde{y}^* denote the subclass of \tilde{y} consisting of functions that are univalent in \mathcal{U}^* .

Further \mathfrak{H}_m^* denote subclass of \mathfrak{H}^* consisting of functions f of the form

$$
f(z) = \frac{a_0}{z} + \sum_{n=0}^{\infty} a_{m+n} z^{m+n}, \quad a_0 > 0, a_{m+n}
$$

> 0, m \in \mathbb{N} \qquad (1.2)

Definition: A function $f \in \mathfrak{H}_m^*$ is said to be meromorphic starlike of order α in \mathcal{U}^* if it satisfies the inequality

$$
Re\left\{\frac{zf^{'}(z)}{f(z)}\right\} > -\alpha, z \in \mathcal{U}^*, 0 \le \alpha < 1. \quad (1.3)
$$

On the other hand, a function $f \in \mathfrak{H}_m^*$ is said to be meromorphic convex of order α in \mathcal{U}^* if it satisfies the inequality

$$
Re\left\{1+\frac{zf^{(n)}(z)}{f'(z)}\right\} > -\alpha, z \in \mathcal{U}^*, 0 \le \alpha
$$

< 1. (1.4)

Various subclasses of \tilde{p} have been introduced and studied by many authors see $[1]$, $[2]$, $[5]$, $[7]$, $[8]$, [16],[17],[19], [20], [21] and [23] In recent years, some subclasses of meromorphic functions associated with several families of integral operators and derivative operators were introduced and investigated see [7] [8], [18] and [4],[15]. The first differential operator for meromorphic function was introduced by Fraisin and Darus [10]. Ghanim and Darus introduced a differential operator [11]:

$$
I^{0}f(z) = f(z),
$$

\n
$$
I^{1}f(z) = zf'(z) + \frac{2a_{0}}{z},
$$

\n
$$
I^{2}f(z) = z(I^{1}f(z)) + \frac{2a_{0}}{z},
$$

\n
$$
I^{k}f(z) = z(I^{(k-1)}f(z)) + \frac{2a_{0}}{z},
$$

where $k \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, z \in \mathcal{U}^*$.

For a function f in \mathfrak{H}_m^* , from definition of the differential operator $I^k f(z)$, we easily see that

$$
I^{k}f(z) = \frac{a_0}{z} + \sum_{n=0}^{\infty} n^{k} a_{m+n} z^{m+n}, \quad a_0 > 0, a_{m+n}
$$

> 0, m \in \mathbb{N}, k \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, z
 \in \mathcal{U}^*. (1.5)

By using the operator I^k , some authors have established many subclasses of meromorphic functions, for example $[9]$, $[11]$, $[12]$ and $[13]$. With the help of the differential operator I^k , we define the following new class of meromorphic univalent functions and obtain some interesting results.

Let $\mathfrak{H}_{m,k}^*(\eta,\theta,\vartheta)$, denote the family of meromorphic univalent functions f of the form (1.2) such that

 $\left| \frac{z^2(I^k f(z))^{2} + 1}{z^2(I^k f(z))^{2} + 1} \right|$ $\vartheta z^2(I^k f(z)) - a_0 + (1+\vartheta)\eta$ $\vert < \theta$, (1.6) For $0 \leq \eta < 1, 0 < \theta \leq 1, 0 \leq \vartheta \leq 1, k \in \mathbb{N}_0$ $\mathbb{N}\cup\{0\}$, and $z \in \mathcal{U}^*$. For a given real number z_0 (0 < z_0 < 1). Let $\mathfrak{H}_{mi}(i = 0, 1)$ be a subclass of \mathfrak{H}_{m}^{*} satisfying the condition $z_0 f(z_0) = 1$ and $-z_0^2 f'(z_0) =$

respectively.

Let

$$
\mathfrak{H}_{mi,k}^{*}(\eta,\theta,\vartheta,z_{0}) = \mathfrak{H}_{m,k}^{*}(\eta,\theta,\vartheta)
$$

$$
\cap \mathfrak{H}_{mi}, (i = 0, 1).
$$
 (1.7)

For other subclasses of meromorphic univalent functions, one may refer to the recent work of Aouf [2], Aouf and Darwish [3], Cho et al [8], Joshi et al [14], Srivastava and Owa [21] and [22]. Also we prove a necessary and sufficient condition for a subset C of the real interval $[0, 1]$ should satisfy the property $m_0 k(\eta)$) and $\cup_{z \in C} \mathfrak{H}_{m1,k}^*(\eta, \theta, \vartheta, z_r)$ each constitute a convex family.

2. Coefficient Inequalities

In this section, we provide a necessary and sufficient condition for a function f meromorphic univalent in \mathcal{U}^* to be in $\mathfrak{H}_{m k}^*(\eta, \theta, \vartheta)$, $\mathfrak{H}_{m 0 k}^*(\eta, \theta, \vartheta, z_0)$ and $\mathfrak{H}_{m1,k}^*(\eta,\theta,\vartheta,z_0).$

Theorem 2.1: A function $f(z) \in \mathfrak{H}_m^*$ defined by equation (1.2) is in the class $\mathfrak{H}_{m,k}^*(\eta,\theta,\vartheta)$ if and only if

 $\sum_{n=0}^{\infty} n^k (m+n)(1+\vartheta\theta)a_{m+n} \leq \theta a_0(1)$ η)(1+ θ), (2.1) where $0 \le \eta < 1, 0 < \theta \le 1, 0 \le \vartheta \le 1, k \in$ $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$, and $z \in \mathcal{U}^*$.

The result is sharp for the function given by

$$
f(z) = \frac{a_0}{z} + \frac{\theta a_0 (1 - \eta)(1 + \vartheta)}{n^k (m + n)(1 + \vartheta)} z^{m + n}, \quad n \ge 1 \qquad (2.2)
$$

Proof: Assume that the condition (2.1) is true. We must show that $f \in \mathfrak{H}_{m,k}^*(\eta,\theta,\vartheta)$ or equivalently prove that

$$
\left| \frac{z^2(I^k f(z)) + a_0}{\vartheta z^2(I^k f(z)) - a_0 + (1 + \vartheta)\eta a_0} \right| < \theta,
$$

$$
\left| \frac{z^2(I^k f(z)) + a_0}{\vartheta z^2(I^k f(z)) - a_0 + (1 + \vartheta)\eta a_0} \right| =
$$

$$
\frac{a_0 + (-a_0 + \sum_{n=1}^{\infty} (m+n)n^k a_{m+n} z^{m+n+1})}{\vartheta(-a_0 + \sum_{n=1}^{\infty} (m+n)n^k a_{m+n} z^{m+n+1}) - a_0 + (1 + \vartheta)\eta a_0} =
$$

$$
\frac{\sum_{n=0}^{\infty} (m+n)n^k a_{m+n} z^{m+n+1}}{\vartheta(-a_0 + \sum_{n=0}^{\infty} (m+n)n^k a_{m+n} z^{m+n+1})}
$$

$$
\left| \frac{\partial \left(-a_0 + \sum_{n=0}^{\infty} (m+n)n^k a_{m+n} z^{m+n+1} \right) - a_0 + (1+\vartheta) \eta a_0}{\leq} \right|
$$

$$
\left| \frac{\sum_{n=0}^{\infty} (m+n)n^k a_{m+n}}{\vartheta(-a_0 + \sum_{n=0}^{\infty} (m+n)n^k a_{m+n}) - a_0 + (1+\vartheta) \eta a_0} \right| < \theta.
$$

The last inequality is true by (2.1) .

Conversely, suppose that $f \in \mathfrak{H}_{m,k}^*(\eta,\theta,\vartheta)$. We must show that the condition (2.1) holds true. We have

$$
\left|\frac{z^2(I^k f(z))^{'}+a_0}{\vartheta z^2(I^k f(z))^{'}-a_0+(1+\vartheta)\eta a_0}\right|<\theta.
$$
 thus

Th

$$
\left| \frac{\sum_{m=0}^{\infty} (m+n)n^k a_{m+n} z^{m+n+1}}{\vartheta(-a_0 + \sum_{n=0}^{\infty} (m+n)n^k a_{m+n} z^{m+n+1}) - a_0 + (1+\vartheta)\eta a_0} \right|
$$

< θ .

Since $Re(z)$ < |z| for all z, we have

$$
Re \left\{ \frac{\sum_{m=0}^{\infty} (m+n)n^k a_{m+n} z^{m+n+1}}{\vartheta(-a_0 + \sum_{n=0}^{\infty} (m+n)n^k a_{m+n} z^{m+n+1}) - a_0 + (1+\vartheta)\eta a_0} \right\}
$$

 $< \theta.$

Now, choosing values of z on the real axise and allowing $z \rightarrow 1$ from the left through real values, the last inequality immediately yields the desired condition in (2.1).

Finally, it is observed that the result is sharp for the function given by

$$
f(z) = \frac{a_0}{z} + \frac{\theta a_0 (1 - \eta)(1 + \vartheta)}{n^k (m + n)(1 + \vartheta)} z^{m + n}, \quad n \ge 1
$$

Theorem 2.2: A function $f(z) \in \mathfrak{H}_m^*$ defined by equation (1.2) is in the class $\mathfrak{H}_{m0,k}^*(\eta,\theta,\vartheta,z_0)$ if and only if

 $\sum_{n=0}^{\infty} \left[\frac{n^k(m+n)(1+\vartheta\theta)}{2(n-k)(1+\theta)} \right]$ $\frac{\infty}{n}$ $\theta (1-\eta) (1+\vartheta)$ $z_0^{m+n+1} | a_{m+n} \leq 1,$ (2.3) where $0 \le \eta < 1, 0 < \theta \le 1$, $0 \le \vartheta \le 1, k \in$ $\mathbb{N}_0 = \mathbb{N} \cup \{0\}$, and $z \in \mathcal{U}^*$. The result is sharp for the function given by $f(z) = \frac{n^k(m+n)(1+\vartheta\theta)+\theta(1-\eta)(1+\vartheta)z^m}{\int_{-\infty}^{+\infty}k(m+n)(1+\theta\theta)+\theta(1-\eta)(1+\theta)z^m}$ $\frac{\sum_{i=1}^{n} (n + n)(1 + \vartheta)}{z[n^{k}(m+n)(1 + \vartheta) + \theta(1 - \eta)(1 + \vartheta)z_{0}^{m+n+1}]}$ $m \in \mathbb{N}, n \ge 1$ (2.4)

Proof: Assume that $f \in \mathfrak{H}_{m0,k}^*(\eta,\theta,\vartheta,z_0)$, then

$$
f(z_0) = \frac{a_0}{z_0} + \sum_{n=0}^{\infty} a_{m+n} z_0^{m+n}, \quad a_0 > 0, a_{m+n}
$$

\n
$$
z_0 f(z_0) = a_0 + \sum_{n=0}^{\infty} a_{m+n} z_0^{m+n+1}, \quad a_0 > 0, a_{m+n}
$$

\n
$$
1 = a_0 + \sum_{n=0}^{\infty} a_{m+n} z_0^{m+n+1}, \quad a_0 > 0, a_{m+n}
$$

\n
$$
0, m \in \mathbb{N}
$$

\n
$$
a_0 = 1 - \sum_{n=0}^{\infty} a_{m+n} z_0^{m+n+1}, \quad a_0 > 0, a_{m+n}
$$

\n
$$
0, m \in \mathbb{N}, \quad (2.5)
$$

Subistituting equation (2.5) in inequality (2.1) , we get

$$
\sum_{n=0}^{\infty} n^{k} (m+n)(1+\vartheta\theta)a_{m+n}
$$
\n
$$
\leq \theta \left(1 - \sum_{n=0}^{\infty} a_{m+n} z_{0}^{m+n+1}\right)(1 - \eta)(1+\vartheta),
$$
\n
$$
\sum_{n=0}^{\infty} n^{k} (m+n)(1+\vartheta\theta)a_{m+n}
$$
\n
$$
+ \sum_{n=0}^{\infty} \theta(1-\eta)(1 + \vartheta)a_{m+n} z_{0}^{m+n+1}
$$
\n
$$
\leq \theta(1-\eta)(1+\vartheta)
$$

Thus,

$$
\sum_{n=0}^{\infty} \left[\frac{n^k (m+n)(1+\vartheta\theta)}{\theta(1-\eta)(1+\vartheta)} + z_0^{m+n+1} \right] a_{m+n} \le 1.
$$

Hence the proof is complete.

Theorem 2.3: A function $f(z) \in \mathfrak{H}_m^*$ defined by equation (1.2) is in the class $\mathfrak{H}_{m1,k}^*(\eta,\theta,\vartheta,z_0)$ if and only if

$$
\sum_{n=0}^{\infty} (m+n) \left[\frac{n^{k}(1+\vartheta\theta)}{\theta(1-\eta)(1+\vartheta)} - 20^{m+n+1} \right] a_{m+n} \le 1, \quad (2.6)
$$

\nwhere $0 \le \eta < 1, 0 < \theta \le 1, 0 \le \vartheta \le 1, k \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}, \text{ and } z \in \mathcal{U}^*$.
\nThe result is sharp for the function given by
\n $f(z)$
\n $= \frac{n^{k}(m+n)(1+\vartheta\theta)+\theta(1-\eta)(1+\vartheta)z^{m+n+1}}{z(m+n)[n^{k}(1+\vartheta\theta)-\theta(1-\eta)(1+\vartheta)z_0^{m+n+1}]}, m$
\n $\in \mathbb{N}, n \ge 1$ (2.7)
\n**Proof:** Assume that $f \in \mathfrak{H}_{m+k}(\eta, \theta, \vartheta, z_0)$, then
\n $f(z_0) = \frac{a_0}{z_0} + \sum_{n=0}^{\infty} a_{m+n} z_0^{m+n}, a_0 > 0, a_{m+n}$
\n $> 0, m \in \mathbb{N}$
\n $-z_0^2 f'(z_0) = a_0 + \sum_{n=0}^{\infty} (m+n) a_{m+n} z_0^{m+n+1}, a_0$
\n $> 0, a_{m+n} > 0, m \in \mathbb{N}$
\n $1 = a_0 + \sum_{n=0}^{\infty} (m+n) a_{m+n} z_0^{m+n+1}, a_0$
\n $> 0, a_{m+n} > 0, m \in \mathbb{N}$
\n $a_0 = 1 - \sum_{n=0}^{\infty} (m+n) a_{m+n} z_0^{m+n+1}, a_0$
\n $> 0, a_{m+n} > 0, m$
\n $\in \mathbb{N}, (2.8)$

subistituting equation (2.8) in equation (2.1) , we get

$$
\sum_{n=0}^{\infty} n^k (m+n)(1+\vartheta \theta) a_{m+n},
$$

\n
$$
\leq \theta \left(1 - \sum_{n=0}^{\infty} (m+n) a_{m+n} z_0^{m+n+1}\right) (1-\eta) (1+\vartheta)
$$

\n
$$
+\vartheta)
$$

and,

$$
\sum_{n=0}^{\infty} n^{k} (m+n)(1+\vartheta\theta)a_{m+n}
$$

+
$$
\sum_{n=0}^{\infty} \theta(m+n)(1-\eta)(1+\vartheta)
$$

+
$$
\vartheta)a_{m+n}z_{0}^{m+n+1}
$$

$$
\leq \theta(1-)(1-\eta)(1+\vartheta)
$$

Thus,

$$
\sum_{n=0}^{\infty} (m+n) \left[\frac{n^{k}(1+\vartheta\theta)}{\theta(1-\eta)(1+\vartheta)} - z_0^{m+n+1} \right] a_{m+n} \le 1.
$$

Hence the proof is complete.

From Theorem 2.2 and Theorem 2.3, we have the following results:

Corollary 2.1: If a function $f(z) \in \mathfrak{H}_m^*$ defined by (1.2) is in the class $\mathfrak{H}_{m0,k}^*(\eta,\theta,\vartheta,z_0)$, then

$$
a_{m+n}\leq
$$

 $\theta(1-\eta)(1+\vartheta)$ $n^k(m+n)(1+\vartheta\theta)+\theta(1-\eta)(1+\vartheta)z_0^m$ (2.9) where $0 \leq \eta < 1, 0 < \theta \leq 1$ $0 \leq \vartheta \leq 1$, $k \in \mathbb{N}_0$ = $\mathbb{N}\cup\{0\}$, and $z \in \mathcal{U}^*$.

Corollary 2.2: If a function $f(z) \in \mathfrak{H}_m^*$ defined by (1.2) is in the class $\mathfrak{H}_{m1,k}^*(\eta,\theta,\vartheta,z_0)$, then

$a_{m+n} \leq$

 $\theta(1-\eta)(1+\vartheta)$ $(m+n)[n^{k}(1+\vartheta\theta)-\theta(1-\eta)(1+\vartheta)z_0^{m+n+1}]$ (2.10) where $0 \leq \eta < 1, 0 < \theta \leq 1$ $0 \leq \vartheta \leq 1$, $k \in \mathbb{N}_0$ $\mathbb{N}\cup\{0\}$, and $z \in \mathcal{U}^*$.

3. Covering theorems

In this section, distortion theorems will be considered and covering property for functions in the classes $\mathfrak{H}_{m0,k}^*(\eta,\theta,\vartheta,z_0)$ and $\mathfrak{H}_{m1,k}^*(\eta,\theta,\vartheta,z_0)$ will also be given.

Theorem 3.1: If a function $f(z) \in \mathfrak{H}_m^*$ defined by equation (1.2) is in the class $\mathfrak{H}_{m0,k}^*(\eta,\theta,\vartheta,z_0)$, then $|f(z)|$

$$
\geq \frac{m(1+\vartheta\theta)-\theta(1-\eta)(1+\vartheta)r^{m+1}}{r[m(1+\vartheta\theta)+\theta(1-\eta)(1+\vartheta)z_0^{m+1}]}
$$

where $0 \leq \eta < 1, 0 < \theta \leq 1$ $0 \leq \vartheta \leq 1$, $k \in \mathbb{N}_0$ $\mathbb{N}\cup\{0\}$, and $0 < |z| < 1$.

The result is sharp with the extremal function f given by

$$
f(z) = \frac{m(1+\vartheta\theta) + \theta(1-\eta)(1+\vartheta)r^{m+1}}{r[m(1+\vartheta\theta) + \theta(1-\eta)(1+\vartheta)z_0^{m+1}]}
$$

Proof: Since $f \in \mathfrak{S}^*$, $(p, \theta, \vartheta, z)$, by Theorem 2.

Proof: Since $f \in \mathfrak{H}_{m0,k}^*(\eta, \theta, \vartheta, z_0)$, by Theorem 2.2 we have

$$
m(1 + \vartheta\theta) + \theta(1 - \eta)(1 + \vartheta)z_0^{m+1}\sum_{n=0}^{\infty} a_{m+n} \le \sum_{n=0}^{\infty} n^k(m+n)(1 + \vartheta\theta) + \theta(1 - \eta)(1 + \vartheta)z_0^{m+n+1}a_{m+n} \le
$$

$$
\theta(1 - \eta)(1 + \vartheta),
$$

$$
\sum_{n=0}^{\infty} a_{m+n}
$$

$$
\le \frac{\theta(1 - \eta)(1 + \vartheta)}{m(1 + \vartheta\theta) + \theta(1 - \eta)(1 + \vartheta)z_0^{m+1}}
$$

Also we have

$$
a_0 = 1 - \sum_{n=0}^{\infty} a_{m+n} z_0^{m+n+1}, \quad a_0 > 0, a_{m+n}
$$

> 0, m \in \mathbb{N},

$$
\geq \frac{m(1 + \theta \theta)}{m(1 + \theta \theta) + \theta(1 - \eta)(1 + \theta)z_0^{m+1}},
$$

Thus from the above equation we obtain
\n
$$
|f(z)| = \left|\frac{a_0}{z} + \sum_{n=0}^{\infty} a_{m+n} z^{m+n}\right|, a_0 > 0, a_{m+n} > 0, m \in \mathbb{N}
$$
\n
$$
\geq \frac{a_0}{r} - r^m \sum_{n=0}^{\infty} a_{m+n}
$$
\n
$$
\geq \frac{m(1+\vartheta\theta) - \theta(1-\eta)(1+\vartheta)r^{m+1}}{r[m(1+\vartheta\theta) + \theta(1-\eta)(1+\vartheta)z_0^{m+1}]}.
$$

Hence the proof is complete.

Theorem 3.2: If a function $f(z) \in \mathfrak{H}_m^*$ defined by equation (1.2) is in the class $\mathfrak{H}_{m1,k}^*(\eta,\theta,\vartheta,z_0)$, then

 $|f(z)|$

 $\leq \frac{m(1+\vartheta\theta)+\theta(1-\eta)(1+\vartheta)r^m}{\frac{[(-\vartheta+\vartheta\theta)+(2\vartheta+\eta)(1-\eta)(1-\theta))^m}{[(-\vartheta+\vartheta\theta)+(2\vartheta+\eta)(1-\eta)(1-\eta)]}}$ $r[m(1 + \vartheta \theta) + \theta(1 - \eta)(1 + \vartheta)z_0^{m+1}]$

where $0 \le \eta < 1, 0 < \theta \le 1$ $0 \le \vartheta \le 1$, $k \in \mathbb{N}_0$ $\mathbb{N} \cup \{0\}$, and $0 < |z| = r < 1$.

The result is sharp with the extremal function f given by

$$
f(z) = \frac{m(1+\vartheta\theta) + \theta(1-\eta)(1+\vartheta)r^{m+1}}{rm[(1+\vartheta\theta) + \theta(1-\eta)(1+\vartheta)z_0^{m+1}]}
$$

Proof: Since $f \in \mathfrak{H}_{m1,k}^*(\eta, \theta, \vartheta, z_0)$ by Theorem 2.3 we have

$$
m(1 + \vartheta\theta) + \theta(1 - \eta)(1 + \vartheta)z_0^{m+1}\sum_{n=0}^{\infty} a_{m+n} \le \sum_{n=0}^{\infty} n^k(m+n)(1 + \vartheta\theta) + \theta(1 - \eta)(1 + \vartheta)z_0^{m+n+1}a_{m+n} \le
$$

$$
\theta(1 - \eta)(1 + \vartheta),
$$

$$
\sum_{n=0}^{\infty} a_{m+n}
$$

$$
\le \frac{\theta(1 - \eta)(1 + \vartheta)}{m(1 + \vartheta\theta) - \theta(1 - \eta)(1 + \vartheta)z_0^{m+1}}.
$$

Also we have

Also we have

$$
a_0 = 1 + \sum_{n=0}^{\infty} (m+n)a_{m+n}z_0^{m+n+1}, \quad a_0
$$

> 0, $a_{m+n} > 0, m \in \mathbb{N}$,

$$
\leq \frac{(1+\theta\theta)}{(1+\theta\theta)+\theta(1-\eta)(1+\theta)z_0^{m+1}}.
$$

Thus from the above equation we obtain

$$
|f(z)| = \left| \frac{a_0}{z} + \sum_{n=0}^{\infty} a_{m+n} z^{m+n} \right|, a_0 > 0, a_{m+n}
$$

> 0, m \in \mathbb{N}

$$
\leq \frac{a_0}{r} + r^m \sum_{n=0}^{\infty} a_{m+n}
$$

$$
\leq \frac{m(1 + \vartheta \theta) + \theta(1 - \eta)(1 + \vartheta)r^{m+1}}{rm[(1 + \vartheta \theta) + \theta(1 - \eta)(1 + \vartheta)z_0^{m+1}]}.
$$

Hence the proof is complete.

Corollary 3.1: The disk $0 < |z| < 1$ is mapped onto a domain that contains the disk $|w|$ $m(1+\vartheta\theta){-}\theta(1{-}\eta)(1{+}\vartheta)r^{m+1}$ $[m(1+\vartheta\theta)+\theta(1-\eta)(1+\vartheta)z_0^{m+1}]$ by any function $f \in \mathfrak{H}_{m0,k}^*(\eta,\theta,\vartheta,z_0).$

4. Extreme Points

The extreme points of the class $\mathfrak{H}_{m0,k}^*(\eta,\theta,\vartheta,z_0)$ and $\mathfrak{H}_{m1,k}^*(\eta,\theta,\vartheta,z_0)$ are given by the following theorem.

Theorem 4.1: Let
$$
f_0(z) = \frac{1}{z}
$$
,
and

 ϵ

$$
f_{m+n}(z)
$$

=
$$
\frac{n^{k}(m+n)(1+\vartheta\theta)+\theta(1-\eta)(1+\vartheta)z^{m+n+1}}{z[n^{k}(m+n)(1+\vartheta\theta)+\theta(1-\eta)(1+\vartheta)z_{0}^{m+n+1}]}
$$

 $n \ge 0$

then $f(z)$ is in the class $\mathfrak{H}_{m0,k}^*(\eta, \theta, \vartheta, z_0)$, if and only if it can be expressed in the form $f(z)$ = $\sum_{n=0}^{\infty} \gamma_n f_{m+n}(z)$ where $\gamma_n \ge 0, \gamma_i = 0$ (*i* 1, 2, ..., $m - 1$, $m \ge 2$) and $\sum_{n=0}^{\infty} \gamma_n = 1$. **Proof:** Suppose

$$
f(z) = \sum_{n=0}^{\infty} \gamma_n f_{m+n}(z)
$$

$$
= \frac{\gamma_0}{z}
$$
\n
$$
+ \sum_{n=0}^{\infty} \frac{n^k (m+n)(1+\vartheta\theta) + \theta(1-\eta)(1+\vartheta)z^{m+n+1}\gamma_{m+n}}{z[n^k(m+n)(1+\vartheta\theta) + \theta(1-\eta)(1+\vartheta)z_0^{m+n+1}]}
$$
\n
$$
= \frac{1}{z} \Bigg[\gamma_0
$$
\n
$$
+ \sum_{n=0}^{\infty} \frac{n^k (m+n)(1+\vartheta\theta)\gamma_{m+n}}{n^k (m+n)(1+\vartheta\theta) + \theta(1-\eta)(1+\vartheta)z_0^{m+n+1}}
$$
\n
$$
+ \sum_{n=0}^{\infty} \frac{\theta(1-\eta)(1+\vartheta)\gamma_{m+n}z^{m+n+1}}{n^k (m+n)(1+\vartheta\theta) + \theta(1-\eta)(1+\vartheta)z_0^{m+n+1}}
$$
\nThen, we have\n
$$
\sum_{n=0}^{\infty} \frac{n^k (m+n)(1+\vartheta\theta) + \theta(1-\eta)(1+\vartheta)z_0^{m+n+1}}{\theta(1-\eta)(1+\vartheta)}
$$
\n
$$
\times \left(\frac{\theta(1-\eta)(1+\vartheta)\gamma_{m+n}}{n^k (m+n)(1+\vartheta\theta) + \theta(1-\eta)(1+\vartheta)z_0^{m+n+1}}\right),
$$

Hazha .Z

$$
\sum_{n=0}^{\infty} \gamma_{m+n} = 1 - \gamma_0 \le 1.
$$

Now, we have

$$
z_0 f_{m+n}(z_0) = 1
$$

Thus,

$$
z_0 f(z_0) = \sum_{n=0}^{\infty} \gamma_{m+n} z_0 f_{m+n}(z_0) = \sum_{n=0}^{\infty} \gamma_{m+n} = 1
$$

This implies that $f \in \mathfrak{H}_{m0k}$. Therefore $f \in \mathfrak{H}_{m0,k}^*(\eta,\theta,\vartheta,z_0)$. Conversely, suppose $f \in \mathfrak{H}_{m0,k}^*(\eta,\theta,\vartheta,z_0)$. Since $a_{m+n} \leq \frac{\theta(1-\eta)(1+\vartheta)}{k(n+1)(1+\vartheta)(1+\vartheta)}$ $\frac{1}{n^k(m+n)(1+\vartheta\theta)+\theta(1-\eta)(1+\vartheta)z_0^{m+n+1}}$ \boldsymbol{n}

Set

$$
\gamma_{m+n} = \frac{[n^{k}(m+n)(1+\vartheta\theta)+\theta(1-\eta)(1+\vartheta)z_{0}^{m+n+1}]}{\theta(1-\eta)(1+\vartheta)}a_{m+n}, n
$$

\n $\geq 0,$
\nand $\gamma_{0} = 1 - \sum_{n=0}^{\infty} \gamma_{m+n}.$

Then

$$
f(z) = \sum_{n=0}^{\infty} \gamma_n f_n(z)
$$

.

This completes the proof of Theorem 4.1.

Theorem 4.2: Let $f_0(z) = \frac{1}{z}$ $\frac{1}{z}$

and \boldsymbol{f}

$$
f_{m+n}(z)
$$

=
$$
\frac{n^{k}(m+n)(1+\vartheta\theta)+\theta(1-\eta)(1+\vartheta)z^{m+n+1}}{z(m+n)[n^{k}(1+\vartheta\theta)-\theta(1-\eta)(1+\vartheta)z_{0}^{m+n+1}]}
$$
,
 $n \ge 0$

Then $f(z)$ is in the class $\mathfrak{H}_{m1k}^*(\eta, \theta, \vartheta, z_0)$, if and only if it can be expressed in the form $f(z) =$ $\sum_{n=0}^{\infty} \gamma_n f_n(z)$ where $\gamma_n \geq 0, \gamma_i = 0$ (*i* = 1, 2, ..., $m - 1$, $m \ge 2$) and $\sum_{n=0}^{\infty} \gamma_n = 1$.

Corollary 4.1: The extreme points of the class $\mathfrak{H}_{m0,k}^*(\eta)$) are the functions $f_0(z)$, f_m , f_{m+1} , f_{m+2} , ... in Theorem 4.1.

Corollary 4.2: The extreme points of the class $\mathfrak{H}_{m1,k}^*(\eta)$) are the functions $f_0(z)$, f_m , f_{m+1} , f_{m+2} , ... in Theorem 4.2.

5. Closure Theorems

Theorem 5.1: The class $\mathfrak{H}_{m0,k}^*(\eta,\theta,\vartheta,z_0)$ is closed under convex linear combination

Proof: Suppose that the functions $f, g \in$ $\mathfrak{H}_{m0,k}^*(\eta,\theta,\vartheta,z_0)$ defined by

$$
f(z) = \frac{a_0}{z} + \sum_{n=0}^{\infty} a_{m+n} z^{m+n}, a_0 > 0, a_{m+n} > 0, z
$$

$$
\in \mathcal{U}^*
$$

and

$$
g(z) = \frac{b_0}{z} + \sum_{n=0}^{\infty} b_{m+n} z^{m+n}, b_0 > 0, b_{m+n} > 0, z
$$

$$
\in \mathcal{U}^*
$$

respectively, it is sufficient to prove that the function H defined by

 $H(z) = \omega f(z) + (1 - \omega) g(z), \quad (0 \le \omega \le 1)$ is also in the class $\mathfrak{H}_{m0,k}^*(\eta,\theta,\vartheta,z_0)$.

Since

$$
H(z) = \frac{\omega a_0 + (1 - \omega) b_0}{z}
$$

+
$$
\sum_{n=0}^{\infty} (\omega a_{m+n} + (1 - \omega) b_{m+n}) z^{m+n}, a_0
$$

> 0, $a_{m+n} > 0, z \in U^*$

we observe that

$$
\sum_{n=0}^{\infty} [n^{k}(m+n)(1+\vartheta\theta)
$$

+ $z_0^{m+n+1}](\omega a_{m+n}$
+ $(1-\omega)b_{m+n}) \le \theta(1-\eta)(1+\vartheta),$

with the aid of theorem 2.2. Thus $H(z) \in \mathfrak{H}_{m0,k}^*(\eta, \theta, \vartheta, z_0)$.

This completes the proof of the theorem.

In a similar manner, by using Theorem 2.3, we can prove the following theorem.

Theorem 5.2: The class $\mathfrak{H}_{m1k}^*(\eta, \theta, \vartheta, z_0)$ is closed under convex linear combination.

Proof: The proof is similar to that of Theorem 5.1.

Theorem 5.3: Let the function $f_i(z)$, $l =$ $0, 1, 2, \ldots, q$ defined by

$$
f_l(z) = \frac{a_{0,l}}{z} + \sum_{n=0}^{\infty} a_{m+n,l} z^{m+n}, a_0 > 0, a_{m+n,l}
$$

> 0, z \in U^{*}

be in the class $\mathfrak{H}_{m0 k}^*(\eta, \theta, \vartheta, z_0)$. Then the function

$$
\varphi(z) = \sum_{l=0}^{q} c_l f_l(z), \ (c_l \ge 0)
$$

is also in the class $\mathfrak{H}_{m0,k}^*(\eta,\theta,\vartheta,z_0)$, where $\sum_{l=0}^{q} c_l = 1.$

Proof: By Theorem 2.2 and for every $l =$ $0, 1, 2, ..., q$ we have

$$
\sum_{n=0}^{\infty} [n^{k}(m+n)(1+\vartheta\theta) + z_0^{m+n+1}]a_{m+n,l}
$$

\n
$$
\leq \theta(1-\eta)(1+\vartheta),
$$

Then,

$$
\varphi(z) = \sum_{l=0}^{q} c_l \left(\frac{a_{0,l}}{z} + \sum_{n=0}^{\infty} a_{m+n,l} z^{m+n} \right), \quad (c_l \ge 0)
$$

$$
= \frac{c_l a_{0,l}}{z} + \sum_{n=0}^{\infty} \left(\sum_{l=0}^{N} c_l a_{m+n,l} \right) z^{m+n}.
$$

Since

$$
\sum_{n=0}^{\infty} \left[n^{k} (m+n)(1+\vartheta\theta) + z_{0}^{m+n+1} \right] \left(\sum_{l=0}^{q} c_{l} a_{m+n,l} \right),
$$

$$
= \sum_{l=0}^{q} c_{l} \left(\sum_{n=0}^{\infty} \left[n^{k} (m+n)(1+\vartheta\theta) + z_{0}^{m+n+1} \right] a_{m+n,l} \right),
$$

$$
\leq \left(\sum_{l=0}^{q} c_{l} \right) \theta (1-\eta)(1+\vartheta),
$$

$$
= \theta (1-\eta)(1+\vartheta),
$$

Then, $\varphi(z) \in \mathfrak{H}_{m0,k}^*(\eta, \theta, \vartheta, z_0)$.

Theorem 5.4: Let the function $f_l(z)$, $0, 1, 2, \ldots, q$ defined by

$$
f_l(z) = \frac{a_{0,l}}{z} + \sum_{n=0}^{\infty} a_{m+n,l} z^{m+n}, a_0 > 0, a_{m+n,l}
$$

> 0, z \in U^{*}

be in the class $\mathfrak{H}_{m1,k}^*(\eta,\theta,\vartheta,z_0)$. Then the function

$$
\varphi(z) = \sum_{l=0}^{q} c_l f_l(z), \ (c_l \ge 0)
$$

is also in the class $\mathfrak{H}_{m1,k}^*(\eta,\theta,\vartheta,z_0)$, where $\sum_{l=0}^{q} c_l = 1.$

Proof: The proof is similar to that of Theorem 5.3. **6. Convex Family**

Definition 6.1: The family $\mathfrak{H}_{m0,k}^*(\eta,\theta,\vartheta,C)$ is defined by

$$
\mathfrak{H}_{m0,k}^*(\eta,\theta,\vartheta,C)=\cup_{z\in C}\mathfrak{H}_{m0,k}^*(\eta,\theta,\vartheta,z_r),
$$

where C is a nonempty subset of the real interval [0, 1] and $\mathfrak{H}_{m0,k}^*(\eta,\theta,\vartheta,\mathcal{C})$ is defined by a convex family if the subset C consists of one element only by Theorems 5.1 and 5.3.

Now, we have the following results:

Lemma 6.1: Let $z_1, z_2 \in C$ be two distinct positive numbers and $\psi^*_{m0,k}(\eta,\theta,\vartheta,z_0)$ N $\mathfrak{H}_{m0,k}^*(\eta,\theta,\vartheta,z_1)$, then $f(z) = \frac{1}{z}$ $\frac{1}{z}$. **Proof:** Suppose that $f(z) \in \mathfrak{H}_{m0,k}^*(\eta, \theta, \vartheta, z_1)$ $\mathfrak{H}_{m0,k}^*(\eta,\theta,\vartheta,z_2),$

we have

$$
a_0 = 1 - \sum_{\substack{n=0 \ n \equiv 0}}^{\infty} a_{m+n} z_1^{-m+n+1}
$$

$$
= 1 - \sum_{n=0}^{\infty} a_{m+n} z_2^{-m+n+1}.
$$

Also

$$
f(z) = \frac{a_0}{z} + \sum_{n=0}^{\infty} a_{m+n} z^{m+n}, \quad a_0 > 0, a_{m+n}
$$

> 0, m \in \mathbb{N}

Thus, $a_{m+n} \equiv 0$, $\forall n \ge 0$, because $a_{m+n} \ge 0$, $z_1 > 0$ and $z_2 > 0$, hence

$$
f(z)=\frac{1}{z}.
$$

This completes the proof of the Lemma.

Theorem 6.1: Suppose that $C \subset [0, 1]$, then $\mathfrak{H}_{m0,k}^*(\eta,\theta,\vartheta,\zeta)$ is a convex family if and only if is connected.

Proof: Assume that C is connected and z_1 , with $z_1 < z_2$.

$$
a_0 = 1 - \sum_{n=0}^{\infty} a_{m+n} z_0^{m+n+1}
$$

=
$$
1 - \sum_{n=0}^{\infty} b_{m+n} z_1^{m+n+1}.
$$

Suppose that the functions $f \in \mathfrak{H}_{m0,k}^*(\eta,\theta,\vartheta,z_0)$ defined by

$$
f(z) = \frac{a_0}{z} + \sum_{n=0}^{\infty} a_{m+n} z^{m+n}, a_0 > 0, a_{m+n} > 0, z
$$

$$
\in \mathcal{U}^*
$$

and $g \in \mathfrak{H}_{m0,k}^*(\eta,\theta,\vartheta,z_1)$

$$
g(z) = \frac{b_0}{z} + \sum_{n=0}^{\infty} b_{m+n} z^{m+n}, b_0 > 0, b_{m+n} > 0, z
$$

$$
\in \mathcal{U}^*
$$

it is sufficient to prove that the function H defined by

 $H(z) = \omega f(z) + (1 - \omega)g(z), \quad (0 \leq \omega \leq 1)$ that there exists a $z_2(z_0 \le z_2 \le z_1)$ is also in the class $\mathfrak{H}_{m0,k}^*(\eta,\theta,\vartheta,z_2)$.

Then

$$
K(z) = zH(z)
$$

\n
$$
K(z) = \omega a_0 + (1 - \omega) b_0
$$

\n
$$
+ \sum_{n=0}^{\infty} (\omega a_{m+n} + (1 - \omega) b_{m+n}) z^{m+n}, a_0
$$

\n
$$
> 0, a_{m+n} > 0, z \in \mathcal{U}^*
$$

\n
$$
= 1
$$

\n
$$
+ \omega \sum_{n=0}^{\infty} (z^{m+n} - z_0^{m+n}) a_{m+n}
$$

\n
$$
+ (1 - \omega) \sum_{n=0}^{\infty} (z^{m+n} - z_1^{m+n}) b_{m+n}, a_0 > 0, a_{m+n}
$$

$$
>0, z \in \mathcal{U}^*
$$

since z is real number, then $K(z)$ is also real number also we have

 $K(z_0) \le 1$ and $K(z_1) \ge 1$, there exists $z_2 \in [z_0, z_1]$, such that $K(z_2) = 1$.

Therefore,

$$
z_2H(z_2) = z_2, \quad (z_0 \le z_2 \le z_1)
$$
 this implies that

$$
H(z) \in \mathfrak{H}_{m0,k}^*.
$$

We observe that

$$
\sum_{n=0}^{\infty} [n^{k}(m+n)(1+\vartheta\theta) + z_{2}^{m+n+1}](\omega a_{m+n} + (1-\omega)b_{m+n})
$$

\n
$$
= \omega \sum_{n=0}^{\infty} [n^{k}(m+n)(1+\vartheta\theta) + z_{0}^{m+n+1}]a_{m+n}
$$

\n
$$
+ (1-\omega) \sum_{n=0}^{\infty} [n^{k}(m+n)(1+\vartheta\theta) + z_{1}^{m+n+1}]b_{m+n}
$$

\n
$$
+ \theta(1-\eta)(1 + z_{1}^{m+n+1})a_{m+n}
$$

\n
$$
+ \theta(1-\eta)(1+\vartheta)(1 + \vartheta)
$$

\n
$$
- \omega) \sum_{n=0}^{\infty} (z_{2}^{m+n+1} - z_{1}^{m+n+1})b_{m+n}
$$

\n
$$
= \omega \sum_{n=0}^{\infty} [n^{k}(m+n)(1+\vartheta\theta) + z_{0}^{m+n+1}]a_{m+n}
$$

\n
$$
+ (1-\omega) \sum_{n=0}^{\infty} [n^{k}(m+n)(1+\vartheta\theta) + z_{1}^{m+n+1}]b_{m+n}
$$

 $\leq \theta(1 - \eta)(1 + \vartheta) + (1 - \omega) \theta(1 - \eta)(1 + \vartheta)$ $= \theta(1 - \eta)(1 + \vartheta).$

Hazha .Z

With the aid of theorem 2.2.

Thus, $H(z) \in \mathfrak{H}_{m0,k}^*(\eta, \theta, \vartheta, z_2)$.

Since z_1 and z_2 are arbitrary numbers, the family $\mathfrak{H}_{m0,k}^*(\eta,\theta,\vartheta,C)$ is convex.

Conversely, if the set C is not connected, then there exists z_0 , z_1 and z_2 such that z_0 , $z_1 \in C$ and and $z_0 < z_2 < z_1$.

Now, let $f(z) \in \mathfrak{H}_{m0,k}^*(\eta, \theta, \vartheta, z_0)$, and $g(z) \in$ $\mathfrak{H}_{m0,k}^*(\eta,\theta,\vartheta,z_1)$

Therefore,

$$
K(\omega) = K(z_2, \omega)
$$

= 1 + $\omega \sum_{n=0}^{\infty} (z_2^{m+n+1} - z_0^{m+n+1}) a_{m+n}$
+ (1 - $\omega \sum_{n=0}^{\infty} (z_2^{m+n+1} - z_1^{m+n+1}) b_{m+n}, a_0$
> 0, $a_{m+n} > 0, z \in U^*$

for fixed
$$
z_2
$$
 and $0 \leq \omega \leq 1$.

Since $K(z_2, 0) < 1$ and $K(z_2, 1) > 1$, there exists ω_0 ; $0 < \omega_0 < 1$, such that $K(z_2, \omega_0) = 1$ or $z_2 K(z_2) = 1,$

where $K(z) = \omega_0 f(z) + (1 - \omega_0) g(z)$.

Therefore $K(z) \in \mathfrak{H}_{m0,k}^*(\eta, \theta, \vartheta, z_0)$

Also $K(z) \notin \mathfrak{H}_{m0,k}^*(\eta, \theta, \vartheta, C)$ using Lemma 6.1.

Since $z_2 \in C$ and $K(z) \neq z$.

Thus the family $\mathfrak{H}_{m0,k}^*(\eta,\theta,\vartheta,C)$ is not convex which is a contradiction.

This completes the proof of theorem.

Conclusion: The main impact of this paper is to is to introduce a new subclasses of meromorphic univalent functions, and study their geometrical properties , like coefficient estimate, distortion theorem, extreme points and convex family.

References

[1] M. K. Aouf, A certain subclass of meromorphically starlike functions with positive coefficients, Rend. Mat., 9(1989), 225-235.

[2] M. K. Aouf, On a certain class of meromorphically univalent functions with positive coefficients, Rend. Mat., 11(1991), 209-219.

[3] M. K. Aouf and H. E. Darwish, On meromorphic univalent functions with positive coefficients and fixed two points, Ann. St. Univ. A. I. Cuza, Iasi, Tomul XLII, Matem., (1996), 3-14.

[4] W. G. Atshan, Subclass of meromorphic functions with positive coefficients defined by Ruscheweyh derivative II, Surveys in Math. and its Appl., 3(2008), 67-77.

[5] S. K. Bajpai, A note on a class of meromorphic univalent functions, Rev. Roum. Math. Pures App., 22(1977), 295-297.

[6] N. E. Cho, On certain class of meromorphic functions with positive coefficients, J. Inst. Math. Comput. Sci., 3,2(1990), 119-125.

[7] N. E. Cho, K. Inayatnoor, Inclusion properties for certain classes of meromorphic functions associated with the Choi-Saigo-Srivastava operator, J. Math. Anal. Appl., 320(2006), 779-786.

[8] N. E. Cho, I. H. Kim, Inclusion properties for certain classes of meromorphic functions associated with the generalized hypergeometric function, Applied Mathematics and Computation, 187(2007), 115-121.

[9] R. M. El- Ashwah, M. K. Aouf, Hadamard product of certain meromorphic starllike and convex functions, Comput. Math. Appl., 57(2009), 1102- 1106.

[10] B. A. Frasin, M. Darus, On certain meromorphic functions with positive coefficients, Southeast Asian Bull. Math. , 28(2004), 615-623.

[11] F. Ghanim, M. Darus, On certain subclass of merpmorphic univalent functions with fixed residue, Far East J. Math. Sci., 26(2007), 195-207.

[12] F. Ghanim, M. Darus, A new subclass on uniformly starlike and convex functions with negative coefficients II, Int. J. Pure Appl. Math., 45, 4(2009), 559-572.

[13] F. Ghanim, M. Darus, On a certain subclass of meromorphic univalent functions with fixed second positive coefficients, Surveys in Mathematics and its Applications, 5(2010), 49-60.

[14] S. B. Joshi, S. R. Kulkarni and N. K. Thakare, Subclasses of meromorphic functions with missing coefficients, J. Analysis, 2(1994), 23-29.

[15] Krzysztof, Piejko, J. Sokol, Subclasses of meromorphic functions associated with the Cho-Know-Srivastava operator, J. Math. Anal. Appl., 337(2008), 1261-1266.

[16] J. E. Miller, Convex meromorphic mapping and related functions, Proc. Amer. Math. Soc., 25(1970), 220-222.

[17] M. L. Mogra, T. R. Reddy, O. P. Juneja, Meromorphic univalent functions with positive coefficients, Bull. Austral. Math. Soc., 32(1985), 161-176.

[18] S. Mouyuan, Z. Mingliu, H. M. Srivastava, Some inclusion relationships and integral preserving properties of certain subclasses of meromprphic functions associated with a family of integral operators, J. Math. Anal. Appl., 337(2008), 505-515. [19] C. Pommerenke, On meromorphic starlike functions, Pacific J. Math., 13(1963), 221-235.

[20] W. C. Poyster, Meromorphic starlike multivalent functions, Trans. Am. Math. Soc. 107(1963), 300-308.

[21] H. M. Srivastava, S. Owa, Current topics in analytic functions theory, World Scientific, Singapore, 1992.

[22] B. A. Uralegaddi and M. D. Ganigi, Meromprphic starlike functions with two fixed points, Bull. Iranian Math. Soc., 14, No.1(1987), 10- 21.

[23] B.A. Uralegaddi, C. Somanatha, New criteria for meromorphic starlike univalent functions, Bull. Austral. Math. Soc., 43(1991), 137-140.

حول اصناف جديدة من الدوال احادية التكافؤ الميرومورفية بمؤثر تفاضلي

هازه زرار حسين

قسم الرياضيات، كلية العلوم، جامعة صالح الدين، اربيل، عراق

المستخلص :

في هذا البحث نعرف وندرس اصناف جديدة $(i=1,2)$ $\mathfrak{H}^*_{mi,k}(\eta,\theta,\vartheta,z_0)$ من الدوال احادية التكافؤ الميرومورفية المعرفة بواسطة مؤثر تفاضلي , ونحصل على العديد من النتائج المهمة مثل متباينة المعامالت, والنقاط القصوى, نظرية البعد, التركيب المحدب لالصناف من الدوال السابقة.