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Abstract :

In this paper, we introduce a new procedure for model selection in Tobit regression, we
suggest the Bayesian adaptive Lasso Tobit regression (BALTR) for variable selection (VS) and
coefficient estimation. We submitted a Bayesian hierarchical model and Gibbs sampler (GS) for
our procedure. Our proposed procedure is clarified by means of simulations and a real data
analysis. Results demonstrate our procedure performs well in comparison to further procedures.
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1.Introduction:

Tobit regression procedure (Tr) is proposed as a
statistical model by Tobin (1958). This model is
also known as left truncated regression. Tr has
become important in many real-world applied
sciences, such as econometric, agriculture,
ecology, the environment and genetics. It is an
excellent procedure to evaluate the relation along
with outcome variable and a group of explanatory
variables.

One of the most mainly important troubles in the
regression when the number of explanatory
variables is so large. It is then difficult to see
which variables actually important. In addition to
several problems appear when the statistical
researchers are use some explanatory variables
that are not important in regression. This leads to
a regression model that will be unstable and so
weak concerning of prediction. The selection
process provides a perfect agent for estimating
the parameters as well as the identification of
important variables (Griffin and Brown, 2010).
There occur several varieties of strategies for
investigators to use in handling high dimensional
data (very large of explanatory variables),
including VS procedures, and data reduction
techniques. Prior analysis has found that, in the
existence of high dimensional data, these VS
procedures can produce estimates with inflated
errors for the coefficients (Hastie, Tibshirani, &
Friedman, 2009). Some of the technique models
that have proved beneficial in the condition of
high dimensional data, these models known as
regularization.

In 1996, Tibishrani suggested a procedure for VS
and parameter estimation in linear models known
be as Lasso model (Least Absolute Shrinkage and
Selection Operator model). A lot of work has
been devoted to the development of diverse of
Bayesian organizational procedures for making
VS in linear models. In 2006, Zou proposed the
adaptive Lasso, who upgraded the Lasso way
proposed by Tibshirani, permitting different
penalty parameters to different regression
coefficients. Zou proved that his proposed
procedure had the characteristics of Oracle
mentioned in Fan and Bing (2004) that Lasso
does not have. Specifically, Zou indicates that his
proposed procedure adopts the correct form of
non-zero coefficients with the probability that he
tends to one. Park and Casella suggested in 2008
the Lasso procedure based from a Bayesian point
of sight. Likewise, Mallick and Yi (2014)
suggested a new procedure known to be as new
Bayesian Lasso regression for VS and coefficient
estimation in linear regression.

In general, the last procedure observed results
display that the Mallick procedure applied well
compares with other Bayesian and non-Bayesian
regression procedures.

The above results and good results reported in
Mallick procedure motivate us to suggest a new
Bayesian regression procedure. Subsequently, we
submitted a Bayesian hierarchical for BALTR,
and proposed a new Gibbs sampler (GS) for
BALTR, that is set up on a theoretical derivation
of the Laplace density (LD). Next, we
implemented several simulated examples and
analyzed real data by using BALTR with four
Tobit regression procedures to compare the best
results. These procedures include Tr, Bayesian
Tobit regression (BTr), Tobit median regression,
and BALTR. Both simulation and real analysis
proved that BALTR results are excellent, and this
procedure may be is a best of current procedures
being compared.

2.Methods:

The Tobit regression is applied to estimate the
relevance among an outcome variable (y,) and
explanatory variables (X). Tobit regression
assumes that there is a latent variable (y})

depends linearly on the parameters (B) which
determines relevance between (X) and (y;), the
formula of outcome variable is

y_{yi* if y;>0
o if yr<o

y' =XB+e (1)

y* = (yy”"yn)v
1xyp X
X=| : N
1 xp o X
B= (ﬂo!ﬁli'":ﬂk) )
&= (Sll"'l‘gn):
£i~N(0'02)
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2.1 Bayesian adaptive Lasso Tobit regression
(BALTR):

It is well known, that the Lasso procedure gives
biased estimates of considerable coefficients, so it
might be below the required optimal level in
terms of estimation risk. In 2006, Zou evidenced
that the Lasso opts the incorrect model with non-
fade the probability, despite the sample size and
how A is chosen. The event requires that
coefficients not in the model aren't representable
by coefficients in the real model. But this event is
simply suffering because of the collinearity case
between the coefficients. On the opposite hand,
that the Lasso technique does not have Oracle
properties. So, Zou suggested the adaptive Lasso
technique who gives a consistent model for VS.
Therefore, we consider BALTR procedure in this
paper, the adaptive Lasso enjoys the oracle
properties by utilizing the adaptably weighted
Lasso penalty parameter, and leads to a near
minimax optimum estimator. Additionally, the
adaptive Lasso technique needs to initial
estimates of the regression coefficients, when a
sample size is less than of the covariates number,
which is mostly not available in the high
dimensional data. The estimator of adaptive
Lasso is given by

Balasso = arg;nin(y _XB)’(_Y _XB)
k
+ Z vy |,8j| where A; = 0
=1

where varied penalty parameters are utilized for
the regression coefficients. Surely, for the not
important explanatory variables, we must place
larger penalty A; on their matching coefficients.
We propose a BALTR procedure in this paper for
coefficient estimation and VS. We submit a new
practice of the adaptive Lasso form by using the
scale mixture of a uniform represent of the LD.
Following (Mallick& Yi, 2014), the Laplace
representation can adaptive as

N | >

e_)lf|ﬁl'|

1 47°
J o 2-1,—A;S;
= ——==s5"""e "7 ds; - (2)
£>|ﬁj| 2s; 12 7/ /

ﬁe_}‘f|ﬁi| :f Aj oS ds;, ;>0
2 51'>|'31|

In this paper, we modify the above formula as
follows:

4 e HlBl = W” |
2 2

= e ] — v
o8, |2v] F2 /1 A

= f ﬁe_yldv -(3)

j
v>|8| 2

In practice, this formula produces more tractable

and efficient Gibbs sampler than the formula in 2.

2.2 Model Hierarchy and Prior Distributions
of BALTR:

By using equation (1) and equation (3), the

Bayesian hierarchical model can be formulated as

follows:

y'IX.B, 02 ~ Nu(XB,0’1,) ...(4)

BIA ~ HUnlform(—— DO

v~ 1:[ Exp( 1) ... (6)

0% ~ Inverse Gamma(a,b) ... (7)
Aj ~ Gamma(f, g) ... (8)

where v = (vq, -+, vy)

2.3 Full Conditional Posterior Distributions of
BALTR:

Firstly, we can express the joint posterior
distribution of all our procedure parameters as
follows

(B, v,1,02|y", X) x

n(y*|X, B, o2)n(B|1 ) () (A;)n(a2)
Under the above posterior distribution, the
posterior distribution of B is
a(Bly’, X, A) o« a(y'|X, B, o).x(BI)
xexp{— = (" - XB)'(y" -

XB)}HJIF=1I{|[;1'| < :‘j}

o« exp{—-—(-2y"XB +
B'X'XB)}H,’-‘-M{|[?-| <4
ocexp{——( 2y XX X)"L(X' X)B +
BXXB)} T} 11{|/3 | < }

o exp{— (- 2BXXB +
BXXB)}szll{—A—; <B; < I,-}
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ﬁb’*.X. A ~Nk(BOLSl (X,X)_lo'Z)

XHI{—%< 8, <%}---(9)

=1 J J
As well, the posterior distribution of v; is
n(ly’, X, B,2) « n@)I{v, > |15}
o ]_[]’-‘:1 eVl {vj > |Ajﬁj|}

k
v~ 1_[ Exponential(1) ] {vj > |/1j[?].|} - (10)

j=1
Likewise, the posterior distribution of o2 is
n(a’ly*, X, B) xn(y'| X,B,0%) n(a?)

_n 1
« (0) 2ewp |- 30~ XBY &

— )} @)oo |- ]

.
a*ly* X, B ~
n 1 * ! *
InvGamma <E+a'§(y —XB) &y _Xﬁ)>...(11)
+b

Lastly, the posterior distribution of A is
w(4]8) o m(8]2) n()

m (48, v;) o« n(A)41 by<rk
a1

v
2
v

« Gamma(f +1,9)1{4; < | | .. (12)
i

o YD exp{—gA} 14 <

Where the I(.) is an indicator function in
equation (9) and equation (12).

2.4 Computation:

In the computation section, we outline our Gibbs
sampler as follows
e Updating B:

We simulate the §; from a truncated multivariate
normal distribution in equation (9), the mean of
this distribution is (B,.s) and the variance is
(X'X)"1a2).
e Updating v:
We simulate the v; from the left truncated
exponential distribution in equation (10), by
applying the inversion process, this simulate can
be completed as follows:

1. Simulate v;* from standard exponential

distribution.

e Updating o°:

We simulate the o2 from Inverse Gamma
distribution in equation (11), the shape parameter

of this distribution is (g + a) and the rate is

1 ,
(507~ X0 = x8) + )
e Updating A :

We simulate 2; from truncated Gamma
distribution, the shape parameter of this
distribution is (f + 1) and the rate parameter is

9.

3.Simulation Studies:
The performance of our procedure is evaluates in
a simulation study in which the procedure for a
BALTR is compared with, Tr procedure through
using R language within package AER (Christian
Kleiber, Achim Zeileis 2017), Bayesian Tobit
regression procedure (BTr) through using R
language within package MCMCpack (Jong Hee
Park, 2018), and Bayesian Analysis of Quantile
Regression Models (Bayesian Tobit quantile
regression BTqgr,and Bayesian adaptive Lasso
Tobit quantile regression BALTQqr); and Tau=0.5
by estimating the median through using R
language within package Brq (Alhamzawi, R., &
Alhamzawi, M. R., 2017) . For comparison, we
draw 11,000 iterations of the GS, the first 1000
were ruled out as burn-in. The procedures are
evaluated based on the median of mean absolute
deviations (MMAD). The formula of MMAD is
MMAD = median(mean(|Xp — XB""|))
where B is the posterior mean of .

3.1 Independent and identically distributed
random errors:

Here, simulation examples consider three cases
(dense case, sparse case, and very sparse case),
eight predictors x;.---.xg were simulated
independently from a multivariate normal
distribution with mean 0, and two values of the
variance a2, the o2 is land 4.

3.1.1 Simulation example 1:
This example considers a dense case model, the
true regression coefficients is
B = (0,0.75,...,0.75)’
8
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The response variable was generated according to
the model
yr = ﬁo + 0.75X1i + 0.75x2i + 0.75.X3L' + 0.75.X4_i
+ 0.75x5i + 0.75x6i + 0.75X7i
+ 0.75x8i + &;
We simulate 100 observations and B, = 0, the
pair wise correlations between x; and x;

is 0.5,

Method o? MMAD SD

BALTR EEER AT
Tr CYIvYA CAYsov
BTr 1 «Yagqo YoAdy
BTqr AR RN

BALTqr CYAY ) CATEAA

BALTR onyen BEEERE
Tr VOYYA) CAYVYY
BTr 4 < AY1d0 CAYA
BTqr CAYvay YR

BALTqr Ao L avy
Table 1: MMAD and SD for the dense case

example

3.1.2 Simulation example 2:
This example considers a sparse case model, the
setup is the same in simulation 1, except the
number of observations is 150, and the true
regression coefficients is
B =1(0,2100,200,0)

The response variable was generated according to
the model

Y, =Bo+ 2xy; +xp + 2%, + &

Method a* MMAD SD
BALTR LYoYo. | L iAV.:
Tr LYVY oAV
BTr 1 L YAYYY AR
BTqr +. Y4100 DAREER
BALTqr « YoAoR +oedoy
BALTR CER A YY)
Tr ~.°T‘V°V ~.\i~ii
BTr 4 LOVIAL [ vYes
BTqr 090, < YAYAY
BALTqr L OVTAT Y400

Table 2: MMAD and SD list for the simulation 2

3.1.3 Simulation example 3:
This example considers a very sparse case model
with high correlation. We simulate 200
observations and the pair wise correlations
between x; and x; equals to 0.75, and the true
regression coefficients is

B =(0,4,0,0,0,0,0,0,0)'
The response variable was generated according to
the model

i =PBo+4x; +g

and intercept coefficient is 0 .

Haider .K/Rahim.J

The response variable was generated according to
the model
yi =PBo+4xy; + ¢

and intercept coefficient is 0 .

Method a’ MMAD SD
BALTR cYYAYE v aloty
Tr DARRE-X e YY
BTr 1 CYYAL | Ve
BTqr ARYAN e Yavae
BALTqr « YY)V ¢o e e YYYA
BALTR CEYYA)Y cAYAEA
Tr L EoYeY IRRE-ARY
BTr 4  EAYOV CAYYAT
BTqr AR EPN cAYava
BALTqr L EYoYe DARRA S

Table 3: MMAD and SD list for the simulation 3

3.2 Simulation example 4:
This example considers a Difficult case model.
We simulate 100 observations, four predictors
x..+.x, were simulated independently from a
multivariate normal distribution with mean zero
and variance a2. We consider three values of o2
(1, 4 and 9), and the pair wise correlations
between x; and x; equal to (-0.4), the true
regression coefficients is
B = (0,5.5,5.5,5.5,0)'

The response variable was simulated according to
the model

yi =0+ 0.55x; + 0.55x; + 0.55x3; + 0.55x4;

+£i
Method a? MMAD SD
BALTR CYYYAY CAYYYY
Tr CYYATE YYAGY
BTr 1 YRRy L VEgon
BTqr XYY YRR
BALTqr CYYYYY Yoy,
BALTR EEYZY CYYYVY
Tr ¢ OYAVY AEE
BTr 4 IARE Yo YA
BTqr «.04Y0) 6084y
BALTqr AMER YYY
BALTR Y VY CEYVYY
Tr « TOVAL « Yt
BTr 9 cavaay . EV.ov
BTqr CYYATY L EAY.O
BALTqr CIAGYY CYEVY

Table 4: MMAD and SD list for the simulation 4

From above tables 1, 2, 3 and 4, we noted that the
BALTR procedure performs better than the other
procedures in terms the median of mean absolute
deviations.
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3.3 Simulation example 5 (Heterogeneous
random errors):

In this section, errors are considered to

demonstrate the performance of our proposed

procedure for VS. We simulated 100 observations

from the model

vi=x'B+ (1 +x3)¢;,
& ~N(0,1) and g = (0,1,1,1,1,,0,0,0,0,0)’
where x;; ~ N(0,1),
x3; ~ Uniform[0,1],
X9 = x1; + x3; + 2;,2; ~ N(0,1)

this process is often used to simulate data in the
VS context (example of Wu and Liu, 2009 and Li
et al., 2010). In this simulation, added 5
independent standard normal noise variables,
X4+ Xg, Were simulated. In this paper, we set

¥, = max(y;, 0}

Method MMAD SD
BALTR 0.26923 0.06925
Tr 0.27969 0.06596
BTr 0.27911 0.07437
BTar 0.32919 0.07278
BALTqr 0.29920 0.06916

Table 8: MMAD and SD list for the simulation 5

Table (8) reports MMADSs and SDs of simulation
example 5. The performance of BALTR
procedure is excellent compared to the other
procedures (Tr, BTr, BTqr, BALTQqr).

4.Real Data Analysis:

In data analysis section, we implement our
proposed procedure on wheat production data, we
apply the four Tobit regression procedures in this
data to compare in terms of the coefficient's
estimation accuracy. The real data used for this
study is taken from the national program for the
development of wheat cultivation in Iraq -
Qadisiyah governorate branch (2017). This real
data contains 584 observations and are based on
10 explanatory variables. The outcome of interest
in this dataset is (Percentage increase of wheat
yield per dunam "2500 m?").

The other ten variables (covariates) include
fertilize the field with Urea (numeric variable
coding the quantity of fertilizer in kilogram; "U"),
the date of sowing wheat seeds (numeric variable
coding date: 1 the ideal date, 2 early date, 3 late
date; "Ds"), the quantity of sowing wheat seeds
(numeric variable coding the quantity of sowing
seeds in kilogram; "Qs"), laser field leveling
technique (numeric variable coding date: 2 if
there are used this technique; 1 otherwise; "LT"),
fertilize the field with compound fertilizers
"NPK" (numeric variable coding the quantity of
fertilizer in kilogram; "NPK"), seed sowing
machine technique (numeric variable coding date:
2 if there are used this technique; lotherwise;
"SMT"), planting successive mung bean crops
(numeric variable coding type: 2 planting mung
bean, 1 otherwise; "SC"), used herbicide for weed
control (numeric variable coding the quantity of
herbicide in milliliter; "H™), high Potassium
fertilizer "Potash™ (numeric variable coding the
quantity of fertilizer in kilogram; "K") and
Micro-Element  fertilizer (numeric  variable
coding the quantity of fertilizer in gram; "ME").

Method MSE
BALTR 0.4617
Tr 0.4784
BTr 0.4795
BTqr 0.4724
BALTqr 0.4685

Table 9: wheat production data analysis: Mean
squared prediction errors (MSE) based on a test
set with 584 observations.

Table (9) reports the mean squared errors for five
Tobit regression procedures. We can observe that
mean squared errors of BALTR procedure is
lower than that of Tr, BTr, BTqr and BALTqr,
that means BALTR procedure produces the
lowest prediction errors.

that means BALTR procedure produces the
lowest prediction errors.
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Bo U Ds
Estimate Estimate Estimate
(25%, 95%) (25%, 95%) (25%, 95%)
-0.039 0.021 0672
BALTR | (04020285 | (0.020,0023) | (-0.749,-0.620)
Tr -0.085 0.021 -0.664
(-0.872,0.702) | (0.014,0.028) | (-0.786,-0.541)
BTr -0.082 0.021 -0.666
(-0.899,0.720) | (0.014,0.028) | (-0.791, -0.546)
BTar -1.228 0.024 -0.654
4 (-1.815,-0.546) | (0.018,0.031) | (-0.806,-0.505)
-1.072 0.024 -0.649
BALTAr | 1715 .0263) | (0.017,0030) | (:0.797, -0.498)
Qs LT NPK
-0.022 1.333 0.005
BALTR | (0.025,-0.020) | (1012 1648) | (0.003,0.007)
Tr -0.022 1.357 0.005
(-0.035,0.009) | (0.681,2.034) | (-0.008,0.017)
BTr -0.022 1.358 0.005
(-0.035,-0.008) | (0.658,2.035) | (-0.008,0.018)
BTar -0.006 1.428 -0.005
q (-0.018,0004) | (0.459,2.343) | (-:0.017,0.007)
-0.008 1.441 -0.004
BALTAN | 0220002 | (0.493,2.181) | (-:0.016,0.008)
SMT SC H
-0.090 0.925 0.004
BALTR | (0409,0161) | (0841, 1.003) | (0.004,0.005)
T -0.143 0.933 0.004
(-0.838,0.553) | (0.611,1.255) | (0.003,0.006)
BTr -0.148 0.931 0.004
(-0.840,0.559) | (0.601,1.259) | (0.003,0.006)
BTar 0.248 0.991 0.005
4 (-0.631,1.204) | (0.651,1.313) | (0.004,0.007)
0.192 0.967 0.005
BALTAN | (0433, 1.132) | (06221203 | (0.004,0.007)
K ME
0.033 0.006
BALTR | (0.032,0034) | (0.006,0.006)
Tr 0.033 0.006
(0.026,0.040) | (0.005, 0.008)
BTr 0.033 0.006
(0.026,0.040) | (0.005, 0.008)
0.024 0.008
Sy (0.014,0.036) | (0.005,0.010)
0.025 0.007
BALTAr | (0.014,0086) | (0.0050.0104)

Table 10: Coefficients estimation and Credible

intervals Cls (25%, 95%)

Although, our Cls in table (10) are narrower than
is including all the
estimations of other procedures.

the other

methods,

A
iy
A
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Figure 1: BALTR predictors histograms of wheat

production data
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5 N s = | b
| £ on o
% = | .
"] - Figure 3: BALTR predictors autocorrelations of
h wheat production data
5 The predictors histograms of the wheat
§ i g production based on posterior samples of 11,000
- o iterations are point up in figure 1, these
g A histograms  displayed that the conditional
= , posteriors of wheat production data predictors are
g 5

——— E— ‘ the preferred stationary truncated normal.

e e - From figure 2, the trace plot indicates reasonably
good convergence, and the noise does not appear
to drift majorly. The chain has reached stable and
the mean keeps relatively constant. it is mean that
the chain is mixed well and converged.

From figure 3, the explanatory variables
—_— (covariates) in this real data are highly correlated
and the mixing of the MCMC chain was
reasonably good.

MroBenstists
o OmE b0

e omem oo

Figure 2: BALTR predictors trace plots of wheat
production data 5.Conclusions:

This paper has introduced a new procedure for

’ model selection of Tobit regression, we proposed
v v BALTR for VS and coefficient estimation. Our
= proposed procedure depends on the scale mixture
Ce ] S L esscscsss uniform as prior distribution. We advanced new
- - T e T Bayesian hierarchical models for BALTR. In
addition, we introduced a Gibbs sampler for
BALTR method. We clarified the features of the
o s new procedure on both simulation studies and
- real data analysis. Results displayed that BALTR
] (;“w:;om- e | method performs very well in terms of VS and

e e coefficient estimation.
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