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Abstract:

The aim of this paper is to study the omega limit set with new concepts of the prolongation
limit random sets in random dynamical systems, where some properties are proved and
introduced such as the relation among the orbit closure, orbit and omega limit random set. Also
we prove that the first prolongation of a closed random set containing this set, the first
prolongation is closed and invariant. In addition, it is connected whenever it is compact
provided that the phase space of the random dynamical systems is locally compact. Then, we
study the prolongational limit random set and examined some essential properties of this set.
Finally, the relation among the first prolongation, the prolongational limit random set and the
positive trajectory of a random set is given and proved.
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1. Introduction.

Random dynamical systems arise in the modeling of
many phenomena in physics, biology, economics,
climatology, etc. , and the random effects often
reflect intrinsic properties of these phenomena rather
than just to compensate for the defects in
deterministic models. The history of study of
random dynamical systems goes back to Ulam and
von Neumann in 1945 [1] and it has flourished since
the 1980s due to the discovery that the solutions of
stochastic ordinary differential equations yield a
cocycle over a metric dynamical system which
models randomness, i.e. a random dynamical
system. Arnold and 1.D. Chueshov (1998) [2]
presented the universal view of an order-preserving
random dynamical system, offered several examples
and studied the chattels of their random equilibria
and attractor. Son (2009)[3] studied the Lyapunov
exponents for random dynamical systems. Yingchao
(2010)[4] used the theory of random dynamical
systems and stochastic analysis to research the
existence of random attractors and also stochastic
bifurcation behavior for stochastic Duffing-van der
Pol equation with jumps under some assumptions.
Kadhim and A.H. Khalil(2016)[5] they define the
random dynamical system and random sets in
uniform space are and proved some necessary
properties of these two concepts. Also they study the
expansivity of uniform random operator.

The structure of this paper is as follows: In Section
2 we recall same basic definition and facts about
random dynamical. In Section 3 we study the
definition of trajectories in random dynamical
system. In Section 4 we recall some basic fact about
omega-limit random set in random dynamical
system. In Section 5 will be devoted to the concept
of prolongations and prolongational limit random
sets under a random dynamical system. We define
the first prolongations and prolongational limit
random sets of random dynamical system
(Definition 5.1,5.5) .If M(w) is invariant. We have
first prolongations and prolongational limit sets of
random  dynamical  system so invariant
( Theorem5.3, 5.7 ). the first prolongation and the
prolongational limit random set are closed sets
(Theorem5.2 ,5.6) .If X is locally compact. We have
first prolongations and prolongational limit sets of
random dynamical system are connected
( Theorem5.4, 4.13).

2. Notation and basic definitions

In this Section we recall some basic definition and facts
about random dynamical system and notation .

2.1. Notations

(1) G =locally compact group.

(2) X=metric space with metric d.

(3) (O, F, P) is a probability space.
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(4) X2 = the set of all measurable functions from Q to
X.

(5) S[A,7]
()H(A, 1)

the set{y: d(y,A) < r}.
the set{y: d(y, A) = r}.

2.2. Basic definitions
Definition 2.2.1 [6-7]:The metric dynamical system
(MDS) is the 5-tuple (G, Q, F, P, 8) where (Q,F,P)isa
probability space and 8:6xQ-Q is (B(GQ)®
IF, F) —measurable, with
0 0(e,w) = Idg ,
(i) 0(g *h w)=06(g,0(h w)) and
(iii) P(O,F) =P(F) ,VFEFVwEG .
Definition2.2.2[6]: The MDS (G, Q,F,P,0) is said
to be topological metric dynamical system (TMDS)
if Q is topological space and 8:GxXQ — Q is
continuous.
Definition2.2.3 [6-8]:The mapping ¢: G X A X X =
X is said to be measurable random dynamical
system on the measurable space (X, (X)) over
an MDS (G, Q, F, P, 8) with if it has the following
properties:
(i) ¢ is B(@)RFRL(X), B(X) — measurable.
(i) The mappings ¢(t,w) = ¢(g, w,): X - X
form a cocycle over 6(-), that is, Vg,h € G,w € Q
they satisfy
p(e,w) =idy Vo € Q, (2.2.1)
¢(g*hw)=¢(g,6hw)ephw)  (222)
The RDS (G, Q, X, 6, ¢) shall denote by (6, ¢).
If the function ¢(,w,):TxX->X, (tx)+~
@(t, w,x), is continuous for every w € Q then the
measurable dynamical system is called continuous
or topological R
Definition 2.2.4 [9]: Let (0,¢) be a measurable
RDSand C c Q x X aset.
(i) C is called forward invariant if for t > 0
C(w) € p(t,w) 1C(O(t, w))P —a.s.
equivalently

o(t,w)C(w) c C(O(t,w))P —as..
(ii) Cis called invariantif forallt € T

C(w) = p(t,w) 1C(O(t, w))P —as.,
for two-sided time equivalent to

o(t,w)C(w) =C(O(t,w))P —a.

Definition 2.2.5 [9-10]: Let (Q,F) be a measurable
space and (X, d) be a metric space which is considered a
measurable space with Borel ¢ — algebra B(X). The set-
valued function A4:Q - B(X), w — A(w) , is said to be
random set if for each x € X the function w+—
d(x,A(w))is measurable. If A(w)is closed (connected)
(compact) for all w € Q, it is called a random closed
(connected) (compact) set.
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Definition 2.2.6 [10]:
An RDS (6,¢) is said to be asymptotically
compact in the universe D, if there exists an
attracting random compact set {B,(w)}, i.e., foe any
D € D and for any w € 2 we have

lim;_,c, dx{p(t,0(-)w)D(O(-)w/
By(w)} =0, (2.2.3)
where dy{A/B} = sup,e,4 dist(x, B).

3. Definitions and characterizations
In this section we study the trajectories in random
dynamical system. First we shall state the definition
of trajectories in random dynamical system and We
describe some measurable properties of the
trajectory of random dynamical system.
Definition 3.1: Let D:ww— D(w) be a
multifunction. We call the multifunction
w = Y5(@) = Uz 9(1,6_;0)D(0_, )

the tail (from the moment t) of the pull back
trajectories emanating from D. If D(w) = {v(w)} is
a single valued function, then w — ¥, (w) = y3(w)
is said to be the (pull back) trajectory ( or orbit)
emanating from wv. That is w— y,(w) =
UrzO (p(T' 9_.[(0)17(9_.[&))
Definition 3.2: Let v € X% and y,, v,/ and y, be
the mappings form X in to 2% defined as follows
(1) w(w) ={p(t,6_w)v(0_ w):t € R}
) vy (@) ={o(t,0-rw)v(0_,w): t € R}
Q) vy () = {p(t,0_,w)v(6_tw):t € R}
For every v € XS, the sets y,, S, and y, are
respectively called the trajectory, the forward semi-
trajectory and backward semi-trajectory.
Definition 3.3: Let x € X. and v,, ¥, and y; be the
mappings form X. in to 2% defined as follows
(1) vx(@) ={p(t, w)x:t € R}
) ¥5 (w) = {p(t, w)x:t € R}
@) vx (w) = {p(t, w)x:t € R}
For every x € X, the sets y,, y5, and y, are respectively
called the trajectory, the forward semi-trajectory and
backward semi-trajectory.
Proposition 3.4: For and v € X.2, the sets v, .5, and
¥, are invariant random sets.
Proof. Let v € X.&. To show that y, is an invariant. Let
x € y,(w) and t € R. Then there exists s € R such that
x =@(s,0_s0)v(0_;w). Now
P{w: ¢(t, w)x € ,(0,w)} =
P{w:x € p(—t,0,w)y,(0,w)}

= P{w: ¢(s,0_sw)v(0_sw) €
¢(—t,0,w)y, (6, w)}

= P{w: v(0_;w) € ¢(—s,w) o
¢(—t,0,w)y, (6, w)}

= P{w: v(0_sw) € p(—s,w) o
o (—t,0,w)y,(6,w)}

= P{w: v(0_sw) € @(—s,0_1w") o
(=t 0y (@)}
where w' = 6, w.
= P{w:v(0-sw) € p(—s — t, 0y, (")}
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=P{0_ 0" v(0_,0_10") € p(=s — t, 0" )y, (w")}
= P{w":v(6,0") € o(r,w)y, (0"},
r=-—s-—t.

=P{w": o(-7,0,0)v(0,0") € y,(0w)} = 1.
Thus for every x € y,(w) and t € R, we have

P{w: ¢(t,w)x € y,(6,w)} = 1.
This means that the set y,(w) is an invariant. In a
similar way we can show that y,f, and y, are invariant
random sets.

4. Omega-limit set in random dynamical system

In this section, we state the definition of omega-limit set
in random dynamical system is due to [10-11].Thus, we
give some basic properties of omega-limit set in random
dynamical system.

Definition 4.1: The multifunctions
N (w) = {y € X::

w —>

there is a sequences {t,,} in R and {x,,}in M(6_, o) with t, —

+o0 and ¢(ty,, 0_;, w)x, — y for all w}

w— Iy(w)={yeX:

there is a sequence {t,,} in R with {x,}in M(0_, w) t, —

—o and @(ty,, 6_¢, (w))x,, — y for all w}
are said to be the omega (alpha) -limit set of the
trajectories emanating from x respectively.
If M = {x}, the we have
[ w—T)] x*"+ (w)={yeX
: there is a sequences {t_ n} in R witht_n
— 4ooand p(t_n,0_(f —t] -n)w)x — yforall w}
w—Ti(w)={ye
X.:there is a sequence {t,,} in R with ¢, —
—o0 and @ (t,, 0_¢,(w))x — y forall w} .
The following assertion gives another description of
omega-limit sets.
Theorem 4.2: Let I3 (w) be the omega-limit set of
the trajectories emanating from M. Then
Ty (@) = Neso Vﬁ(w) =
nt>0 Urzt 90(‘[' Q—Tw)M(Q—Tw)
Proof. Suppose that y € I, (w), the for any ¢t > 0
there exists {t,} in R and {x,,} in M(6_, ) such
that  @(t,, 0_¢,w)x, —y. Hence X, €
Uzse M(6_,w). Thus
(p(tn' g—tnw)xn € Urzt (p(T' H—Tw)M(e—‘L'w)

c Urzt (p(T' e—rw)M(g—rw)'

Therefore
Y € U @(1,0_;w0)M(6_,w), forall t > 0.

Thus y € nL’>0 Utzt ¢(T' G—Ta))M(e—‘[w)'
To prove the converse inclusion, let
Y € Neso Uz 9(7, 0 0) M (0_ )
then y € Uzsr (7, 0_;0)M(6_,w) for all
In particular,

VE Upno(, 0_;0)MO_,w) for all n=
1,2, ...

t>0.
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Therefore there exists a sequence {y,} in
Uzsn @(7, 0_;w)M(6_,w) such that y, — vy . Thus

Vn € Upsn @(7,0_r0)M(6_;0) and d(y,y,) <
1/n, n =12, ... It follows that there exists t, = n
and x, € M(6_,w) such that y,, = <p(tn, Otnw)xn.
That is @(tn, 0, )x, — y. Consequently,
y € Iy (w).

Iy (@) = Neso yDt (w) =
Neso Urse (T, 6 0) M (6_,w).

Ty (@) = Neso Vi (@) =

r]1.“>0 Urzt (p(Tr Q_Tw)M(H_Ta)).SinCE ylg ((’J) iS
closed an invariant, then so is [y, (w) = N¢so V5 (w).
Theorem 4.3: Let I} (w) is a random closed set,
then the proof is devided in two parts:

1: Indirect Proof. By above theorem we have
Ty (w) = Neso v5(w) =

nt>0 Urzt (p(T' g—rw)M(e—rw)-

Since yj(w) is closed an invariant, then so is
Ty (@) = Neso V5 (@).

2: Direct proof. Let y € [}t (w). Then there exists
{y,} in be a sequence in T (w) such that y, — y.
We wish to show that y € I (w). Indeed for each
positive integer k, there is a sequence {t¥} in R and
{xi} In M(6_pxw) with t¥ — 4+ and
@(tx,0_x(w))xs — ¥ . We assume without loss
of generality that d (yk, ) (tif, H_tzﬁw) x,’{) <1/k
and t¥ > k for n > k. Consider now the sequence
{t,} in R with ¢, =t} and a sequence {x,} in
M(O_;,w) with

X, =x;. Then t, — 4o and we claim that
) (t,’f, 9—tk“’) x,, — y.T0 see this observe that

d((p(tn, H_tnw)xn,y) < d((p(tn, H_tna))xn,yn) +
d(Yn,¥)

<1/n+d0ny).

Since 1/n and d(y,,y) tend to zero we conclude
that

d((p(tn, H_tna))xn,y) — 0
Consequently  ¢(t,6_,,w)x, >y and yE€
I (). Thus T (w) = T (w), i.e., Tif (w) is closed.
Theorem 4.4: Let X. be any metric space and
x € X.. Then

IH(0,w) = o(t,w)I (w) forevery t € R.
Proof. To prove TI;(0,w) = @(t,w){(w) .Letz €
I} (6,w).Then
there is a sequences {t, } in R with t, —
+oo and @(t,, 0_;,0,w)x — z
Pty +t—1t,0_,0w)x — z
ot w) p(t, —t,0_,0w)x — z
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oty —t,0,, w)x — @(t,w) 'z where
t, —t — +oo. Thus we have ¢(t,w) 1z € I} (w).

Thenz € (t, w)I} (w)

Then T} (6,w) € @(t,w)l}(w) .Now letze
o (t, w)I} (w). Then there
isy € I} (w)suchthat z= ¢(t,w)y .Then
there is a sequences {t, } in R with t,, —

+o0 and ¢(t,, G_tn)x — y. By continuity ¢(¢t, w) ,

Pt 0)9(tn, 0, w)x — ¢t @)y ot
th O0_¢,W)x — z

@(tn +1t,0_1_, 0w)x — z Thus we have
z € I} (6,w) .Then

o(t, o)} (w) S T} (Ow) .Thenlf (B,w) =

o (t, )Y (w).
Theorem  45.1f  (t,x) — ¢(t,0_ w)x is
continuous, then
i (@) = vy (@) U T (w).

Proof. First, note that yh(w) cyh(w) . By
Theorem (4.2), we have I () € yi(w).
Therefore v} (w) 2 yi(w) U Ty (w). To prove the
converse inclusion, let y € y);(w). then there exists
a sequence {y,} in vy} (w) such that y, — y. Now
Vn € Uzt 0 (7, 0_,w)M(6_,w), then there exists a
sequence {t,} with 7, >t for every n and {x,} in
M(6_,,w)such that v, = ¢(tp, 0_,,@)x,. We
have two cases:

Case I: The sequence {r,} has the property that
T, — +oo, in which case y € I} (w).
Case II: There is a subsequence {z,,} in R* such
that 7, — 7 € R* (as R* is closed). But then

) (Tnk, G_Tnkw) x — @(1,0_,w)x € y5(w) (since
(t,x) — @(t, 6_.w) (since (t,x) — @(t,0_ w)x is
continuous). Since (T"k’ 0_s,
the uniqueness of the limit we have ¢(r,0_,w)x =
y €y, (w). From Case | and Case Il, we have
y € vf(w) U Ty (w). Hence

i (@) < yiy(w) U T (w).
Therefore v (w) = yi (w) U Ty (w)
Corollary 4.6: For any x € X..y{ () =y, (@) U
I (w) and v (@) = ¥x (0) U T (w) .
Proof. By the definition we have ¥, (w)U
I (w) € v (w).To show that y}(w) € yf(w) U
I,f (w),let y € v (w).Then there is a sequence {y,}
inyf(w) such that y, >y . Sincey, in
yZ (w) .Then Yo = @(Tn,0_,, @)x for a 7, in
R*.Either the sequence {r,} has the property that
T, = +00,in which case y € I} (w), or there is a
subsequence T, »t € RT(as R* is closed).But
then (T, G_Tna))x - ¢(1,0_,w)x € yF (w), and
since also (T O—r, 0)x >y we
havep(t, 0_,w)x =y €y (w).Thusyt (w) S
¥x (@) UTY (w).Thus yf (w) = 7y (w) VT (w).m

kw) x — vy, then from
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5. Some Properties of the Limit Random Sets
in Random Dynamical Systems.

the concepts of prolongations and prolongational
limit sets are played an essential role. In the
deterministic  dynamical system the formal
definition of prolongation is due to Ura [12] and the
concept of prolongational limit set is due to Bhatia,
Szego6 [13]. By following this line of investigation,
the present paper introduces the notions of
prolongations and prolongational limit random sets
of random dynamical systems. We simplify several
concepts and effects of reclusiveness and
depressiveness from Bhatia and Szegd [2]. We
consider (6, ¢) random dynamical system then we
define the first prolongations and prolongational
limit random set of M .we prove some new
properties of the studying of prolongations and
prolongational limit random sets.

Definition 5.1: Let M:w+— M(w) be
multifunction. The multifunction « — Dj;(w),
where

Dji(w) = {y €X.

: there is a sequences {t,,} in R* and {x,}in M(6_, w )
with ,x, = x €

Np=1 M(6_;, ) and @(ty,, 0_,w)x, — yforall w}, is
said to be to be first positive prolongation of M. If the
set R* replaced by R~ in above we get the notation of
first negative prolongation of M and shall denoted by
Dy (w).

If M = {x}, the we have

Df(w) ={y eX:

there is a sequences {t,,} in R* and {x,}in X with ,x, —z, = @(t, —t,0_¢ 4+ ©)x,.

x and @(t,, 0_,w)x, — y forall w}
Theorem 5.2: D (w) is closed.
Proof. To show that D;;(w) is closed. Let y € D};(w),
then there exists sequence {y,} in Df;(w) such that
y, — v. Since y, € D};(w) for every n. Then by
definition of D}, (w) there exists sequences {t¥} € R*
and {xi} €M(0_yxw) such that xy —x¢€
Nr=iM(0_xw)  and  @(ty,0_xw)xy — v We
assume by taking subsequences if necessarily that
t >k, d(xk,x) < 1/k and d(o (t5,0_ k) x5 30 <
1/k for n = k. Now consider the sequences {x}, {t"} .
Clearly x; —x €Ny M(6_snw) and {t7} € RT.
Note that

d(e(tr, B_t;llw)x,’f,y) <d(e(ty, G_t;lzw)x;‘,yn) +
d(yn, y)

<1/n+dQ,y).

Since {1/n} and d(y, y) tend to zero, then
o(tn,0_nw)xy — y, then y € Df;(w). This means
D}, (w) = Dj;(w) and so Dj;(w) is closed.

Theorem 4.3: If M is invariant, then so is D; (w) .
Proof. We need to show that ¢(t, w)D}(w) =
D (6w ).
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Let z € (t, w)Df;(w), then there exists y € D (w)
such that
z = @(t,w)y.
To show that z € D};(6.w ).Since y € D};(w), there
exist sequences {t,} in R* and {x,} in M(6_; 6.w )
with x,, — x € Ny-; M(6_,w ) and
@(ty, 0_¢,w)x, — y. Since @(t,w) is continuous,
then
P(t, ) o @(tn, 0_¢, W)X, — @(t, )y, then
p(t+ty, 9—t—tn °0iw)x, — @(t,w)y
for and y € Dj;(w) by Definition. According to Def.
z=@(t,w)y € D} (0,w). then  @(t,w)DfH(w) c
D (6,w). To prove the converse inclusion, let z €
D} (6, w). by Def. there exist sequences {t,,} in R* and
{y,}in M(B_tnGtw ) with
Yo — Y €Ny M(6_, 0,0 )and so
y € M(0_,6,w ) for all n. Since M is an invariant
Yn € M(6_;, 0, ), then
Yn € @(t,0_,w)M(O_, w ), then there exists x, €
M(6_;,w ) such that y, =@(t0_,,w)x, then
Xn = @(—t,0.0_; w)y,. Now,
y €Nz @(t,0_, 0)M(0_p 0 ).
Theny € ¢(t,6_,,0)M(6_,w ) forall n.
Then there exists x € Ny, M(0_,, @ ) such that
y=o(0_,w)x for all n. Since y, —y, ie.
@(tn, O, w)xy — @(t,0_, w)x
P (tn, 0-,0:0)yn — 7.
P, w) e p(ty —t,0_¢ 40Xy — 2
= ¢(t,w) z, — z, with
(5.1)
From (2.2.3) we have that z, — By(w) as n — oo.
Since By(w)is compact, there exist {n,} and b € By(w)
such that z, — b as k — oo. Moreover by Def.
b € D} (w). From (5.1) we obtain that z = ¢(t, w)b.
Therefore Df;(8,w) < @(t, w)D(w) for all t > 0 and
w € Q. Thus Dj; (w) is invariant.
We now discuss about the connectedness of the First
Prolongation .

Theorem 4.4: Let X. be locally compact. Then D3, (w)
is connected whenever it is compact.

Proof. Let Df;(w) be compact but disconnected. Then
there are two compact non- empty setsP and Q such
thatPU Q = Df(w) and PN Q =@ .Since P and Q
are compact d(P,Q) > 0.Thus there is r > 0 such
thatS[P,r] , S[Q, r]are compact and disjoint .Now x € P
or x € Q .Let x € P .Then there is a sequence {x,} in X
and a sequence {t,} in R*such thatx, — x,and
@(tn, 0_¢, w)x, — y € Q We may assume x,, € S[P,7]
and  @(tn, 6_¢,w)x, €S[Q,r] .Then the trajectory
segments  @(sy, 0_5,w)x, ,0<s, <t, Iintersect
H(P,r),and therefor is a sequence {t,}, ,0<71, <t,
such that ¢(ty,, 8, ,w)x, € H(P,r) .Since H(P,r) is
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compact we may assume that ¢(t,,0; w)x, — z €
H(P,7).Then zeDj(w)but z¢PuU Q as z€
H(P,r) .Thus contradiction shows that Df;(w) is
connected.
Definition _ 5.5:  Let M:w+— M(w) be
multifunction. The multifunction w — J} (w), where
Ii(w) ={y eX.
: there is a sequences {t,,} in R* and {x,}in M(6_, w )
with ¢, — +o,x, — M(w)and ¢(t,, 0_, w)x, —
yforallw} , is said to be to be first positive
prolongational limit set of M. If the set R* replaced by
R~ in above we get the notation of first negative
prolongational limit set of M and shall denoted by
In(®).
If M = {x}, then the definition of J;;(w) becomes

Ji) ={y X

: there is a sequences {t,,} in R* and {x,,}in

X with t,, — +oo,

X, — x and @(t,, 0_, w)x, — y forall w}.
The following result show that the prolongational limit
set is closed and invariant.

Theorem 5.6: J;;(w) is closed.
Proof. To show that J;;(w) is closed. Let y € J; (w),
then there exists sequence {y,} in Ji;(w) such that
¥, — v. Since y, € Ji(w) for every n. Then hy
definition of J;; (w) there exists sequences {t¥} € R*
and  {x;} € M(6_jxw) such that xi— M(w),
tk — 400 and ¢(tk, B_t;gw)x,’f — y,. We assume by
taking subsequences if necessarily that t¥ >k |,
d(xf,x) < 1/k and d(g (th,6_yw) xk, i) < 1/k for
n = k. Now consider the sequences {xj}, {t} . Clearly
x — M(w) and t¥ — +oo. Note that

d(p(t, 0_mw)xl,y) < d(e(th, 0_mw)xt, ) +
AW, y)

<1/n+dny).
Since {1/n} and d(y, y) tend to zero, then

o(tn, 0_nw)xy — y, then y € Ji(w). This means
Jii(@) = Ji (w) and so J 3 (w) is closed.

Theorem 4.7: If M is invariant, then so is /3 (w) .
Proof. We need to show that ¢(t, w)/(w) =
In(Bw).

Let z € ¢(t, w)/5; (w), then there exists y € Ji(w) such
that z = @(t, w)y.

To show that z € J(8,w ).Since y € J# (w), there exist
sequences {t,} in R* and {x,} in M(6_ 6.w ) with
X, — M(w), t, — +oo and O (tn, O_¢,w)x, — .
Since @(t, w) is continuous, then

p(t,w)o @ty -, w)xn, — @(t,w) y.
By the cocycle property, we have

ot + ty, O_i—t,° Orw)x, — ¢(t,w)y
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for and y € Jh(w) by definition. According to
definition. z = @(t,w) y € Ji;(6,w). then Ji(w) c
Ji1(6,w). To prove the converse inclusion, let z €
Ji:(6.w).By definition there exist sequences {t,} in R*
and {x,,} in M(6_,, 6,0 ) with x, —> M(w), t, — +oo
and  @(t,, 6_¢,0.w)x, — z. By the cocycle property
we have
(p(t’ (1.)) ° (p(tn -t e—tn+tw)xn —z

= ¢(t,w) z, — z, with
Zn = @(ty — t, g—tn+tw)xn- (5.2)
From (2.2.3) we have that z, — By(w) as n — oo,
Since By(w)is compact, there exist {n;} and b € By(w)
such that z, — b as k — co. Moreover by Def.
b € Ji;(w). From (5.2) we obtain that z = ¢(t, w)b.
Therefore J4(0,w) € @(t, w)/;(w) for all t >0 and
w € Q. Thus J(w) is invariant.
Theorem 5.8: D (w) = yi(w) U Ji(w).
Proof. yih (@) U Ji#(w) € D (w). To prove the
converse inclusion. Let y € Df;(w) by Def. there exist
sequences {t,} in R* and {x,} in M(6_, w ) with
X, — M(w) and @ (tn, O_,w)x, — y. We may
assume that either ¢, —t€R" or ¢, — +oo, if
necessarily by taking subsequences. In the first case
@(tn, 0_¢,0)x, — @(t,0_,w)x (since ¢(,w,):RX
X — X is continuous for every w € Q). By uniqueness
of the limit we have ¢(t,0_w)x =y € vyt (w). In the
second case y € Ji(w) by Def. of Jf(w). Thus y e
Ya' (@) U J37(w). Hence D} (w) = vy (w) U Jji ().
Corollary 5.9: D (w) = v (w) U Jf (w).
Proof. By definitions y,f(w) U J{(w) c D¥(w). . To
prove the converse inclusion. Let vy € D} (w) by Def.
there exist a sequences {t,,} in R* and a sequences {x,,}
with x,, — x such that @O(tn, 0_¢,w)x, — y. We
may assume that either t, — ¢t € R* or t, — +oo, if
necessarily by taking subsequences. In the first case
@(tn, 0_¢,w)x, — @(t,0_w)x (since ¢(,w,):RX
X — X is continuous for every w € Q). By uniqueness
of the limit we have ¢(t,0_.w)x =y € y,' (w). In the
second case vy € J{ (w) by Def. of Jf(w). Thus y €
¥x (@) U J{ (w). Hence
Dy () = vy (w) U J; (w).
Theoremb.10:Let

x,y € X with the property that

x = @(t,0_,w)y, forevery t in R and
w € Q. Then y € J}(w) ifand only if
x € J; (w).

Proof. Suppose that y € Jf(w). Then there exist
sequences {t,} in R* and {x,} in X with x, — x,
tn = 4+ and  @(ty, O_,w)x, — y. Set 7, == —t,
and y, = @(t,, 0_,w)x,. Then {z,,} is a sequence in
R~ with 7, — —c0 and {y,} is a sequence in X and
In Y-
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Finlay we need to show that ¢(t,,, 0_;, ®)y,, — x.
d(‘p(fn' G—an)Yn'x) =
d((p (Tn' H—an) ° (p(tn' H—tnw)xn' X)

(@ (T, 8-, ) © @(tn) -1, )X, (T, 01, )),

= d(q)(tn' e—tnw)xn' Y) —0

Then we have @(t,,0_,, ®)y, — x .Thus x € J; (w).
Similarly we can prove the converse.

Theorem 5.11: J}(0,w) = ¢(t, 0)]{(w)
Proof. To prove Ji(6,w) = ¢(t,w)]f(w) .Let
z € JF(0,w) . Then there is a sequence {t,} in R"
with t, — +o0 and a sequence {x,} in X with x,, — x
such that ¢ (t,, 6, 6,w)x, — z,

Pty —t+60_, 0,0)x, — z

@(t, 0)p(tn = t,0p_, 0)x, — 2

P(th —t, 0, 0)x, = @(t,w) 'z \Wheret, —t
— 400,
Thus we have ¢(t,w) 'z € J7(w) . Then Z€E

o(t, w)]{(w),

, then J¥(6,w)
converse inclusion
Let z € o(t, )/} (w). Then there is

y € JH(w) with z = ¢(t,w)y and a sequence {t,} in
R* with t, — +o and a sequence {x,} in X with
X, — x such that <p(tn, Q_tna))xn —y. By the
continuity of o(t, w),
<p(t’ 0)) ° (p(tn' H—tnw)xn - (p(t! (l))y

(p(t +t, H_tnw)xn — z

(p(t + tn, H_t_thtw)xn — z
t,+t — +,x, — x.

Thus z € J{ (6,w),we have
o(t, w)J7 (W) € J7 (6,w)

Then Jf (6:w) =@(t, w)/7 (w).
Theorem 5.12: If X. is locally compact.Then

I (w) # @ whenever J# (w) is non-empty and
compact.

Proof. If possible let T;i(w ) = @ .Then we claim that
yi(w) is closed and disjoint with/z (w). Thaty;;(w) is
closed follows from y;:(w) = yii (w) U T (w)=y (w)
as Tif(w) =@ ,ThatT}i (w) N J# (w) = @ follows from
the fact that if T;f(w ) N Ji(w) # @,then by invariance
of J(w), Ti(w) S J(w).Since J 4 (w) is compact ,we
will have T3 (w) # @ and compact(remember that any
sequence{y,}in a compact set Q has a convergent
subsequence ). This again contradicts the assumption
I (w)=0 .Thusy;;(w) is closed and T3 (w ) N Ji(w) =
@ .Since Ji(w) is non-empty and compact we have
d(yh (), Ji;(w)) =0 .thusthereisa  r >0 such
that S[J;;(w),r] is compact and disjoint with

C ¢(t,w))f(w) . To prove the

, Where
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yi;(w) . Now choose any of y € Ji;(w) . There
is a sequence {x,} in M(6_,,w) and a sequence
{t.} in R* such that x, >x€enM(6_, ) and
ty > +oo  and, ¢(ty, 6_,, ®)x, — y .We may assume
that x ¢ y;i(w) , <p(tn, O_tnw)xn € S[JH(w),r] for
all . .Then the trajectory segments ¢(s,, 6_s w)xy,
with 0< s, <t, , intersect H(J;;(w),r) and therefor
there is a sequence  {r,} , 0< 1, <t,,such that
@(Tn, 0_g,w)x, € HJF (w),7) .Since H(F (w),7) is
compacte we may assume that ¢(t,, 0_,,w)x, — z €
H(J}(w),r) .By taking subsequences we may assume
that either , >t € R*  ort, > +» If 7, - t,
then by the continuity axiom  ¢(t,, 6_, w)x, —
pt,w)x =z ,ie, z€yh(w) which contradicts
yi(@) n SJH(w),r] =0 A 1, >+ then
z € JH(w) ,but this contradicts z € H(J{ (w),r) as
Jn(w) nH(y(w),r) =0.
Theorem 5.13. Let X. be locally compact. Then
Ji(w) is non —empty
And compact if and only if Dj;(w) is compact.
Proof. Let J4(w) be non—empty and compact .Then
[ (w) is non empty and compact .But then y;}(w) is
compact(y,f (w) is closed with X be locally
compact).Hence Df(w) = y;7(w) U Ji(w)

= yp(w) U Ji(w)is compact .Now D (w) is
compact . Since Ji;(w) € D (w) .Thenj(w) s
compact.
Theorem 5.14: If X is locally compact. Then J(w) is
connected.
Proof: Let J(w) be compact . If J}(w) =0 there is
nothing to prove. So let Jh(w) =@ If JH(w) is
disconnected ,then there are non-empty compact sets
P,Q such that JH(w)=PuQ and =P NnQ =0 .Since
Ii(w) is non- empty and compact ,hence
connected ,we have Tj(w)c P or Tji(w) cQ .Let
Ifw)c P  Sinceygi(w)UP = yh(w) UP
asTy(w) c P and y;(w) is compact. Then
yi(w) U P is compact. Now let Q n (yf (W) UP) = @
@nyppu@nP)+=0@ then QNyy #@.But Q
must be invariant .Thus will show that Tj(w) c
Q,aconradiction .Then y#(w)U P is compact and
disjoint from Q ,DiW)=yi; UJH(w) = (i (w) U
P)u Q since yi(w) UP and Q are disjoint compact
sets we have Dj;(w) is disconnected. Thus is a
contradiction . Then J;7(w) is connected.

6. Conclusion

This paper has been studied the concept of Prolongation
Limit Random Sets in Random Dynamical Systems. we
prove that the First Prolongation of a closed random set
containing this set, the First Prolongation is closed and
invariant, also it is connected whenever it is compact
provided that the phase space of the RDS is locally
compact. Then we study the Prolongational Limit Set for
RDS and proved some essential properties of this set.
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Where we prove that the Prolongational Limit Set for
RDS is closed and invariant. Also the relation among the
the First Prolongation, the Prolongational Limit Set and
the positive trajectory of a random set is given and
proved. Also if the phase space of RDS is locally
compact then the following statements are true : if the
Prolongational Limit Set for RDS is nonempty and
compact, then the omega-limit set is non-empty; the
Prolongational Limit Set for RDS is nonempty and
compact if and only if the the First Prolongation is
compact. Finally the Prolongational Limit Set for RDS is
connected.

7. References:

[1]S.M. Ulam and J. Von Neumann,"Random Ergdic
Theorem ,Bull. Amer.Mth. Soc.51(1945)).

[2] L. Arnold and I.D. Chueshov,"Order —Preserving
Random Dynamical Systems: Equilibria, attractor |,

applications”, Dynamics and Stability of
Systems,13(1998), 265-280 .

[3] D. T. Son,” Lyapunov Exponents for Random
Dynamical Systems”, Phd thesis der Fakult"at

Mathematik und Naturwissenschaften der Technischen
Universit"at Dresden (2009).

[4] X. Yingchao, " The Random Attractors of Stochastic
Duffing-Van Der Pol Equations with Jumps", Chinese
Journal of Applied Probability and Statistics 26(1) Feb
(2010).

[5] 1.J.Kadhim and A.H. Khalil," On Expansive Random
Operators over a Uniform Random Dynamical Systems”,
European Journal of Scientific Research, 142 ( 4)
October pp.334-342 (2016)

94

Sundus .T/lhsan .J

[6] Chuanxi Zhu and Chunfang Chen," Calculations of
random fixed point index". J. Math. Anal. Appl. 339
(2008) 839-844.

[7]1 H.E. Kunze D. La Torreb and E.R. Vrscay," Random
fixed point equations and inverse problems using
“collage method” for contraction mappings",J. Math.
Anal. Appl. 334 (2007) 1116-1129.

[8] Ismat Beg and Mujahid Abbas," Random fixed point
theorems for a random operator on an unbounded subset
of a Banach space",Applied Mathematics Letters 21
(2008) 1001-1004.

[9] L. Arnold, "Random dynamical systems". Springer,
Berlin (Corrected 2nd printing), (2003).

[10] I. Chueshov " Monotone Random Systems Theory and
Applications” Springer- Verlag Berlin Heidelberg
Germany (2002) 31-38.

[11] H. Crauel, Random point attractors versus random set
attractors, J. London Math. Soc., Il. Ser., 63 (2001) 413—
427,

[12] T. Ura, Sur les courbes définies par les équations
différentielles dans I’espace a m dimensions, Ann. Sci.
Ecole Norm. Sup. 70 (1953) 287—360.

[13] N.P. Bhatia, G.P. Szegd, "Stability Theory of

Dynamical
Berlin.( 1970).

Systems", Springer-Verlag,



Journal of AL-Qadisiyah for computer science and mathematics Vol.11 No.1 Year 2019
ISSN (Print): 2074 — 0204 ISSN (Online): 2521 — 3504

Sundus .T/lhsan .J

2 Al plal) Abdaiial) Alal) Cile gana (ailadl) (any
(i) gaind) (Saalipal) QY

aBlS L Gl e il (uai
L) daaly ¢ ciladaly ) g o gailad) o gle S ¢ ciludaly ) acd

s paldiual)

Al Gle ganall saiaa ailie ae Saa ) Jaad (e 4dlall 4o gana 4l )3 g8 Caall 138 (e aagll
Jie saall Gl sall (s gl y 4l s 4l sdiall 4Saaliall dadai¥) 8 40) sdiad) 4ldaiol)
Aaaliall alaill apally Wil Jaall (e 4lall e semay Slually Sluall $ME) G 4Bl
Ols 4e sanall Glli (5 gind 4ilie 43 gdic 4e senad oY) AiY) Gl Ly S g0 4] el
cﬂhsjcaﬁwﬁ@)@\&U\Lﬁo}%ﬁjwuﬁﬁwéjy\duﬁﬁ“
ol i (A sdiall  Salial) aUaill ) slall elizad (o) Ja pda dcal jia () S5 Ladie aday) yie 4 gana (588
ol Al ey Lib a5 4] ptall ASalial) ol alibiindl) 4l 4e same Lioyd o5 (pep Liaa
i gall lusall g allaiiiall 44l de ganay (oY) ALY 4Bl Lia e )yl geanndisY)
A sde 4c ganal

95



