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Abstract:In this paper , we obtain some subordination and superordination results involving 

the integral operator   
 .Also,we get Differential sandwich results for classes of univalent 

functions in the unit disk. 
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1-Introduction : 
  Let H=H(U) be the class of analytic functions in 

the open unit disk   *    | |   +  For n a 

positive number additionally        Let H[a, n] be 

the subclass of H entailing of functions of the form:  

 ( )        
  

       
                        (a    ) .          (1.1) 

Too, let A be the subclass of H entailing of 

functions of the form: 

 ( )    ∑    
 
                                                             

(1.2) 

Let        . The function    is said to be 

subordinate to   , or   is said to be subordinate to  , 

if there exists a Schwarz function w analytic in U 

with  ( )      and |w(z)| < 1 (     ), to such an 

extent that  ( )     ( ( )), In such a case we 

compose         ( )   ( )(   ). If   is 

univalent function in  , then     if and only if 

 ( )    ( )  and  ( )   ( )  
Let              (       ):           If p 

and  ( ( )    ( )       ( )   ) are univalent 

functions in U and if p fulfills the second-order 

differential superordination. 

 ( )   ( ( )    ( )       ( )   )                            

(1.3) 

then p is called a result of the differential 

superordination (1.3).    ( If    is subordinate to  , 

then   is superordinate to  ) . An analytic function q 

is called a subordinant of (1.3) , if     for very the 

functions p filling (1.3).  

An univalent subordinant  ̃ that fulfills     ̃ for all 

the subordinants q of (1.3) is called the best 

subordinant. Miller and Mocanu [5] have gotten 

conditions on the functions     and   for which the 

accompanying ramifications holds  :  

 ( )   ( ( )    ( )       ( )   )  

  ( )   ( )               (1.4) 

For      ,Al-shaqsi [2]  defined the 

following integral operator: 

  
  ( )  (   )   (   )   ( ) 

 
(   ) 

 ( )
∫      (   

 

 
)     (  )     

 

 
(  

              )  (1.5) 

We also note that the operator   
  ( ) 

                 (   ) can be communicated by the 

arrangement development as pursues  

  
  ( )    ∑ (

   

   
)    

  
   .                                

(1.6) 

In addition, from (1.6), it pursues that 

 (  
    ( ))  (   )  

  ( )     
    ( )         

(1.7) 

Ali et al.[1] gotten adequate conditions for certain 

standardized scientific capacities to satisfy 

  ( )  
   ( )

 ( )
   ( )  

 

 

 

where   and   are given univalent functions in U 

with   ( )    ( )   . Additionally, Tuneski [9] 

acquired  adequate conditions for starlikeness of   in 

relations of the amount 
   ( ) ( )

(  ( )) 
   .Recently, 

Shanmugam et al.[7,8], Goyal et al .[4] also gotten 

sandwich consequences for certain classes of 

analytic functions.  

The principle question of the present paper is to 

discover adequate conditions for certain 

standardized systematic capacities f to fulfill:  

  ( )  (
  
    ( )

 
)    ( ), 

and  

  ( )  (
    

    ( ) (   )   
  ( )

 
)    ( ), 

wherever q1 and q2 are known univalent functions in 

U with q1(0)= q2(0)= 1. 

2-Preliminaries : 

With the end goal to demonstrate our subordination 

and superordination result , we require the 

accompanying definition and lemmas. 

Definition 2.1 [5] : Denote by Q the set of all 

functions   that are analytic and injective on 

 ̅    ( )  where 

 ( )    *             ( )    ∞ +              

(2.1) 

and are such that   (ξ) ≠0 for ξ ∂U \ E( ). 

Lemma 2.1 [5] : Let q be univalent in the unit disk 

U and let θ and  be analytic in a domain D 

containing q(U) with  ( )     when     ( )  
Set  ( )       ( ) ( ( ))        ( )   
  ( ( ))     ( )   
Suppose that 

(i)   ( ) is starlike univalent in  , 

  

(ii)  Re*
   ( )

 ( )
+     for       . 

  

If   is  analytic in   with  ( )     ( )  ( )  
  and     

 ( ( ))      ( ) ( ( ))    ( ( ))  

    ( ) ( ( ))        (2.2) 

then     and   is the best dominant of (2.2). 

Lemma 2.2 [6]: Let q be convex univalent in 

function in U and let          * + with  

   (   
    ( )

  ( )
)        (      (

 

 
))  

If   is analytic in  , and 

  ( )      ( )    ( )      ( )                          
(2.3) 
then      and   is the best dominant of 

(2.3). 

 

 

 

Waggas .G//Sarah .A 

 



 

98 

 

Journal of AL-Qadisiyah for computer science and mathematics     Vol.11   No.1   Year  2019 

ISSN (Print): 2074 – 0204       ISSN (Online): 2521 –  3504 

 

 

 

Lemma 2.3 [6]: Let q be convex univalent in U and 

let     , further assume that Re ( )    . If 

   , ( )-   Q and  ( )      ( ) is univalent in 

U, then  

 ( )      ( )   ( )        ( )                          
(2.4) 
which implies that        and q is the best 

subordinant of (2.4). 

Lemma 2.4 [3]: Let q be convex univalent in the 

unit disk U and let          be analytic in domain D 

containing q ( ) . Suppose that  

(i) Re {
  ( ( ))

 ( ( ))
}             

(ii) Q( )     ( ) ( ( ))             

               . 

If  

    , ( )  -          ( )

     ( ( ))     ( )   ( )  
is univalent in U and 

 ( ( ))     ( ) (  ( ))   ( ( ))  

   ( ) (  ( )),             (2.5) 

then      and   is the best subordination of  

(2.5). 

 

3- Subordination Consequences : 

Theorem 3.1 : Let q be convex univalent function 

in U with  ( )                 also, 

assume that q            

Re(  
    ( )

  ( )
)      (      .

 

 
/) .               (3.1) 

If                 the subordination  

(   (   )) (
  
    ( )

 
)
 

 

 (   ) (
  
    ( )

 
)
 

(
  
  ( )

  
    ( )

)   ( )   
 

 
   ( )                 

(3.2) 

then  

(
  
    ( )

 
)
  

  ( )                (3.3) 

and   is the best dominant of (3.2). 

Proof :  Characterize the capacity p by 

 ( )  (
  
    ( )

 
)
  

                (3.4) 

Differentiating (3.4) with admiration to z 

logarithmically, we get 
   ( )

 ( )
   ( 

 (  
    ( )) 

  
    ( )

  )                              (3.5) 

Presently , in perspective of (1.7), we get the 

accompanying subordination 

   ( )

 ( )
    ( (

  
  ( )

  
    ( )

  )

 (
  
  ( )

  
    ( )

  ))   

 

 

 

 

therefore 
   ( )

  
 (

  
    ( )

 
)
 

( (
  
  ( )

  
    ( )

  )  

(
  
  ( )

  
    ( )

  ))   

The subordination (3.2) from the speculation moves 

toward becoming 

 ( )   
 

 
   ( )   ( )   

 

 
   ( )  

An request of Lemma 2.2 with    
 

 
 and       

we get (3,3) 

Putting  ( )  .
   

   
/ in Theorem 3.1 ,we get the 

following  

Corollary 3.1 : Let            also 

Re *  
  

   
+      *     (

 

 
)+. 

If     satisfies the subordination 

(   (   )) (
  
    ( )

 
)

 

  ( 

  ) (
  
    ( )

 
)

 

(
  
  ( )

  
    ( )

)

 (
      

 
 
 

(   ) 
)  

then 

(
  
    ( )

 
)

 

 (
   

   
)  

and  ( )  .
   

   
/ is the best dominant. 

Theorem 3.2 : Let q be convex univalent function in 

U with  ( )     ( )   (   ) furthermore, 

accept that q fulfills 

Re (  
 

 
 

    ( )

  ( )
)    ,     (3.6) 

where     * +     and    . 

Supposing that -    ( ) is starlike univalent 

function in U, if     fulfills: 

  (         )    ( )      ( ),                                

(3.7) 

where     (         )  

 (
   

    ( ) (   )  
  ( )

 
)
  

  

  (
   

    ( )  (   )  
  ( )

 
)

 

 

.
   

  ( ) (   )  
    ( )

   
    ( ) (   )  

  ( )
  /,                 (3.8) 

then  

(
   

    ( ) (   )  
  ( )

 
)
 

  ( ),                               

(3.9) 

and  q(z)is the best dominant of (3.7). 

Proof: Express the function p by  

      ( )  (
   

    ( ) (   )  
  ( )

 
)
 

,               (3.10) 

by setting :  

 ( )           ( )          . 
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We see that  ( ) is analytic in     ( ) is analytic 

in   * +  and so on  ( )          . 

Too, we get 

 ( )     ( )  ( )       ( )   
and   

 ( )    ( )   ( )    ( )      ( )  
It is clear that  ( )is starlike univalent in U , 

   *
   ( )

 ( )
+      *  

 

 
 

    ( )

  ( )
 +      

By a straightforword computation , we 

obtain  ( )      ( )    (         ), (3.11) 

where  (         ) is given by (3.8). 

From (3.7) and (3.11), we have  

  ( )      
 ( )    ( )      

 ( ).                             

(3.12) 

So , by Lemma 2.1, we become  ( )    ( ). By 

using (3.10) , we get the result . 

Putting  ( )  
    

    
 (-1       ) in Theorem 

3.2 , we obtain the next corollary : 

Corollary3.2 : Let -1        while 

   *  
 

 
  

   

(    )
+     

where     * + and      if     contents  

 (         )  .   (
    

    
)     

   

(    ) 
/    

and  (         ) is given by (3.8), 

(
   

    ( )  (   )  
  ( )

 
)

 

  
    

    
 

while  ( )  
    

    
  is the best dominant. 

4-Superordination Consequences : 

Theorem 4.1: Let q be convex univalent function in 

U with  ( )               * +            
              

( 
  
    ( )

 
 )

  

   , ( )  -   , 

 and  

(   (   )) (
  
    ( )

 
)
 

 

 (   ) (
  
    ( )

 
)
 

.
  
  ( )

  
    ( )

/, 

exist univalent in U . If  

 ( )  
 

 
   ( )  (   (   )) (

  
    ( )

 
)
 

 

 (   ) (
  
    ( )

 
)
 

.
  
  ( )

  
    ( )

/ ,         (4.1)   

then 

 ( )  ( 
  
    ( )

 
 )

  

              (4.2) 

and q is the best subordinant of (4.1). 

Proof: Express the function p by 

  ( )  ( 
  
    ( )

 
 )

  

.        (4.3) 

Differentiating (4.3) with respect to z 

logarithmically , we get  

 

 

 

 
   ( )

 ( )
   (

 (  
    ( )) 

  
    ( )

  )                                 

(4.4) 

After some computations and using (1.7) , from 

(4.4), we obtain 

(   (   )) (
  
    ( )

 
)

 

  ( 

  ) (
  
    ( )

 
)

 

(
  
  ( )

  
    ( )

) 

= ( )  
 

 
    ( )  

and now , by using Lemma 2.3, we get the desired 

result . 

Putting   ( )  
   

   
 in Theorem 4.1 , we acquire the 

accompanying corollary : 

Corollary 4.1: Let     and Re * +             
             

( 
  
    ( )

 
 )

  

   , ( )  -     

and  

(   (   )) (
  
    ( )

 
)
 

 

 (   ) (
  
    ( )

 
)
 

.
  
  ( )

  
    ( )

/, 

be univalent in U . If  

(
      

 

 
 

(   ) 
)    

(   (   )) (
  
    ( )

 
)
 

 

 (   ) (
  
    ( )

 
)
 

.
  
  ( )

  
    ( )

/, 

then  

(
   

   
)  ( 

  
    ( )

 
 )

  

  

and  ( )  
   

   
 is the best subordinant. 

Theorem 4.2: Let q be convex univalent function in 

U with  ( )       also, accept that q fulfills 

   *
    ( )

 
+                  (4.5) 

where     * +       z    . 

Assume that –    ( ) is starlike univalent function 

in U , let               

(
   

    ( ) (   )  
  ( )

 
)    , ( )  -   , 

and  (         ) is univalent function in U , where 

 (         ) is given by (3.8). If 

  ( )       ( )     (         )                  (   ) 
then  

 ( )  (
   

    ( ) (   )  
  ( )

 
)
  

.                        (   ) 
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and q is the best subordinant of (   )   
Proof: Express the function p by  

 ( )  (
   

    ( ) (   )  
  ( )

 
)
 

 ,                                 

(4.8) 

by setting  

 ( )       and     ( )              
we see that   ( ) is analytic in     ( )  is analytic 

in    and that    ( )     , w     . Too , we get  

 ( )     ( )  ( )       ( ). 

It is clear that  ( )is starlike univalent function in 

U , 

   {
  ( ( ))

 ( ( ))
} 

     {
    ( )

 
}       

By a straightforword computation ,we obtain  

    (         )      ( )      ( )                              
(4.9) 

where  (         )is given by (3.8). 

From (4.6) and (4.9) , we have  

                    ( )       ( )    ( )      ( ) .             

(4.10) 

So , by Lemma 2.4, we become  ( )    ( ). By 

using (4.8), we get the outcome. 

5-Sandwich Consequences : 

Concluding the consequences of differential 

subordination and superordination we arrive at the 

next ''sandwich consequence''.  

Theorem 5.1 : Let q1 be convex univalent function 

in U with q1(0)=1,Re { }   and let q2 be 

univalent in U ,q2(0)=1 and fulfills (3,1), let 

                 

. 
  
    ( )

 
 /

  

   ,   -    , 

and 

(   (   )) (
  
    ( )

 
)

 

  ( 

  )(
  
    ( )

 
)

 

(
  
  ( )

  
    ( )

)  

be univalent in U . If  

  ( )  
 

 
    

 
( )  (   (   )) .

  
    ( )

 
/
 

 

 (   ) .
  
    ( )

 
/
 

.
  
  ( )

  
    ( )

/   

  ( )  
 

 
     

 
( ),      

  ( )  ( 
  
    ( )

 
 )

  

   ( )  

and          are correspondingly , the best 

subordinant and the best dominant . 

Theorem 5.2: Let q1 be convex  univalent function 

in U with q1(0)=1,  and fulfills (4.5), let q2 be  

 

 

 

 

univalent function in U q2(0)=1,  satisfies (3.6), let 

              

(
   

    ( )  (   )  
  ( )

 
)

 

   ,   -     

And  (         ) is univalent in U . Where 

 (         )is given by (3.8) . If     ( )  
     

 
( )   (         )      ( )       

 
( ) 

then  

  ( )  (
   

    ( )  (   )  
  ( )

 
)

 

   ( )  

In addition          are correspondingly , the best 

subordinant and the best dominant . 
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 نتائج الساندوج التفاضلية للدوال التحليلية

     

 

 وقاص غالب عطشان                  سارة عبدالحميد جواد

 االعراق - جامعة القادسية - وتكنولوجيا المعلومات كلية علوم الحاسوب - قسم الرياضيات

 

 

 الملخص:

  على بعض نتائج التبعية والتبعية العليا باستخدام المشغل التكاملي  نحصلفي هذا البحث,        
δ,وحصلنا على  .ايضا

 في قرص الوحدة . نتائج الساندوج التفاضلية لصنف من الدوال احادية التكافؤ

 

Waggas .G//Sarah .A 

 


