Math Page 96 - 101

Waggas .G//Sarah .A

On Differential Sandwich Results For Analytic Functions

Waggas Galib Atshan Sarah Abd Al-Hmeed Jawad Department of Mathematics College of Computer Science and Information Technology, University of Qadisiayh,Diwaniyah, Iraq. waggas.galib@qu.edu.iq Sarahabdalhmeed94@gmail.com

Recived : 14\10\2018	Revised : 11\8\2018	Accepted : 20\12\2018
Available online :	28 /1/2019	
DOI: 10.29304/jqcm.2019.11.1.477		

Abstract:In this paper , we obtain some subordination and superordination results involving the integral operator F_c^{δ} .Also,we get Differential sandwich results for classes of univalent functions in the unit disk.

Keywords: Analytic function, univalent function, differential subordination, superordination.

2018 Mathematics Subject Classification : 30C45.

1-Introduction :

Let H=H(U) be the class of analytic functions in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$. For n a positive number additionally $a \in \mathbb{C}$. Let H[a, n] be the subclass of H entailing of functions of the form:

 $f(z) = a + a_n z^n +$

 $a_{n+1} z^{n+1} + \dots$ $(a \in \mathbb{C})$. (1.1)

Too, let A be the subclass of H entailing of functions of the form:

 $f(\mathbf{z}) = \mathbf{z} + \sum_{k=2}^{\infty} \mathbf{a}_k \ \mathbf{z}^k \, .$

(1.2)

 $f,g \in H$. The function f is said to be Let subordinate to g, or g is said to be subordinate to f, if there exists a Schwarz function w analytic in U with w(0) = 0 and |w(z)| < 1 ($z \in U$), to such an extent that f(z) = g(w(z)), In such a case we compose $f \prec g$ or $f(z) \prec g(z)(z \in U)$. If g is univalent function in U, then $f \prec g$ if and only if f(0) = g(0) and $f(U) \subset g(U)$.

Let $p, h \in H$ and $\psi(r, \delta, t, z)$: $\mathbb{C}^3 \times U \to \mathbb{C}$. If p $\psi(p(z), zp'(z), z^2p''(z); z)$ are and univalent functions in U and if p fulfills the second-order differential superordination.

$$h(z) \prec \psi(p(z), zp'(z), z^2p''(z); z),$$

(1.3)

then p is called a result of the differential superordination (1.3). (If f is subordinate to g, then g is superordinate to f). An analytic function qis called a subordinant of (1.3), if $q \prec p$ for very the functions p filling (1.3).

An univalent subordinant \tilde{q} that fulfills $q \prec \tilde{q}$ for all the subordinants q of (1.3) is called the best subordinant. Miller and Mocanu [5] have gotten conditions on the functions h, q and ψ for which the accompanying ramifications holds:

 $h(z) \prec \psi(p(z), zp'(z), z^2p''(z); z) \rightarrow$ $q(z) \prec p(z)$. (1.4)

For $f \in A$, Al-shaqsi [2] defined the following integral operator:

$$\begin{aligned} \mathbf{F}_{\mathbf{c}}^{\delta}f(\mathbf{z}) &= (1+\mathbf{c})^{\delta}\boldsymbol{\emptyset}_{\delta}(\mathbf{c};\mathbf{z})*f(\mathbf{z}) \\ &= \frac{(1-\mathbf{c})^{\delta}}{\Gamma(\delta)}\int_{0}^{1}\mathbf{t}^{\mathbf{c}-1}(\log\frac{1}{\mathbf{t}})^{\delta-1}f(\mathbf{tz})\,\mathrm{dt}\,, (\mathbf{c} > \mathbf{c}) \end{aligned}$$

 $0, \delta > 1 \text{ and } z \in U$). (1.5)

We also note that the operator $F_c^{\delta}f(z)$ characterized by (1.5) can be communicated by the arrangement development as pursues:

$$F_{c}^{\delta}f(z) = z + \sum_{k=2}^{\infty} \left(\frac{1+c}{k+c}\right)^{\delta} a_{k} z^{k}.$$

(1.6)

In addition, from (1.6), it pursues that $\mathbf{z}(\mathbf{F}_{c}^{\delta+1}f(\mathbf{z}))' = (\mathbf{c}+1)\mathbf{F}_{c}^{\delta}f(\mathbf{z}) - \mathbf{c}\mathbf{F}_{c}^{\delta+1}f(\mathbf{z}).$ (1.7)

Ali et al.[1] gotten adequate conditions for certain standardized scientific capacities to satisfy

$$q_1(z) \prec \frac{zf'(z)}{f(z)} \prec q_2(z),$$

where q_1 and q_2 are given univalent functions in U with $q_1(0) = q_2(0) = 1$. Additionally, Tuneski [9] acquired adequate conditions for starlikeness of f in relations of the amount $\frac{f''(z)f(z)}{(f'(z))^2}$.Recently. $(f'(z))^2$ Shanmugam et al.[7,8], Goyal et al .[4] also gotten sandwich consequences for certain classes of analytic functions.

The principle question of the present paper is to adequate discover conditions for certain standardized systematic capacities f to fulfill: $\left(\frac{F_{c}^{\delta+1}f(z)}{z}\right)^{\lambda} \prec q_{2}(z),$

$$q_1(z) \prec$$

and

$$q_1(z) \prec \left(\frac{t F_c^{\delta+1} f(z) + (1-t) F_c^{\delta} f(z)}{z}\right)^{\lambda} \prec q_2(z),$$

wherever q_1 and q_2 are known univalent functions in U with $q_1(0) = q_2(0) = 1$.

2-Preliminaries :

With the end goal to demonstrate our subordination and superordination result , we require the accompanying definition and lemmas.

Definition 2.1 [5] : Denote by Q the set of all functions f that are analytic and injective on $\overline{U} \setminus E(f)$, where

$$\mathsf{E}(f) = \{\xi \in \partial \mathsf{U} : \lim_{\mathsf{z} \to \xi} f(\mathsf{z}) = \infty\}$$
(2.1)

and are such that $f'(\xi) \neq 0$ for $\xi \in \partial U \setminus E(f)$.

Lemma 2.1 [5] : Let q be univalent in the unit disk U and let θ and ϕ be analytic in a domain D containing q(U) with $\phi(w) \neq 0$ when $w \in q(U)$. $Q(z) = zq'(z)\phi(q(z))$ and h(z) =Set $\theta(q(z)) + Q(z).$

Suppose that

Q(z) is starlike univalent in U, (i)

(ii)
$$\operatorname{Re}\left\{\frac{\operatorname{zh}'(z)}{Q(z)}\right\} > 0 \text{ for } z \in U.$$

If p is analytic in U with $p(0) = q(0), p(U) \subset$ D and

 $\theta(p(z)) + zp'(z)\phi(p(z)) \prec \theta(q(z)) +$

 $zq'(z)\phi(q(z))$ (2.2)

then $p \prec q$ and q is the best dominant of (2.2). Lemma 2.2 [6]: Let q be convex univalent in function in U and let $\alpha \in \mathbb{C}$, $\beta \in \mathbb{C} / \{0\}$ with

$$\operatorname{Re} \left(1 + \frac{zq''(z)}{q'(z)}\right) > \max(0, -\operatorname{Re}\left(\frac{\alpha}{\beta}\right)).$$

If p is analytic in U, and
 $\alpha p(z) + \beta z p'(z) \prec \alpha q(z) + \beta z q'(z),$

(2.3)then $p \prec q$ and q is the best dominant of (2.3).

If

Lemma 2.3 [6]: Let q be convex univalent in U and let $\beta \in \mathbb{C}$, further assume that Re $(\beta) > 0$. If $P \in H[q(0)] \cap Q$ and $p(z) + \beta z p'(z)$ is univalent in U, then

 $q(z) + \beta z q'(z) \prec p(z) + \beta z p'(z),$ (2.4)

which implies that $q \prec p$ and q is the best subordinant of (2.4).

Lemma 2.4 [3]: Let q be convex univalent in the unit disk U and let θ and ϕ be analytic in domain D containing q (U). Suppose that

(i) Re
$$\left\{ \frac{\theta'(q(z))}{\phi(q(z))} \right\}$$
 > o for $z \in U$,
(ii) Q(z) = zq'(z) $\phi(q(z))$ is starlike

univalent in U.

If

$$p \in H[q(0), 1] \cap Q$$
, with $p(\cup)$
 $\subset D, \theta(p(z)) + zp'(z) \phi p(z)$

is univalent in U and

 $\theta(q(z)) + zq'(z)\phi(q(z)) \prec \theta(p(z)) +$

 $zp'(z) \emptyset(p(z)),$ (2.5)then $q \prec p$ and q is the best subordination of (2.5).

3- Subordination Consequences :

Theorem 3.1 : Let q be convex univalent function in U with q(0) = 1, $0 \neq \Psi \in \mathbb{C}$, $\lambda > 0$ also, assume that q satisfies:

$$\operatorname{Re}(1 + \frac{zq''(z)}{q'(z)}) > \max(0, -\operatorname{Re}\left(\frac{\lambda}{\psi}\right)).$$
If $f \in A$ satisfies the subordination
$$(3.1)$$

$$(1 - \Psi(\mathbf{c} + 1)) \left(\frac{F_{\mathbf{c}}^{\delta^{+1}f(z)}}{z}\right)^{\lambda} + \Psi(\mathbf{c} + 1) \left(\frac{F_{\mathbf{c}}^{\delta^{+1}f(z)}}{z}\right)^{\lambda} \left(\frac{F_{\mathbf{c}}^{\delta}f(z)}{F_{\mathbf{c}}^{\delta^{+1}f(z)}}\right) < \mathbf{q}(z) + \frac{\Psi}{\lambda} z \mathbf{q}'(z),$$

$$(3.2)$$
then
$$\left(\frac{F_{\mathbf{c}}^{\delta^{+1}f(z)}}{z}\right)^{\lambda} < \mathbf{q}(z), \qquad (3.3)$$

and q is the best dominant of (3.2).

Proof : Characterize the capacity p by

$$p(z) = \left(\frac{F_c^{\delta+1}f(z)}{z}\right)^{\kappa}.$$
 (3.4)

Differentiating (3.4) with admiration to z logarithmically, we get

$$\frac{zp'(z)}{p(z)} = \lambda \left(\frac{z(F_{C}^{\delta+1}f(z))'}{F_{C}^{\delta+1}f(z)} - 1 \right).$$
(3.5)

Presently, in perspective of (1.7), we get the accompanying subordination

$$\begin{split} \frac{zp'(z)}{p(z)} &= \lambda \left(c \left(\frac{F_{C}^{\delta}f(z)}{F_{C}^{\delta+1}f(z)} - 1 \right) \right. \\ &+ \left(\frac{F_{C}^{\delta}f(z)}{F_{C}^{\delta+1}f(z)} - 1 \right) \right), \end{split}$$

 $\frac{zp'(z)}{\lambda} = \left(\frac{F_C^{\delta+1}f(z)}{z}\right)^{\lambda} \left(c\left(\frac{F_C^{\delta}f(z)}{F_C^{\delta+1}f(z)} - 1\right) + \right)$ therefore $\left(\frac{F_{\rm C}^{\delta}f(z)}{F_{\rm C}^{\delta+1}f(z)}\right)$ – 1)).

The subordination (3.2) from the speculation moves toward becoming

$$p(z) + \frac{\Psi}{\lambda} z p'(z) \prec q(z) + \frac{\Psi}{\lambda} z q'(z).$$

An request of Lemma 2.2 with $\beta = \frac{\Psi}{\lambda}$ and $\alpha = 1$, we get (3,3)

Putting $q(z) = \left(\frac{1+z}{1-z}\right)$ in Theorem 3.1 , we get the following

Corollary 3.1 : Let $0 \neq \Psi \in \mathbb{C}$, $\lambda > 0$ also Re $\{1 + \frac{2z}{1-z}\} > \max\{0, -\operatorname{Re}(\frac{\lambda}{\psi})\}$. If $f \in A$ satisfies the subordination

$$(1 - \Psi(c+1)) \left(\frac{F_c^{\delta+1}f(z)}{z}\right)^{\lambda} + \Psi(c) + 1) \left(\frac{F_c^{\delta+1}f(z)}{z}\right)^{\lambda} \left(\frac{F_c^{\delta}f(z)}{F_c^{\delta+1}f(z)}\right) \\ \prec \left(\frac{1 - z^2 + 2\frac{\Psi}{\lambda}z}{(1 - z)^2}\right),$$

then

$$\left(\frac{F_{c}^{\delta+1}f(z)}{z}\right)^{\lambda} \prec \left(\frac{1+z}{1-z}\right)$$

and $q(z) = \left(\frac{1+z}{1-z}\right)$ is the best dominant.

Theorem 3.2 : Let q be convex univalent function in U with $q(0) = 1, q(z) \neq 0 (z \in U)$ furthermore, accept that q fulfills

Re
$$\left(1 - \frac{\lambda}{\Psi} + \frac{zq^{\prime\prime}(z)}{q^{\prime}(z)}\right) > 0$$
, (3.6)
where $W \in \mathcal{C}\left((0) \right) > 0$ and $z \in W$

where $\Psi \in \mathbb{C}/\{0\}, \lambda > 0$ and $z \in U$. Supposing that $-\Psi zq'(z)$ is starlike univalent function in U, if $f \in A$ fulfills: $\phi(\lambda, \delta, c, \Psi; z) \prec \lambda q(z) - \Psi z q'(z),$

(3.7) where
$$\phi(\lambda \ \delta \ c \ \Psi; z) =$$

where
$$\Psi(\lambda, 0, c, \Psi; Z) = \lambda \left(\frac{\mathrm{tF}_{c}^{\delta+1} f(z) + (1-t) \mathrm{F}_{c}^{\delta} f(z)}{z} \right)^{\lambda} - \lambda \Psi \left(\frac{\mathrm{tF}_{c}^{\delta+1} f(z) + (1-t) \mathrm{F}_{c}^{\delta} f(z)}{z} \right)^{\lambda} \left(\frac{\mathrm{tF}_{c}^{\delta} f(z) + (1-t) \mathrm{F}_{c}^{\delta-1} f(z)}{\mathrm{tF}_{c}^{\delta+1} f(z) + (1-t) \mathrm{F}_{c}^{\delta-1} f(z)} - 1 \right), \quad (3.8)$$
then

$$\left(\frac{\mathrm{tF}_{c}^{\delta+1}f(z)+(1-\mathrm{t})\mathrm{F}_{c}^{\delta}f(z)}{z}\right)^{\lambda} < q(z),$$
(3.9)

and q(z) is the best dominant of (3.7). **Proof**: Express the function p by

$$p(z) = \left(\frac{tF_c^{\delta+1}f(z) + (1-t)F_c^{\delta}f(z)}{z}\right)^{\lambda},$$
 (3.10)
by setting :

 $\theta(w) = \lambda w$ and $\phi(w) = -\Psi, w \neq 0$.

We see that $\theta(w)$ is analytic in \mathbb{C} , $\phi(w)$ is analytic in $\mathbb{C}/\{0\}$ and so on $\phi(w) \neq 0, w \in \mathbb{C}^*$. Too, we get

$$\tilde{Q}(z) = zq'(z)\phi q(z) = -\Psi zq'(z),$$

$$\begin{split} h(z) &= \theta q(z) + Q(z) = \lambda q(z) - \Psi z q'(z). \\ \text{It is clear that } Q(z) \text{is starlike univalent in U} \ , \end{split}$$

and

$$\operatorname{Re}\left\{\frac{\operatorname{zh}'(z)}{\operatorname{Q}(z)}\right\} = \operatorname{Re}\left\{1 - \frac{\lambda}{\Psi} + \frac{zq''(z)}{q'(z)}\right\} > 0.$$

By a straightforword computation , we obtain $\lambda p(z) - \Psi z p'(z) = \emptyset(\lambda, \delta, c, \Psi; z), (3.11)$ where $\emptyset(\lambda, \delta, c, \Psi; z)$ is given by (3.8). From (3.7) and (3.11), we have $\lambda p(z) - \Psi z p'(z) < \lambda q(z) - \Psi z q'(z).$ (3.12)

So , by Lemma 2.1, we become p(z) < q(z). By using (3.10) , we get the result .

Putting $q(z) = \frac{1+Az}{1+Bz}$ (-1 $\leq B < A \leq 1$) in Theorem 3.2, we obtain the next corollary :

Corollary3.2: Let
$$-1 \le B < A \le 1$$
 while
Re $\{1 - \frac{\lambda}{\Psi} + \frac{z2B}{(1+Bz)}\} > 0$,
where $\Psi \in \mathbb{C}/\{0\}$ and $z \in U$, if $f \in A$ contents
 $\emptyset(\lambda, \delta, c, \Psi; z) < \left(\lambda(\frac{1+Az}{1+Bz}) - \Psi z \frac{A-B}{(1+Bz)^2}\right)$,
and $\emptyset(\lambda, \delta, c, \Psi; z)$ is given by (3.8),
 $\left(\frac{tF_c^{\delta+1}f(z) + (1-t)F_c^{\delta}f(z)}{z}\right)^{\lambda} < \frac{1+Az}{1+Bz}$

while $q(z) = \frac{1+Az}{1+Bz}$ is the best dominant. 4-Superordination Consequences :

Theorem 4.1: Let q be convex univalent function in U with $q(0) = 1, \lambda > 0$ and Re { Ψ } > 0. Let $f \in$ A satisfies

$$\begin{pmatrix} \frac{F_{c}^{\delta+1}f(z)}{z} \end{pmatrix}^{\lambda} \in H[q(0), 1] \cap Q,$$

and
$$(1 - \Psi(c+1)) \left(\frac{F_{c}^{\delta+1}f(z)}{z}\right)^{\lambda} + \\ \Psi(c+1) \left(\frac{F_{c}^{\delta+1}f(z)}{z}\right)^{\lambda} \left(\frac{F_{c}^{\delta}f(z)}{F_{c}^{\delta+1}f(z)}\right),$$

exist univalent in U . If
$$q(z) + \frac{\Psi}{\lambda} zq'(z) < (1 - \Psi(c+1)) \left(\frac{F_{c}^{\delta+1}f(z)}{z}\right)^{\lambda} + \\ \Psi(c+1) \left(\frac{F_{c}^{\delta+1}f(z)}{z}\right)^{\lambda} \left(\frac{F_{c}^{\delta}f(z)}{F_{c}^{\delta+1}f(z)}\right),$$
(4.1)
then
$$q(z) < \left(\frac{F_{c}^{\delta+1}f(z)}{z}\right)^{\lambda},$$
(4.2)
and q is the best subordinant of (4.1).

Proof: Express the function p by

$$p(z) = \left(\frac{F_c^{\delta+1}f(z)}{z}\right)^{\lambda}.$$
 (4.3)
Differentiating (4.3) with

Differentiating (4.3) with respect to z logarithmically, we get

$$\frac{zp'(z)}{p(z)} = \lambda \left(\frac{z(F_c^{\delta+1}f(z))'}{F_c^{\delta+1}f(z)} - 1 \right)$$
(4.4)

After some computations and using (1.7), from (4.4), we obtain

$$(1 - \Psi(c+1)) \left(\frac{F_c^{\delta+1}f(z)}{z}\right)^{\lambda} + \Psi(c) + 1) \left(\frac{F_c^{\delta+1}f(z)}{z}\right)^{\lambda} \left(\frac{F_c^{\delta}f(z)}{F_c^{\delta+1}f(z)}\right) = p(z) + \frac{\Psi}{\lambda} zp'(z),$$

and now, by using Lemma 2.3, we get the desired result.

Putting $q(z) = \frac{1+z}{1-z}$ in Theorem 4.1, we acquire the accompanying corollary :

Corollary 4.1: Let $\lambda > 0$ and Re { Ψ } > 0. If $f \in$ A satisfies:

$$\left(\frac{\mathrm{F}_{\mathrm{c}}^{\delta+1}f(\mathrm{z})}{\mathrm{z}}\right)^{\lambda} \in \mathrm{H}\left[\mathrm{q}(0),1\right] \cap \mathrm{Q},$$

$$(1 - \Psi(c+1)) \left(\frac{F_c^{\delta+1}f(z)}{z}\right)^{\lambda} + \Psi(c+1) \left(\frac{F_c^{\delta+1}f(z)}{z}\right)^{\lambda} \left(\frac{F_c^{\delta}f(z)}{F_c^{\delta+1}f(z)}\right),$$

be univalent in U. If

$$\begin{split} & \left(\frac{1-z^2+2\frac{\Psi}{\lambda}z}{(1-z)^2}\right) \prec \\ & \left(1-\Psi(c+1)\right) \left(\frac{F_c^{\delta+1}f(z)}{z}\right)^{\lambda} + \\ & \Psi(c+1) \left(\frac{F_c^{\delta+1}f(z)}{z}\right)^{\lambda} \left(\frac{F_c^{\delta}f(z)}{F_c^{\delta+1}f(z)}\right), \end{split}$$

then

$$\left(\frac{1+z}{1-z}\right) < \left(\frac{F_{c}^{\delta+1}f(z)}{z}\right)^{\lambda},$$

and $q(z) = \frac{1+z}{1-z}$ is the best subordinant. **Theorem 4.2:** Let q be convex univalent function in U with q(0) = 1, also, accept that q fulfills Re $\{\frac{-\lambda q'(z)}{\Psi}\} > 0$, (4.5) where $\eta \in \mathbb{C}/\{0\}$ and $z \in U$. Assume that $-\Psi zq'(z)$ is starlike univalent function in U, let $f \in A$ satisfies $\left(\frac{tF_c^{\delta+1}f(z)+(1-t)F_c^{\delta}f(z)}{z}\right) \in H[q(0), 1] \cap Q$,

and $\phi(\lambda, \delta, c, \Psi; z)$ is univalent function in U, where $\phi(\lambda, \delta, c, \Psi; z)$ is given by (3.8). If

$$\lambda q(z) - \Psi z q'(z) \prec \emptyset(\lambda, \delta, c, \Psi; z),$$
(4.6)
then

$$q(z) \prec \left(\frac{tF_c^{\delta+1}f(z) + (1-t)F_c^{\delta}f(z)}{z}\right)^{\lambda}.$$
(4.7)

and q is the best subordinant of (4.6). **Proof**: Express the function p by

$$p(z) = \left(\frac{tF_c^{\delta+1}f(z) + (1-t)F_c^{\delta}f(z)}{z}\right)^{\lambda},$$

(4.8) by setting

 $\theta(w) = \lambda w$ and $\phi(w) = -\Psi$, $w \neq 0$, we see that $\theta(w)$ is analytic in $\mathbb{C}, \phi(w)$ is analytic in \mathbb{C}^* and that $\phi(w) \neq 0$, $w \in \mathbb{C}^*$. Too, we get $Q(z) = zq'(z)\phi q(z) = -\Psi zq'(z)$.

It is clear that Q(z) is starlike univalent function in U,

$$\operatorname{Re} \left\{ \frac{\theta'(q(z))}{\phi(q(z))} \right\}$$
$$= \operatorname{Re} \left\{ \frac{-\lambda q'(z)}{\Psi} \right\} > 0.$$

By a straightforword computation , we obtain

$$\phi(\lambda, \delta, c, \Psi; z) = \lambda p(z) - \Psi z p'(z),$$
(4.9)

where $\emptyset(\lambda, \delta, c, \Psi; z)$ is given by (3.8).

From (4.6) and (4.9), we have

$$\lambda q(z) - \Psi z q'(z) < \lambda p(z) - \Psi p'(z)$$
(4.10)

So , by Lemma 2.4, we become $q(z) \prec p(z)$. By using (4.8), we get the outcome.

5-Sandwich Consequences :

Concluding the consequences of differential subordination and superordination we arrive at the next "sandwich consequence".

Theorem 5.1: Let q_1 be convex univalent function in U with $q_1(0)=1$, Re $\{\Psi\}>0$ and let q_2 be univalent in U , $q_2(0)=1$ and fulfills (3,1), let $f \in A$ satisfies :

$$\left(\frac{\mathrm{F}_{\mathrm{c}}^{\delta+1}f(z)}{z}\right)^{\lambda} \in \mathrm{H}\left[1,1\right] \cap \mathrm{Q},$$

and

$$(1 - \Psi(c+1)) \left(\frac{F_c^{\delta+1} f(z)}{z}\right)^{\lambda} + \Psi(c) + 1) \left(\frac{F_c^{\delta+1} f(z)}{z}\right)^{\lambda} \left(\frac{F_c^{\delta} f(z)}{F_c^{\delta+1} f(z)}\right),$$

be univalent in U . If

$$\begin{aligned} q_{1}(z) &+ \frac{\Psi}{\lambda} z q'_{1}(z) < \left(1 - \Psi(c+1)\right) \left(\frac{F_{c}^{\delta+1}f(z)}{z}\right)^{\lambda} + \\ \Psi(c+1) \left(\frac{F_{c}^{\delta+1}f(z)}{z}\right)^{\lambda} \left(\frac{F_{c}^{\delta}f(z)}{F_{c}^{\delta+1}f(z)}\right) < \\ q_{2}(z) &+ \frac{\Psi}{\lambda} z q'_{2}(z), \text{then} \end{aligned}$$

$$q_1(z) \prec \left(\frac{F_c^{\delta+1}f(z)}{z}\right)^{\lambda} \prec q_2(z),$$

and $\,q_1 and \,q_2 \,are\,\,\, correspondingly\,\,$, the best subordinant and the best dominant .

Theorem 5.2: Let q_1 be convex univalent function in U with $q_1(0)=1$, and fulfills (4.5), let q_2 be univalent function in U q₂(0)=1, satisfies (3.6), let $f \in A$ satisfies

$$\left(\frac{\mathsf{t}\mathsf{F}_{\mathsf{c}}^{\delta+1}f(\mathsf{z}) + (1-\mathsf{t})\mathsf{F}_{\mathsf{c}}^{\delta}f(\mathsf{z})}{\mathsf{z}}\right)^{\lambda} \in \mathsf{H}\left[1,1\right] \cap \mathsf{Q}.$$

And $\phi(\lambda, \delta, c, \Psi; z)$ is univalent in U. Where $\phi(\lambda, \delta, c, \Psi; z)$ is given by (3.8). If $\lambda q_1(z) - \Psi z q'_1(z) < \phi(\lambda, \delta, c, \Psi; z) < \lambda q_2(z) - \Psi z q'_2(z)$ then

$$q_1(z) \prec \left(\frac{\mathrm{tF}_{\mathrm{c}}^{\delta+1}f(z) + (1-\mathrm{t})\mathrm{F}_{\mathrm{c}}^{\delta}f(z)}{z}\right)^{\lambda} \prec q_2(z).$$

In addition $q_1 and \, q_2$ are correspondingly , the best subordinant and the best dominant .

References:

- R. M. Ali, V. Ravichandran, M.H. Khan and K.G. Subramanian, Dierential sandwich theorems for certain analytic functions, Far East J. Math. Sci., 15(1) (2004), 87-94.
- K. AL-Shaqsi ; Strong Differential Subordinations Obtained with New Integral Operator Defined by Polylogarithm Function ,Int. J. Math. Math. Sci., Volume 2014, Article ID 260198, 6pages.
- T. Bulboaca, Classes of first order differential superordinations, Demonstratio Math., 35(2) (2002), 287-292.
- S.P. Goyal, P.Goswami and H. Silverman, Subordination and superordination results for a class of analytic multivalent functions, Int. J. Math. Math. Sci., Article ID 561638, (2008), 1-12.
- 5) S. S. Miller and P. T. Mocanu, Differential Subordination : Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics (Vol. 225), Marcel Dekker Inc., New York and Basel, 2000.
- S. S. Miller, P. T. Mocanu, Subordinates of di erential superordina-tions, Complex Variables,48(10)(2003),815-826.
- T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differential sandwich theorems for some subclasses of analytic functions, Aust. J.Math. Anal. Appl., 3 (1) (2006), 1-11.
- T. N. Shanmugam, S. Shivasubramanian and H. Silverman, On sandwich theorems for some classes of analytic functions, Int. J. Math. Math. Sci., Article ID 29684 (2006), 1–13.
- N. Tuneski, On certain sufficient conditions for starlikeness, Int. J. Math. Math. Sci., 23(8) (2000), 521-527.

نتائج الساندوج التفاضلية للدوال التحليلية

وقاص غالب عطشان قسم الرياضيات - كلية علوم الحاسوب وتكنولوجيا المعلومات - جامعة القادسية - االعراق

الملخص:

في هذا البحث، نحصل على بعض نتائج التبعية والتبعية العليا باستخدام المشغل التكاملي F⁸. ايضا، وحصلنا على نتائج الساندوج التفاضلية لصنف من الدوال احادية التكافؤ في قرص الوحدة .