Math Page 117 - 123

Waggas .G//Salwa .K

On Differential Sandwich Theorems of Multivalent Functions Defined by a Linear operar

Waggas Galib AtshanSalwa Kalf KazimDepartment of Mathematics , College of Computer Science and Information
Technology , University of AL-Qadisiyah , Diwaniyah-Iraq

waggas.galib@qu.edu.iq, waggashnd@gmail.com

 Recived : 24\12\2018
 Revised ://
 Accepted : 13\1\2019

 Available online :
 28 /1/2019

 DOI: 10.29304/jqcm.2019.11.1.480

Abstract:

The main object of the present paper is to derive some results for multivalent analytic functions defined by linear operator by using differential subordination and superordination

Keywords: Analytic functions, multivalent functions, Hadamard product, subordination, linear operators.

Mathematics Subject Classification: 30C45.

1. Introduction

Let A_p denote the class of functions f of the

 $f(z)=z^p+\sum_{n=1}^{\infty}a_{p+n}z^{p+n},\ (p\in\mathbb{N}=$ {1,2,...}; *z U*), (1.1)

which are analytic in the open unit disk $U = \{z \in$ $\mathbb{C}: |z| < 1$.

For two functions f and g are analytic in U, we say that the function f is subordinate to g in U, written $f \prec g$, if there exists Schwarz function w, analytic in U with w(0) = 0 and |w(z)| < 1 in U such that f(z) = $g(w(z)), z \in U$ If g is univalent and g(0) = f(0),

then $f(u) \subset g(u)$. If $f \in A_p$ is given by (1.1) and $g \in A_p$ given by

$$g(z) = z^p + \sum_{n=1}^{\infty} b_{p+n} z^{p+n}.$$

Then Hadamard product (or convolution) is defined by

$$(f * g)(z) = z^{p} + \sum_{\substack{n=1\\ \mu, \nu}}^{\infty} a_{p+n} b_{p+n} z^{p+n} .$$

The linear operator $\int_{\mu, \nu}^{\lambda, p} (a, c) : A_{p} \to A_{p}$ de

fined by $J_{\mu,\nu}^{\lambda,p}(a,c)f(z) = \emptyset_{\mu,\nu}^{\lambda,p}(a,c;z) * f(z), \quad (f \in$ $A_{v}, z \in U$), (1.2)

where

 $z^{p} + \sum_{n=1}^{\infty} \frac{(a)_{n}(p+1)_{n}(p+1-\mu+\nu)_{n}}{(c)_{n}(p+1-\mu)_{n}} z^{p+n}$ (1.3)and

$$d_n$$

 $= \begin{cases} 1 \\ d(d+1)(d+2) \dots (d+n-1) \\ \text{For } a \in R, c \in R \setminus z_{\circ}^{-}, where \ z_{\circ}^{-} = \end{cases}$ n = 0 $n \in N$. $\{0, -1, -2, ...\}, 0 \le \lambda < 1, \mu, \nu \in R and \mu - \nu$ p < 1 and $f \in A_p$. Then linear operator $I_{\mu,\nu}^{\lambda,p,\alpha}(a,c): A_p \longrightarrow A_p \text{ (see[9]) is defined by} \\ I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z) \coloneqq \psi_{\mu,\nu}^{\lambda,p,\alpha}(a,c;z) * f(z), (1.4)$ where $\psi_{\mu,\nu}^{\lambda,p,\alpha}(a,c;z)$ is the function defined in terms of the Hadamard product by the following

condition:

$$\varphi_{\mu,\nu}^{\lambda,p}(a,c;z) * \psi_{\mu,\nu}^{\lambda,p,\alpha}(a,c;z) = \frac{z^p}{(1-z)^{a+p}} \quad (a > -p).$$
(1.5)

We can easily find from (1.3) - (1.5) that

$$I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z) = z^p +$$

$$\sum_{n=1}^{\infty} \frac{(c)_n (p+1-\lambda+\nu)_n (\alpha+p)_n (p+1-\mu)_n}{(a)_n (p+1)_n (p+1-\mu+\nu)_n n!} a_{p+n} z^{p+n}$$
(1.6)

It is easily verified from (1.6) that

$$z(I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)) = (\alpha+p)I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z) - \alpha I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z).$$
(1.7)

Note that the linear operator $I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)$ unifies many other operators considered earlier. In particular

- 1) $I_{0,v}^{0,p,\alpha}(a,c) \equiv J_p^a(a,c)$ (see Cho al. [5]). 2) $I_{0,v}^{0,p,\alpha}(a,a) \equiv D^{\alpha+p-1}$
- (see Goel and Sohi[6]). 3) $I_{0,v}^{0,p,1}(p+1-\lambda,1) \equiv \Omega_Z^{(\lambda,P)}$ (see Srivastava and Aouf[16]).

4)
$$I_{0,v}^{0,p,\alpha-1}(a,c) \equiv J_{p}^{a,\alpha}(see \ Hohlov[8]).$$

5)
$$I_{0,v}^{0,1-\alpha,\alpha}(a,c) \equiv L_P(a,c)$$
(see Saition[13]).

6) $I_{0,v}^{0,p,1}(p+\alpha,1) \equiv J_{\alpha,P,\alpha} \in z, \alpha > -p$ (see Liu an Noor[10]).

The main object of this idea is to find sufficient conditions for certain normalized analytic functions **f** to satisfy:

$$q_1(z) \prec \left(\frac{t_1 I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) + t_2 I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{(t_1 + t_2)z^p}\right)^{\delta} \prec q_2(z),$$
and

$$q_1(z) \prec \left(\frac{I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{z^p}\right)^b \prec q_2(z)$$

where $q_1(z)$ and $q_2(z)$ are given univalent functions in *U* with $q_1(0)$ and $q_2(0) = 1$.

2- Preliminaries

In order to prove our subordinations and superordinations results, we need the following definition and lemmas .

Definition 2.1. [11]: Denote by *Q* the set of all functions q that are analytic and injective on $\overline{U} \setminus E(q)$, where

 $\overline{U} = U \cup \{z \in \partial U\}$, and

 $E(q) = \{ \zeta \in \partial U : \lim_{z \to \zeta} q(z) = \infty \}$ (2.1)and are such that $q'(\zeta) \neq 0$ for $\zeta \in \partial U / \zeta$ E(q).

Further , let the subclass of *Q* for which q(0) = a be denoted by $Q(a), Q(0) \equiv Q_0$ and $Q(1) \equiv Q_1$.

Lemma 2.1.[1]: Let q(z) be convex univalent function in *U*, let $\alpha \in \mathbb{C}$. $\beta \in \mathbb{C} \setminus \{0\}$ and suppose that

 $Re(1 + \frac{zq''(z)}{q'(z)}) > \max\{0, -Re(\frac{\alpha}{\beta})\}$.

If p(z) is analytic in U and

 $\alpha p(z) + \beta z p'(z) \prec \alpha q(z) + \beta z q'(z),$

then $p(z) \prec q(z)$ and q is the best dominant. Lemma 2.2. [3]: Let q be univalent in **U** and let \emptyset and $\boldsymbol{\theta}$ be analytic in the domain **D** containing $\boldsymbol{q}(\boldsymbol{U})$

with $\phi(\mathbf{w}) \neq \mathbf{0}$, when $\mathbf{w} \in q(\mathbf{U})$.

Set $Q(z) = zq'(z)\phi(q(z))$ and $h(z) = \theta(q(z)) +$ Q(z), suppose that

- 1- Q is starlike univalent in U, 2- $\operatorname{Re}\left(\frac{zh'(z)}{Q(z)}\right) > 0, \ z \in U.$

If *p* is analytic in *U* with $p(0) = q(0), p(U) \subseteq$ D and $\phi(p(z)) + zp'(z)\phi(p(z)) \prec \phi(q(z)) +$

 $zq'(z)\phi(q(z)),$

then $p \prec q$, and q is the best dominant.

Lemma 2.3.[12]: Let q(z) be convex univalent in the unit disk U and let θ and ϕ be analytic in a domain D containing q(U). Suppose that

 $1 - Re\{\frac{\theta'(q(z))}{\phi(q(z))}\} > 0 \text{ for } z \in U,$ $2 - zq'(z)\phi(q(z))$ is starlike univalent in $z \in U$. If $p \in \mathcal{H}[q(0), 1] \cap Q$, with $p(U) \subseteq D$, and $\theta(p(z)) + zp'(z)\phi(p(z))$ is univalent in U, and $\theta(q(z)) + zq'(z)\phi(q(z)) \prec \theta(p(z)) +$ $zp'(z) \emptyset(p(z)),$ (2.2)

then $q \prec p$, and q is the best subordinant.

Lemma 2.4.[12]:Let q(z) be convex univalent in U and q(0) = 1. Let $\beta \in \mathbb{C}$, that $\operatorname{Re}(\beta) > 0$. If $p(z) \in \mathcal{H}[q(0), 1] \cap Q$ and $p(z) + \beta z p'(z)$ is univalent in U, then

 $q(z) + \beta z q'(z) \prec p(z) + \beta z p'(z),$

which implies that $q(z) \prec p(z)$ and q(z) is the best subordinant.

3-Subordination Results

Theorem 3.1.Let q(z) be convex univalent in U with $q(0) = 1, \eta, \delta \in \mathbb{C} \setminus \{0\}$. Suppose that $Re\left(1+\frac{zq''(z)}{q'(z)}\right) > \max\left\{0, -Re\left(\frac{\delta}{\eta}\right)\right\}.$ (3.1)If $f \in W$ is satisfies the subordination $G(z) < q(z) + \frac{\eta}{\delta} z q'(z),$ (3.2)

where

$$G(z) = \left(\frac{t_1 I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) + t_2 I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{(t_1 + t_2)z^p}\right)^{\delta} \times \left(1 + \eta \left(\frac{(pt_2 - t_2\alpha)I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)(z) + (t_2 - t_1\alpha + t_2p - pt_1)}{t_1 I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) + t_2 I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}\right)^{\lambda,p,\alpha+1}(a,c)f(z) + (t_1\alpha - t_1p)I_{\mu,\nu}^{\lambda,p,\alpha+2}(a,c)f(z)}{t_1 I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) + t_2 I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}\right)\right), \quad (3.3)$$

then

$$\frac{\left(\frac{t_1 I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z)+t_2 I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{(t_1+t_2)z^p}\right)^{\delta}}{(t_1+t_2)z^p} < q(z), \quad (3.4)$$

and q(z) is the best dominant.

Proof: Define a function
$$k(z)$$
 by

$$k(z) = \left(\frac{t_1 l_{\mu\nu}^{\lambda,p,\alpha+1}(a,c)f(z) + t_2 l_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{(t_1+t_2)z^p}\right)^{\delta}, \qquad (3.5)$$

then the function k(z) is analytic in U and q(0) = 1, therefore, differentiating (3.5) logarithmically with respect to z and using the identity (1.7) in the resulting equation,

$$G(z) = \left(\frac{t_1 l_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) + t_2 l_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{(t_1 + t_2)z^p}\right)^{\delta} \times \left(1 + \eta \left(\frac{(pt_2 - t_2\alpha) l_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)(z) + (t_2 - t_1\alpha + t_2p - pt_1)}{t_1 l_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) + t_2 l_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}\right)^{\lambda,p,\alpha+1}(a,c)f(z) + (t_1\alpha - t_1p) l_{\mu,\nu}^{\lambda,p,\alpha+2}(a,c)f(z)}\right)$$

Thus the subordination (3.2) is equivalent to $k(z) + \frac{\eta}{\delta} z k'(z) \prec q(z) + \frac{\eta}{\delta} z q'(z).$

An application of Lemma (2.1) with $\beta = \frac{\eta}{s}$ and

 $\alpha = 1$, we obtain (3.4). Taking $q(z) = \frac{1+Az}{1+Bz}$, $(-1 \le B < A \le 1)$, Theorem (3.1), we obtain the following Corollary. in

Corollary 3.1. Let $\eta, \delta \in \mathbb{C} \setminus \{0\}$ and $(-1 \leq 1)$ $B < A \le 1$).Suppose that

$$Re\left(\frac{1-Bz}{1+Bz}\right) > \max\left\{0, -Re\left(\frac{\delta}{\eta}\right)\right\}$$

If $f \in W$ is satisfy the following subordination condition:

$$\begin{split} G(z) &\prec \frac{1+Az}{1+Bz} + \frac{\eta}{\delta} \frac{(A-B)z}{(1+Bz)^2} ,\\ \text{where } G(z) \text{ given by } (3.3) \text{ , then} \\ &\left(\frac{t_1 I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) + t_2 I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{(t_1+t_2)z^p}\right)^{\delta} < \frac{1+Az}{1+Bz} \end{split}$$

and $\frac{1+Bz}{1+Bz}$ is the best dominant.

Taking A = 1 and B = -1 in Corollary (3.1), we get following result.

Corollary 3.2. Let $\eta, \delta \in \mathbb{C} \setminus \{0\}$ and suppose that

 $Re\left(\frac{1+z}{1-z}\right) > \max\{0, -Re\left(\frac{\delta}{n}\right)\}.$ If $f \in W$ is satisfy the following subordination $G(z) \prec \frac{1+z}{1-z} + \frac{\eta}{\delta} \frac{2z}{(1-z)^2} ,$

where

$$\left(\frac{t_1 l_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) + t_2 l_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{(t_1 + t_2) z^p} \right)^{\delta} < \frac{1 + z}{1 - z},$$

and $\frac{1+2}{1-z}$ is the best dominant.

Theorem 3.2. Let q(z) be convex univalent in U unit disk with q(0) = 1, let $\eta, \delta \in \mathbb{C}\{0\}, \gamma, t, \psi, \tau \in \mathbb{C}, f \in W$, and suppose that f and q satisfy the following conditions:

$$Re\left\{\frac{\psi}{s}q(z) + \frac{2\tau\gamma}{s}q^{2}(z) + 1 + z\frac{q''(z)}{q'(z)} - z\frac{q'(z)}{q(z)}\right\} > 0, \qquad (3.6)$$

and
 $L^{\lambda,p,\alpha}(a,c)f(z)$

(3.7)

$$\frac{z^p}{z^p} \neq 0 \; .$$

If $r(z) < t + \psi q(z) + \tau \gamma q^2(z) + s \frac{zq'(z)}{q(z)}$, (3.8) where

$$r(z) = \left(\frac{I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{z^p}\right)^{\delta} \left(\psi + t\gamma \left(\frac{I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{z^p}\right) + t + s_{\delta}(\alpha + p) \left(\frac{I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z)}{I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)} - 1\right)\right),$$

$$(2.0)$$

(3.9)then

 $\left(\frac{I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{z^p}\right)^{\delta} \prec q(z)$, and q(z) is best dominant.

Proof: Define analytic function k(z) by

$$k(z) = \left(\frac{I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{z^p}\right)^{\delta}.$$
(3.10)

Then the function k(z) is analytic in U and g(0) = 1,

differentiating (3.10) logarithmically with respect to z, we get

$$\frac{zk'(z)}{k(z)} = \delta(\alpha + p) \left(\frac{I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z)}{I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)} - 1 \right).$$
(3.11)
Prove setting $\theta(\mu) = t + \lambda(\mu) + z^{2} \mu^{2}$ and $\phi(\mu)$

By setting $\theta(w) = t + \psi w + \tau \gamma w^2$ and $\phi(w) = \frac{s}{w}$, it can be easily observed that $\theta(w)$ is analytic in \mathbb{C} , $\phi(w)$ is analytic in $\mathbb{C} \setminus \{0\}$ and that $\phi(w) \neq 0$ $0, w \in \mathbb{C} \setminus \{0\}$ Also . if we let

$$\begin{aligned} \varphi(z) &= zq'(z)\phi\bigl(q(z)\bigr) = s\frac{zq'(z)}{q(z)} ,\\ \text{and} \\ h(z) &= \theta\bigl(q(z)\bigr) + Q(z) = t + \psi q(z) + \tau \gamma q^2(z) + s\frac{zq'(z)}{q(z)} , \end{aligned}$$

we find Q(z) is starlike univalent in U, we have $h'(z) = \psi q'(z) + 2\tau \gamma q(z)q'(z) + s \frac{q'(z)}{q(z)} +$ $SZ\frac{q''(z)}{q(z)} - SZ\left(\frac{q'(z)}{q(z)}\right)^2$, and $\frac{zh'(z)}{Q(z)} = \frac{\psi}{s}q(z) + \frac{2\tau\gamma}{s}q^2(z) + 1 + z\frac{q''(z)}{q'(z)} - z\frac{q'(z)}{q(z)},$ hence that Refer that $Re\left(\frac{zh'(z)}{Q(z)}\right) = Re\left(\frac{\psi}{s}q(z) + \frac{2\tau\gamma}{s}q^2(z) + 1 + z\frac{q''(z)}{q'(z)} - z\frac{q'(z)}{q(z)}\right) > 0.$ By using (3.11), we obtain $\psi k(z) + \tau \gamma k^2(z) + s \frac{zk'(z)}{k(z)} = \left(\frac{I^{\lambda,p,\alpha}_{\mu,\nu}(a,c)f(z)}{z^p}\right)^{\delta} \left(\psi + \frac{I^{\lambda,p,\alpha}_{\mu,\nu}(a,c)f(z)}{z^p}\right)^{\delta} \right)^{\delta} \left(\psi + \frac{I^{\lambda,p,\alpha}_{\mu,\nu}(a,c)f(z)}{z^p}\right)^{\delta} \left(\psi + \frac{I^{\lambda,p,\alpha}_{\mu,\nu}(a,c)f(z)}{z^p}\right)^{\delta} \left(\psi + \frac{I^{\lambda,p,\alpha}_{\mu,\nu}(a,c)f(z)}{z^p}\right)^{\delta} \right)^{\delta} \left(\psi + \frac{I^{\lambda,p,\alpha}_{\mu,\nu}(a,c)f(z)}{z^p}\right)^{\delta} \left(\psi + \frac{I^{\lambda,p,\alpha}_{\mu,\nu}(a,c)f(z)}{z^p}\right)^{\delta} \right)^{\delta} \left(\psi + \frac{I^{\lambda,p,\alpha}_{\mu,\nu}(a,c)f(z)}{z^p}\right)^{\delta} \left(\psi + \frac{I^{\lambda,p,\alpha}_{\mu,\nu}(a,c)f(z)}{z^p}\right)^{\delta} \right)^{\delta} \left(\psi + \frac{I^{\lambda,p,\alpha}_{\mu,\nu}(a,c)f(z)}{z^p}\right)^{\delta} \left(\psi + \frac{I^{\lambda,p,\alpha}_{\mu,\nu}(a,c)f(z)}{z^p}\right)^{\delta$ $\tau\gamma\gamma\left(\frac{I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{n}\right)^{\delta}+t+$

$$\left(s_{\delta}(\alpha+p)\left(\frac{I_{\mu,V}^{\lambda,p,\alpha+1}(a,c)f(z)}{I_{\mu,V}^{\lambda,p,\alpha}(a,c)f(z)}-1\right)\right).$$

By using (3.8), we have

$$\psi k(z) + \tau \gamma k^{2}(z) + s \frac{zk'(z)}{k(z)}$$

$$\prec \psi q(z) + \tau \gamma q^{2}(z) + s \frac{zq'(z)}{q(z)}$$

(3.8)

and by using Lemma (2.2), we deduce that subordination (3.8) implies that $k(z) \prec q(z)$ and the function q(z) is the best dominant. Taking the function $q(z) = \frac{1+Az}{1+Bz}$ $(-1 \le B < A \le 1)$, in Theorem (3.2) the condition (2.2)

1), in Theorem (3.2), the condition (3.6) becomes.

$$Re\left(\frac{\psi}{s}\frac{1+Az}{1+Bz} + \frac{2\tau\gamma}{s}\left(\frac{1+Az}{1+Bz}\right)^2 + 1 + \frac{(A-B)z}{(1+Bz)(1+Az)} - \frac{2Bz}{1+Bz}\right) > 0,$$
 (3.12)

hence, we have the following Corollary.

Corollary 3.3. Let $(-1 \le B \le A \le 1), s, \delta \in$ $\mathbb{C} \setminus \{0\}, \gamma, t, \tau, \psi \in \mathbb{C}$. Assume that (3.12) holds. If $f \in W$ and

$$\begin{split} r(z) &< t + \psi \frac{1+Az}{1+Bz} + \tau \gamma \left(\frac{1+Az}{1+Bz}\right)^2 + s \frac{(A-B)z}{(1+Bz)(1+Az)} ,\\ \text{where } r(z) \text{ is defined in (3.9), then} \\ \left(\frac{I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{z^p}\right)^\delta &< \frac{1+Az}{1+Bz} \text{ , and } \frac{1+Az}{1+Bz} \text{ is best}\\ \text{dominant .} \end{split}$$

Taking the function $q(z) = (\frac{1+z}{1-z})^{\rho}$ (0 ,in Theorem (3.2), the condition (3.6) becomes $Re\left\{\frac{\psi}{s}\left(\frac{1+z}{1-z}\right)^{\rho} + \frac{2\tau\gamma}{s}\left(\frac{1+z}{1-z}\right)^{2\rho} + \frac{2z^{2}}{1-z^{2}}\right\}0, (s \in \mathbb{C} \setminus \{0\})$ (3.13)

hence, we have the following Corollary.

Corollary3.4. Let $0 < \rho \le 1$, $S, \delta \in \mathbb{C} \setminus \{0\} \gamma, t, \tau, \psi \in \mathbb{C}$. Assume that (3.13) holds. If $f \in W$ and

$$\begin{aligned} r(z) &< t + \psi \left(\frac{1+z}{1-z}\right)^{\rho} + \tau \gamma \left(\frac{1+z}{1-z}\right)^{2\rho} + s \frac{2\rho z}{1-z^{2\prime}}, \\ \text{where } r(z) \text{ is defined in (3.9), then} \\ &\left(\frac{i_{M,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{z^{p}}\right)^{\delta} < \left(\frac{1+z}{1-z}\right)^{\rho}, \text{ and } \left(\frac{1+z}{1-z}\right)^{\rho} \text{ is the} \\ \text{best dominant.} \end{aligned}$$

4-Superordination Results

Theorem 4.1. Let q(z) be convex univalent *U* with $q(0) = 1, \delta \in \mathbb{C} \setminus \{0\}, Re\{\eta\} > 0$, if $f \in W$, such that

$$\frac{t_1 I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c) f(z) + t_2 I_{\mu,\nu}^{\lambda,p,\alpha}(a,c) f(z)}{(t_1+t_2) z^p} \neq 0$$

and

$$\left(\frac{t_1 I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z)+t_2 I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{(t_1+t_2)z^p} \right)^{\delta} \mathcal{H}[q(0),1] \cap$$

$$Q .$$

$$(4.1)$$

If the function G(z) defined by (3.3) is univalent and the following superordination condition:

$$q(z) + \frac{\eta}{\delta} z q'(z) \prec G(z), \tag{4.2}$$

holds, then

$$q(z) \prec \left(\frac{t_{1} I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) + t_{2} I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{(t_{1}+t_{2})z^{p}}\right)^{o} (4.3)$$

and q(z) is the best subordinant. **Proof:** Define a function k(z) by

$$k(z) = \left(\frac{t_1 t_{\mu,\nu}^{\lambda,p,a+1}(a,c)f(z) + t_2 I_{\mu,\nu}^{\lambda,p,a}(a,c)f(z)}{(t_1 + t_2)z^p}\right)^{\delta}.$$
 (4.4)

Differentiating (4.4) with respect to z logarithmically, we get.

$$\frac{z\dot{k}(z)}{k(z)} = \\ \delta \left(\frac{t_1 \left(z \left(I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) \right)' \right) + t_2 \left(z \left(I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z) \right)' \right) - \right. \\ \left. - \frac{t_1 \left(I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) \right) + t_2 \left(I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z) \right) \right. \\ \left. \frac{p t_1 I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) + p t_2 I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{t_1 \left(I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) \right) + t_2 \left(I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z) \right)} \right)$$
(4.5)

A simple computation and using (1.7) from (4.5), we get

$$\begin{pmatrix} \frac{t_1 t_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) + t_2 t_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{(t_1 + t_2)z^p} \end{pmatrix}^{\delta} \times \\ \begin{pmatrix} 1 + \eta \left(\frac{(pt_2 - \alpha t_2) t_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z) + (t_2 - \alpha t_1 + pt_2 - pt_1)}{t_1 t_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) + t_2 t_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)} \\ \frac{t_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) + (\alpha t_1 + pt_1) t_{\mu,\nu}^{\lambda,p,\alpha+2}(a,c)f(z)}{t_1 t_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) + t_2 t_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)} \end{pmatrix} \end{pmatrix}$$
$$= k(z) + \frac{\eta}{\delta} z k'(z),$$

now , by using Lemma(2.4), we get the desired result .

Taking $q(z) = \frac{1+Az}{1+Bz}$ (-1 $\leq B < A \leq 1$), in Theorem (4.1), we get the following Corollary.

Corollary 4.2. Let $Re{\eta} > 0, \delta \in \mathbb{C} \setminus \{0\}$ and $-1 \le B < A \le 1$,

such that

$$\begin{pmatrix} t_1 I_{\mu,v}^{\lambda,p,\alpha+1}(a,c)f(z) + t_2 I_{\mu,v}^{\lambda,p,\alpha}(a,c)f(z) \\ \hline (t_1+t_2)z^p \end{pmatrix}^{\delta} \in \mathcal{H}[q(0),1] \cap Q.$$

If the function G(z) given by (3.3) is univalent in Uand $f \in W$ satisfies the following superordination condition:

$$\frac{1+Az}{1+Bz} + \frac{\eta}{\delta} \frac{(A-B)Z}{(1+BZ)^2} < G(z),$$

then

$$\frac{1+Az}{1+Bz} < \left(\frac{t_1 l_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) + t_2 l_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{(t_1+t_2)z^p}\right)^{\delta},$$

and the function $\frac{1+Az}{1+Bz}$ is the best subordinant.

Theorem 4.2. Let q(z) be convex univalent in unit disk U, Let $\delta, s \in \mathbb{C} \setminus \{0\}, \gamma, t, \psi, \tau \in \mathbb{C}, q(z) \neq 0$, and $f \in W$. Suppose that $Re\left\{\frac{q(z)}{s}(2\tau\gamma q(z) + \psi)\right\}q'(z) > 0$,

and satisfies the next conditions

$$\left(\frac{I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{z^p}\right)^{\delta} \in \mathcal{H}[q(0),1] \cap Q,$$
(4.6)
and

 $I_{\mu,v}^{\lambda,p,\alpha}(a,c)f(z)$

If the function
$$r(z)$$
 is given by (3.9) is univalent in U ,

$$t + \psi q(z) + \tau \gamma q^2(z) + s \frac{zq'(z)}{q(z)} < r(z)$$
(4.7)

implies

$$q(z) \prec \left(\frac{I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{z^p}\right)^o$$
, and $q(z)$ is the best

subordinant.

Proof: Let the function k(z) defined on U by (3.14).

Then a computation show that

$$\frac{zk'(z)}{k(z)} = \delta(\alpha + p) \left(\frac{I_{\mu\nu}^{\lambda,p,\alpha+1}(a,c)f(z)}{I_{\mu\nu}^{\lambda,p,\alpha}(a,c)f(z)} - 1 \right), \quad (4.8)$$

by setting $\theta(w) = t + \psi \omega + \tau \gamma \omega^2$ and $\phi(w) = \frac{s}{\omega}$, it can be easily observed that $\theta(w)$ is analytic in \mathbb{C} , $\phi(w)$ is analytic in $\mathbb{C} \setminus \{0\}$ and that $\phi(w) \neq 0$ ($W \in \mathbb{C} \setminus \{0\}$).

Also, we get $Q(z) = zq'(z)\phi(q(z)) = s\frac{zq'(z)}{q(z)}$, it observed that Q(z) is starlike univalent in U. Since q(z) is convex, it follows that

$$Re\left(\frac{z\theta'(q(z))}{\phi(q(z))}\right) = Re\left\{\frac{q(z)}{s}\left(2\tau\gamma q(z)\right) + \psi\right\}\dot{q}(z) > 0$$

By making use of (4.8) the hypothesis (4.7) can be equivalently written as

$$\theta\left(q(z) + zq'(z)\phi(q(z))\right) = \theta\left(k(z) + \frac{1}{2}\left(k(z) + \frac{1}{2}\right)\right)$$

 $zk'(z)\phi(k(z))$

thus, by applying Lemma (2.3), the proof is completed.

5.Sandwich Results

Combining Theorem (3.1) with Theorem (4.1), we obtain the following sandwich Theorem.

Theorem 5.1. Let q_1 and q_2 be convex univalent in *U* with $q_1(0) = q_2(0) = 1$ and q_2 satisfies (3.1). Suppose that $Re{\eta} > 0, \eta, \delta \in \mathbb{C} \setminus \{0\}$. If $f \in W$, such that

$$\left(\frac{t_1I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z)+t_2I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{(t_1+t_2)z^p}\right)^{\delta} \in$$

 $\mathcal{H}[q(0),1] \cap Q,$

and the function G(z) defined by (3.3) is univalent and satisfies

$$q_{1}(z) + \frac{\eta}{\delta} z q_{1}'(z) < G(z) < q_{2}(z) + \frac{\eta}{\delta} z q_{2}'(z),$$
(5.1)

then

$$q_{1}(z) \prec \left(\frac{t_{1}I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z)+t_{2}I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{(t_{1}+t_{2})z^{p}}\right)^{\delta} \prec q_{2}(z).$$

where q_1 and q_2 are respectively, the subordinant and the best dominant of (5.1).

Combining Theorem (3.2) with Theorem (4.2), we obtain the following sandwich Theorem.

Theorem 5.2. Let q_i be two convex univalent functions in U, such that $q_i(0) = 1$, $q_i(0) \neq 0$ (i=1,2).Suppose that q_1 and q_2 satisfies (3.8) and (4.8), respectively.

If $f \in W$ and suppose that f satisfies the next conditions:

$$\begin{pmatrix} I^{\lambda,p,\alpha}_{\mu,\nu}(a,c)f(z) \\ \hline z^p \end{pmatrix}^{\delta} \in \mathcal{H}[Q(0),1] \cap Q,$$

and
$$I^{\lambda,p,\alpha}_{\mu,\nu}(a,c)f(z) \\ \hline z^p \neq 0,$$

and r(z) is univalent in U , then

$$\begin{split} t + \psi q_1(z) + \tau \gamma q_1^2(z) + s \frac{z q_1'(z)}{q_1(z)} &\prec t + \psi q_1(z) + \\ \tau \gamma q_1^2(z) + s \frac{z q_1'(z)}{q_1(z)}, \\ \text{implies} \end{split}$$

$$q_1(z) \prec \left(\frac{I_{\mu,v}^{\lambda,p,\alpha}(a,c)f(z)}{z^p}\right)^{\delta} \prec q_2(z),$$

and q_1 and q_2 are the best subordinant and the best dominant respectively and r(z) is given by (3.9).

References:

- [1]R. M. Ali, V.Ravich and , K. G. subramanian, Differential sandwich theorem for certain analytic functions, for East J.Math. Sci.,(2004), 15,87-94.
- [2]R. M. Ali, V.Ravichandran and N.Seenivasagan, on subordination and superordination of the multiplier transformation for meromorphic functions, Bull. Malays . Math.Sci.Soc., 33 (2010),311-324.
- [3] T. Bulbocaco, Differential Subordinations and Superordinations, Recent Results, House of Scientific Bookpubl., Cluj-napoca, (2005),
- [4]T. Bulboacã, Classes of first order differential superordinations, Demonstration math., 35(2) (2002), 287-292.
- [5]N.E. Cho, O.H. Kwon and H.M. Srivastava , Inclusion and argument Properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal . Appl., 292(2004), 470-483.
- [6]R.M. Goel and N.S. sohi, Anew criterion for Pvalent functions, Proc. Amer .Math. Soc., 78(1980), 535-357.
- [7]S.P. Goyal, P. Goswami and H. Silverman, Subordination and superordivation results for a class of analytic multivalent functions, Int. J. Math. Sci., Article ID 561638, 1-12, (2008).
- [8] Yu. E. Hohlov, Operators and operations in the class of univalent functions, Izv, Vvssh.
- Ucebn. Zaved. Math., 10(1987), 83-89.
- [9]R.Kargar, A.Bilavi, S. Abdolahi and S.Maroufi, A class of multivalent analytic functions defined by anew linear operator, J. Math. Com P.Sci.,8 (2014),326-334.
- [10]J.L.Liu and k.l.Noor, some properties of Noor integral operator, J.Natur. Geom., 21(2002), 81-90.
- [11]S. S. Miller and P.T. Mocanu, Differential subordinations :Theory and Applications, Series on Monographs and Text Books in Pure and Applied Mathematics, 225, Marcel Dekker, NewYork and Basel, (2000).
- [12]S. S. Miller and P.T. Mocanu, Subordinations of differential superodinations, complex variables, 48(10) (2003), 815-826.
- [13]H.Saition, A linear operator and its applications of first order differential subordinations, Math. Japon., 44(1996), 31-38.

Journal of AL-Qadisiyah for computer science and mathematics Vol.11 No.1 Year 2019 ISSN (Print): 2074 – 0204 ISSN (Online): 2521 – 3504

Waggas .G//Salwa .K

- [14]T.N. Shanmugam, S. Shivasubramaniam and H. Silverrman, On sandwich theorems for classes of analytic functions, Int. J. Math. Sci., Article ID29684(2006)., 1-13.
- [15]T.N.Shanmugam, V.Rvichandran and S.Sivasubramanian, Differential sandwich theorems for subclasses of analytic functions, Aust.J.Math.Anal. App1.,3, Article 8(2006).,1.11.
- [16]H.M. Srivastava and M.K.Aouf, A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients, Int. J. Math. App1., 171(1992),1-13.
- [17]N. Tuneski, On certain sufficient conditions for starlikeness, Internat. J.Math.Sci.23(8) (2000),521-527.

على نظريات الساندويتش التفاضلية من وظائف متعددة التكافؤ المحددة من قبل المشغل الخطى

وقاص غالب عطشان سلوى كلف كاظم قالب عطشان ولي علف كاظم قسم الرياضيات ، كلية علوم الحاسوب وتكنلوجيا المعلومات ، جامعة القادسية ، الديوانية-العراق

المستخلص : ١ لهدف الرئيسي من هذا البحث هو استخلاص بعض النتائج للوظائف التحليلية متعددة التكافؤ التي يحددها المشغل الخطي باستخدام التبعية التفاضلية والإخضاع .