Math Page 117 - 123 Waggas .G//Salwa .K

On Differential Sandwich Theorems of Multivalent Functions Defined by a Linear operar

Waggas Galib Atshan Salwa Kalf Kazim Department of Mathematics , College of Computer Science and Information Technology , University of AL-Qadisiyah , Diwaniyah-Iraq

waggas.galib@qu.edu.iq , waggashnd@gmail.com

Recived : 24\12\2018 Revised :// Accepted : 13\1\2019 Available online : 28 /1/2019 DOI: 10.29304/jqcm.2019.11.1.480

Abstract:

The main object of the present paper is to derive some results for multivalent analytic functions defined by linear operator by using differential subordination and superordination

Keywords: Analytic functions, multivalent functions, Hadamard product, subordination, linear operators.

Mathematics Subject Classification: 30C45.

1. Introduction

Let A_p denote the class of functions f of the form:

 $f(z) = z^p + \sum_{n=1}^{\infty} a_{p+n} z^{p+n}$, (p $\{1, 2, \ldots\}; z U),$

which are analytic in the open unit disk $U = \{z \in \mathbb{R}\}$ $\mathbb{C}: |z| < 1$.

For two functions f and g are analytic in U , we say that the function f is subordinate to g in U , written $f \prec g$, if there exists Schwarz function w, analytic in U with $w(0) = 0$ and $|w(z)| < 1$ in U such that $f(z) =$ $g(w(z))$, $z \in U$ If g is univalent and $g(0) = f(0)$,

then $f(u) \subset g(u)$. If $f \in A_p$ is given by (1.1) and $g \in A_p$ given by

$$
g(z) = zp + \sum_{n=1}^{\infty} b_{p+n} z^{p+n}.
$$

Then Hadamard product (or convolution) is defined by

$$
(f * g)(z) = zp + \sum_{n=1}^{\infty} a_{p+n} b_{p+n} z^{p+n}
$$

The linear operator
$$
J_{\mu, p}^{\lambda, p}(a, c): A_p \to A_p \text{ def}
$$

fined by $J_{\mu\nu}^{\lambda,p}(a,c)f(z) = \phi_{\mu\nu}^{\lambda,p}(a,c;z) * f(z),$ (f $A_n, z \in U$,

(1.2)

where

 $\phi_{\mu\nu}^{\lambda,p}(a,c;z) =$ $z^{p} + \sum_{n=1}^{\infty} \frac{(a)_{n}(p+1)_{n}(p+1-\mu+\nu)_{n}}{(p+1)(p+1-\mu+\nu)}$ $(c)_n (p+1-\mu)_n$ $\sum_{n=1}^{\infty} \frac{(a)_n (p+1)_n (p+1-\mu+v)_n}{(c) (n+1-\mu)} z^p$ (1.3) and

 d_n $n=0$ $\mathbf{1}$ $=$ $d(d + 1)(d + 2) ... (d + n - 1)$ n For $a \in R$, $c \in R \setminus z_{\circ}$, where z_{\circ} $\{0,-1,-2,\dots\}$, $0\leq\lambda<1$, $\mu,\nu\in R$ and $\;\mu-\nu$ $$ $p < 1$ and $f \in A_p$. Then linear operator $I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)$: A_n \rightarrow A_n (see[9]) is defined by $I_{\mu\nu}^{\lambda,p,\alpha}(a,c)f(z) := \psi_{\mu\nu}^{\lambda,p,\alpha}(a,c;z) * f(z)$, (1.4)

where $\psi_{\mu,\nu}^{\lambda,p,\alpha}(a,c;z)$ is the function defined in terms of the Hadamard product by the following condition:

$$
\varphi_{\mu,\nu}^{\lambda,p}(a,c;z) * \psi_{\mu,\nu}^{\lambda,p,\alpha}(a,c;z) = \frac{z^p}{(1-z)^{a+p}} \quad (a > -p). \tag{1.5}
$$

We can easily find from (1.3) - (1.5) that

$$
I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)=z^p+
$$

$$
\sum_{n=1}^{\infty} \frac{(c)_n (p+1-\lambda+v)_n (\alpha+p)_n (p+1-\mu)n}{(a)_n (p+1)_n (p+1-\mu+v)_n n!} a_{p+n} z^{p+n}
$$
(1.6)

It is easily verified from (1.6) that

$$
z(I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)) = (\alpha + p)I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z) - \alpha I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z). \qquad (1.7)
$$

Note that the linear operator $I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)$ unifies many other operators considered earlier. In particular

- 1) $I_{0v}^{0,p,\alpha}(a,c) \equiv J_p^a(a,c)$ (see Cho al. [5]).
- 2) $I_{0v}^{0,p,\alpha}(a,a) \equiv D^{\alpha}$ $($ see Goel and Sohi $[6]$).
- 3) $I_{0,p}^{0,p,1}(p+1-\lambda,1) \equiv \Omega_z^{(\lambda,P)}$ (see Srivastava and Aouf[16]).

4)
$$
I_{0v}^{0,p,\alpha-1}(a,c) \equiv J_n^{a,\alpha}(\text{see Hohlov[8]}).
$$

5)
$$
I_{0,v}^{0,1-\alpha,\alpha}(a,c) \equiv L_P(a,c)
$$

(see Saition[13]).

6) $I_{0v}^{0,p,1}(p+\alpha,1) \equiv$ $($ see Liu an Noor $[10]$).

The main object of this idea is to find sufficient conditions for certain normalized analytic functions f to satisfy:

$$
q_1(z) < \left(\frac{t_1 I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z)+t_2 I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{(t_1+t_2)z^p}\right)^{\delta} < q_2(z),
$$

and

$$
q_1(z) \prec \left(\frac{\int_{\mu,\nu}^{\lambda p,\alpha}(a,c)f(z)}{z^p}\right)^{\delta} \prec q_2(z) ,
$$

where $q_1(z)$ and $q_2(z)$ are given univalent functions in *U* with $q_1(0)$ and $q_2(0) = 1$.

2- Preliminaries

In order to prove our subordinations and superordinations results, we need the following definition and lemmas .

Definition 2.1. [11]: Denote by Q the set of all functions q that are analytic and injective on $\overline{U} \setminus E(q)$, where

 $\overline{U} = U \cup \{z \in \partial U\}$, and

 $E(q) = \{ \zeta \in \partial U : \lim_{z \to \zeta} q(z) = \infty \}$ (2.1) and are such that $q'(\zeta) \neq 0$ for $E(q)$.

Further , let the subclass of Q for which $q(0) = a$ be denoted by $Q(a)$, $Q(0) \equiv Q_0$ and $Q(1) \equiv Q_1$.

Lemma 2.1.[1]: Let $q(z)$ be convex univalent function in U, let $\alpha \in \mathbb{C}$. $\beta \in \mathbb{C} \setminus \{0\}$ and suppose that

 $Re(1+\frac{zq''(z)}{d(x)})$ $\frac{q''(z)}{q'(z)}$) > max{0, -Re($\frac{\alpha}{\beta}$ $\frac{a}{\beta}$) }.

If $p(z)$ is analytic in U and

 $\alpha p(z) + \beta z p'(z) < \alpha q(z) + \beta z q'(z)$,

then $p(z) \prec q(z)$ and q is the best dominant. Lemma 2.2. [3]: Let q be univalent in **U** and let \emptyset and θ *be analytic in the domain Dcontaining* $q(U)$

with $\emptyset(w) \neq 0$ *, when* $w \in q(U)$ *.*

Set $Q(z) = zq'(z) \phi(q(z))$ and $h(z) = \theta(q(z)) +$ $Q(z)$, suppose that

- 1- Q is starlike univalent in U ,
- 2- Re $\left(\frac{zh'(z)}{a(z)}\right)$ $\frac{h^{(2)}}{Q(z)}$ > 0, $z \in U$.

If p is analytic in U with $p(0) = q(0), p(U) \subseteq$ D and $\phi(p(z)) + z p'(z) \phi(p(z)) < \phi(q(z)) +$

 $zq'(z) \phi(q(z)),$

then $p \lt q$, and q is the best dominant.

Lemma 2.3.[12]: Let $q(z)$ be convex univalent in the unit disk U and let θ and ϕ be analytic in a domain D containing $q(U)$. Suppose that

$$
1 - Re\{\frac{\theta'(q(z))}{\phi(q(z))}\} > 0 \text{ for } z \in U,
$$

\n
$$
2 - zq'(z)\phi(q(z)) \text{ is starlike univalent in } z \in U.
$$

\nIf $p \in \mathcal{H}[q(0), 1] \cap Q$, with $p(U) \subseteq D$, and
\n $\theta(p(z)) + zp'(z)\phi(p(z)) \text{ is univalent in } U$, and
\n $\theta(q(z)) + zq'(z)\phi(q(z)) < \theta(p(z)) +$

$$
zp'(z)\phi(p(z)), \qquad (2.2)
$$

then $q \lt p$, and q is the best subordinant.

Lemma 2.4.[12]:Let $q(z)$ be convex univalent in U and $q(0) = 1$. Let $\beta \in \mathbb{C}$, that $\text{Re}(\beta) > 0$. If $p(z) \in \mathcal{H}[q(0), 1] \cap Q$ and $p(z) + \beta z p'(z)$ is univalent in U , then

 $q(z) + \beta z q'(z) < p(z) + \beta z p'(z)$,

which implies that $q(z) \prec p(z)$ and $q(z)$ is the best subordinant.

3-**Subordination Results**

Theorem 3.1. Let $q(z)$ be convex univalent in U with $q(0) = 1, \eta, \delta \in \mathbb{C} \setminus \{0\}$. Suppose that $Re\left(1+\frac{zq''(z)}{d(z)}\right)$ $\frac{a''(z)}{a'(z)}$ > max $\left\{0, -Re\left(\frac{\delta}{\eta}\right)\right\}$ η (3.1) If $f \in W$ is satisfies the subordination $G(z) < q(z) + \frac{\eta}{s}$ $\frac{\eta}{\delta}$ zq' (3.2)

where

$$
G(z) = \left(\frac{t_1 I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) + t_2 I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{(t_1+t_2)z^p}\right)^{\delta} \times \left(1 + \eta \left(\frac{(pt_2-t_2\alpha)I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)(z) + (t_2-t_1\alpha+t_2p - pt_1)}{t_1 I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) + t_2 I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}\right) \times \frac{I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) + (t_1\alpha-t_1p)I_{\mu,\nu}^{\lambda,p,\alpha+2}(a,c)f(z)}{t_1 I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) + t_2 I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}\right), \quad (3.3)
$$

then

$$
\left(\frac{t_1 l_{\mu,\nu}^{\lambda p,\alpha+1}(a,c)f(z)+t_2 l_{\mu,\nu}^{\lambda p,\alpha}(a,c)f(z)}{(t_1+t_2)z^p}\right)^{\delta} < q(z), \quad (3.4)
$$

and $q(z)$ is the best dominant.

Proof: Define a function
$$
k(z)
$$
 by
\n
$$
k(z) = \left(\frac{t_1 I_{\mu,\nu}^{\lambda, p,\alpha+1}(a,c) f(z) + t_2 I_{\mu,\nu}^{\lambda, p,\alpha}(a,c) f(z)}{(t_1 + t_2) z^p}\right)^{\delta},
$$
\n(3.5)

then the function $k(z)$ is analytic in U and $q(0) = 1$, therefore,differentiating (3.5) logarithmically with respect to z and using the identity (1.7) in the resulting equation,

$$
G(z) = \left(\frac{t_1 I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) + t_2 I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{(t_1+t_2)z^p}\right)^{\delta} \times \left(1 + \eta \left(\frac{(pt_2-t_2\alpha)I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)(z) + (t_2-t_1\alpha+t_2p - pt_1)}{t_1 I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) + t_2 I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}\right) \right)
$$

$$
\frac{I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) + (t_1\alpha-t_1p)I_{\mu,\nu}^{\lambda,p,\alpha+2}(a,c)f(z)}{t_1 I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) + t_2 I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}\right)
$$

Thus the subordination (3.2) is equivalent to $k(z) + \frac{\eta}{s}$ $\frac{\eta}{\delta}$ zk'(z) < q(z) + $\frac{\eta}{\delta}$ $\frac{\eta}{\delta}$ zq'(z).

An application of Lemma (2.1) with $\beta = \frac{\eta}{s}$ δ and $\alpha = 1$, we obtain (3.4).

Taking $q(z) = \frac{1}{z}$ $\frac{1+AZ}{1+BZ}$, $(-1 \leq B < A \leq 1)$, in Theorem (3.1), we obtain the following Corollary.

Corollary 3.1. Let $\eta, \delta \in \mathbb{C} \setminus \{0\}$ and $(-1 \leq$ $B < A \leq 1$).Suppose that

$$
Re\left(\frac{1-Bz}{1+Bz}\right) > \max\left\{0, -Re\left(\frac{\delta}{\eta}\right)\right\}.
$$

If $f \in W$ is satisfy the following subordination condition:

$$
G(z) < \frac{1+Az}{1+Bz} + \frac{\eta}{\delta} \frac{(A-B)z}{(1+Bz)^2},
$$

where $G(z)$ given by (3.3), then

$$
\left(\frac{t_1 l_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z)+t_2 l_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{(t_1+t_2)z^p}\right)^{\delta} < \frac{1+AZ}{1+Bz},
$$
and $\frac{1+AZ}{1+Bz}$ is the best dominant.

and $\frac{1+Az}{1+Bz}$ is the best dominant.

Taking $A = 1$ and $B = -1$ in Corollary (3.1), we get following result.

Corollary 3.2. Let $\eta, \delta \in \mathbb{C} \setminus \{0\}$ and suppose that $\overline{(\overline{s})}$

$$
Re\left(\frac{1+z}{1-z}\right) > \max\{0, -Re\left(\frac{\delta}{\eta}\right)\}.
$$

If $f \in W$ is satisfy the following subordination

$$
G(z) < \frac{1+z}{1-z} + \frac{\eta}{\delta} \frac{2z}{(1-z)^2},
$$

where

$$
G(z) given by (3.3), then
$$

\n
$$
\left(\frac{t_1 l_{\mu,\nu}^{\lambda, p, \alpha+1}(a,c)f(z) + t_2 l_{\mu,\nu}^{\lambda, p, \alpha}(a,c)f(z)}{(t_1 + t_2)z^p}\right)^{\delta} < \frac{1+z}{1-z},
$$

and $\frac{1+z}{1-z}$ is the best dominant.

Theorem 3.2. Let $q(z)$ be convex univalent in unit disk *U* with $q(0) = 1$, let $\eta, \delta \in \mathbb{C}{0}$, $\gamma, t, \psi, \tau \in \mathbb{C}$, $f \in W$, and suppose that f and g satisfy the following conditions:

$$
Re\left\{\frac{\psi}{s}q(z) + \frac{2\tau\gamma}{s}q^2(z) + 1 + z\frac{q''(z)}{q'(z)} - z\frac{q'(z)}{q(z)}\right\} > 0,
$$

and

$$
\frac{I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{z^p} \neq 0.
$$
 (3.7)

If $r(z) < t + \psi q(z) + \tau \gamma q^2(z) + s \frac{z q'(z)}{z(z)}$ $q(z)$ where

δ

$$
r(z) = \int \frac{I_{\mu,\nu}^{\lambda,p,\alpha}}{I_{\mu,\nu}}
$$

$$
r(z) = \left(\frac{t_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{z^p}\right)^o \left(\psi + t\gamma \left(\frac{t_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{z^p}\right) + t + s_\delta(\alpha + p) \left(\frac{t_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z)}{t_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)} - 1\right)\right),
$$

 (3.9) then

$$
\left(\frac{I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{z^p}\right)^{\delta} \prec q(z), \text{and } q(z) \text{ is best dominant.}
$$

Proof : Define analytic function $k(z)$ by

$$
k(z) = \left(\frac{I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{z^p}\right)^{\delta}.
$$
 (3.10)

Then the function $k(z)$ is analytic in U and $q(0) = 1$,

differentiating (3.10) logarithmically with respect to , we get

$$
\frac{zk'(z)}{k(z)} = \delta(\alpha + p) \left(\frac{l_{\mu,\nu}^{\lambda, p, \alpha+1}(a,c)f(z)}{l_{\mu,\nu}^{\lambda, p, \alpha}(a,c)f(z)} - 1 \right). \tag{3.11}
$$
\nBy setting $\theta(w) = t + dm + \pi w^2$ and $\phi(w)$.

By setting $\theta(w) = t + \psi w + \tau \gamma w^2$ and $\phi(w) =$ $\frac{S}{W}$, it can be easily observed that $\theta(w)$ is analytic in $\mathbb{C}, \phi(w)$ is analytic in $\mathbb{C} \setminus \{0\}$ and that $\phi(w) \neq$ $0, w \in \mathbb{C} \setminus \{0\}$.

Also , if we let

$$
\phi(z) = zq'(z)\phi(q(z)) = s\frac{zq'(z)}{q(z)},
$$

and

$$
h(z) = \theta(q(z)) + Q(z) = t + \psi q(z) + \tau \gamma q^{2}(z) + s\frac{zq'(z)}{q(z)},
$$

we find $Q(z)$ is starlike univalent in U, we have $h'(z) = \psi q'(z) + 2\tau \gamma q(z) q'(z) + s \frac{q'(z)}{z(z)}$ $\frac{q(z)}{q(z)} +$ $sz \frac{q''(z)}{z}$ $\frac{q'(z)}{q(z)} - SZ\left(\frac{q'(z)}{q(z)}\right)$ $\frac{q'(z)}{q(z)}\bigg)^2$ and $zh'(z)$ $\frac{ih'(z)}{Q(z)} = \frac{\psi}{s}$ $\frac{\psi}{s}q(z) + \frac{2}{z}$ $\frac{\tau \gamma}{s} q^2(z) + 1 + z \frac{q''(z)}{q'(z)}$ $\frac{q''(z)}{q'(z)} - z \frac{q'(z)}{q(z)}$ $\frac{q(z)}{q(z)},$ hence that $Re\left(\frac{zh'(z)}{a(z)}\right)$ $\frac{h'(z)}{Q(z)}$ = Re $\left(\frac{\psi}{s}\right)$ $\frac{\psi}{s}q(z) + \frac{2}{z}$ $\frac{\tau \gamma}{s} q^2(z) +$ $z \frac{q''(z)}{1}$ $\frac{q''(z)}{q'(z)} - z \frac{q'(z)}{q(z)}$ $\frac{q(z)}{q(z)}$ > By using (3.11), we obtain $\psi k(z) + \tau \gamma k^2(z) + s \frac{z k'(z)}{k(z)}$ $\frac{\mathrm{k}'(z)}{\mathrm{k}(z)} = \begin{pmatrix} I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z) \\ \frac{\mu,\nu}{z^p} \end{pmatrix}$ $\frac{(\alpha, \beta)(\alpha)}{z^p}$ δ (ψ

$$
\tau_{\text{A}}(z) = \frac{z^p}{k(z)}
$$
\n
$$
\tau_{\text{A}}(z) = \frac{z^p}{z^p}
$$
\n
$$
\tau_{\text{A}}(z) = \frac{z^p}{z^p}
$$
\n
$$
\left(s_\delta(\alpha + p) \left(\frac{t_{\mu,\text{V}}^{\lambda,p,\alpha}(a,c)f(z)}{t_{\mu,\text{V}}^{\lambda,p,\alpha}(a,c)f(z)} - 1 \right) \right).
$$
\n
$$
\text{By using (3.8), we have}
$$

By using
$$
(3.8)
$$
, we have

$$
\psi(k(z) + \tau \gamma k^{2}(z) + s \frac{zk'(z)}{k(z)}
$$
\n
$$
\langle 3.8 \rangle
$$
\n
$$
\langle \psi q(z) + \tau \gamma q^{2}(z) + s \frac{zq'(z)}{q(z)}
$$
\n
$$
\langle 3.8 \rangle
$$

and by using Lemma (2.2), we deduce that subordination (3.8) implies that $k(z) \prec q(z)$ and the function $q(z)$ is the best dominant. Taking the function $q(z) = \frac{1}{z}$ $\frac{1+az}{1+Bz}$ (-), in Theorem (3.2) , the condition (3.6) becomes. $Re\left(\frac{\psi}{\psi}\right)$ s $\mathbf{1}$ $\frac{1+Az}{1+Bz} + \frac{2}{z}$ $\frac{\tau \gamma}{s} \left(\frac{1+Az}{1+Bz} \right)^2 + 1 + \frac{(A-B)z}{(1+Bz)(1+Bz)}$ $\frac{(A-D)Z}{(1+BZ)(1+AZ)}$ – $\left(\frac{2Bz}{1+Bz}\right) > 0,$ (3.12)

hence, we have the following Corollary.

Corollary 3.3. Let $(-1 \le B < A \le 1)$, $s, \delta \in$ $\mathbb{C} \setminus \{0\}, \gamma, t, \tau, \psi \in \mathbb{C}$. Assume that (3.12) holds. If $f \in W$ and

$$
r(z) < t + \psi \frac{1+Az}{1+Bz} + \tau \gamma \left(\frac{1+Az}{1+Bz}\right)^2 + s \frac{(A-B)z}{(1+Bz)(1+Az)},
$$
\nwhere $r(z)$ is defined in (3.9), then

\n
$$
\left(\frac{I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{z^p}\right)^{\delta} < \frac{1+Az}{1+Bz}, and \frac{1+Az}{1+Bz} \quad \text{is} \quad \text{best}
$$
\ndominant.

Taking the function $q(z) = (\frac{1}{z})$ $\frac{(1+z)}{(1-z)^{\rho}}$ (0 < p ≤ 1), in Theorem (3.2), the condition (3.6) becomes $Re\left\{\frac{\psi}{2}\right\}$ $\frac{\psi}{s}$ $\left(\frac{1}{1}\right)$ $\frac{1+z}{1-z}$ + $\frac{2}{z}$ $\frac{\tau\gamma}{s}\Big(\frac{1}{1}$ $\left(\frac{1+z}{1-z}\right)^{2\rho} + \frac{2z^2}{1-z^2}$ $\frac{2z}{1-z^2}$ 0, (s $\{0\},\tag{3.13}$

hence ,we have the following Corollary .

Corollary3.4. Let $0 < \rho \leq 1$, $S, \delta \in \mathbb{C}$ $\{0\}$ γ , t , τ , $\psi \in \mathbb{C}$. Assume that (3.13) holds. If $f \in W$ and

$$
r(z) < t + \psi \left(\frac{1+z}{1-z}\right)^{\rho} + \tau \gamma \left(\frac{1+z}{1-z}\right)^{2\rho} + s \frac{2\rho z}{1-z^2},
$$
\nwhere $r(z)$ is defined in (3.9), then

\n
$$
\left(\frac{t_{M,\nu}^{\lambda, p,\alpha}(a,c)f(z)}{z^p}\right)^{\delta} < \left(\frac{1+z}{1-z}\right)^{\rho}, \text{ and } \left(\frac{1+z}{1-z}\right)^{\rho} \text{ is the best dominant.}
$$

4-Superordination Results

Theorem 4.1. Let $q(z)$ be convex univalent U with $q(0) = 1, \delta \in \mathbb{C} \setminus \{ 0 \}, Re\{\eta\} > 0$, if $f \in W$, such that

$$
\frac{t_1 I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z)+t_2 I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{(t_1+t_2)z^p} \neq 0
$$

and

$$
\left(\frac{t_1 I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z)+t_2 I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{(t_1+t_2)z^p}\right)^{\delta} \mathcal{H}[q(0),1] \cap Q. \tag{4.1}
$$

If the function $G(z)$ defined by (3.3) is univalent and the following superordination condition:

$$
q(z) + \frac{\eta}{\delta} z q'(z) < G(z),\tag{4.2}
$$

holds , then

$$
q(z) \prec \left(\frac{t_1 I_{\mu,\nu}^{\lambda, p, \alpha+1}(a,c) f(z) + t_2 I_{\mu,\nu}^{\lambda, p, \alpha}(a,c) f(z)}{(t_1 + t_2) z^p}\right)^{\delta} (4.3)
$$

and $q(z)$ is the best subordinant.

Proof: Define a function
$$
k(z)
$$
 by

$$
k(z) = \left(\frac{t_1 I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) + t_2 I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{(t_1 + t_2)z^p}\right)^{\delta}.
$$
 (4.4)

Differentiating (4.4) with respect to z logarithmically, we get

$$
\frac{z\hat{k}(z)}{\hat{k}(z)} = \frac{\delta \left(t_1 \left(z \left(I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) \right)' \right) + t_2 \left(z \left(I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z) \right)' \right) - t_1 \left(I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) \right) + t_2 \left(I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z) \right) \right)}{\frac{pt_1 I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) + pt_2 I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{t_1 \left(I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z) \right) + t_2 \left(I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z) \right)} \right)} \tag{4.5}
$$

A simple computation and using (1.7) from (4.5), we get

$$
\begin{aligned} &\left(\frac{t_1 l_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z)+t_2 l_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{(t_1+t_2)z^p}\right)^\delta\times \\ &\left(1+\eta\left(\frac{(pt_2-\alpha t_2)l_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)+(t_2-\alpha t_1+pt_2-pt_1)}{t_1 l_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z)+t_2 l_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}\right)\\ &\frac{l_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z)+(\alpha t_1+pt_1)l_{\mu,\nu}^{\lambda,p,\alpha+2}(a,c)f(z) }{t_1 l_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z)+t_2 l_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}\right)\end{aligned}
$$

$$
=k(z)+\frac{\eta}{\delta}zk'(z),
$$

now , by using Lemma(2.4), we get the desired result .

 $Taking q(z) =$

 $\mathbf{1}$ $\frac{1+az}{1+Bz}(-1 \le B < A \le 1)$, in Theorem (4.1), we get the following Corollary.

Corollary 4.2. Let $Re{\eta} > 0, \delta \in \mathbb{C} \setminus \{0\}$ and $-1 \le B < A \le 1$,

such that
\n
$$
\left(\frac{t_1 I_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z)+t_2 I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{(t_1+t_2)z^p}\right)^{\delta} \in \mathcal{H}[q(0),1] \cap Q.
$$

If the function $G(z)$ given by (3.3) is univalent in U and $f \in W$ satisfies the following superordination condition:

$$
\frac{1+Az}{1+Bz} + \frac{\eta}{\delta} \frac{(A-B)Z}{(1+BZ)^2} < G(z),
$$
\nthen

$$
\frac{1+A z}{1+Bz} \prec \left(\frac{t_1 l_{\mu,\nu}^{\lambda, p, \alpha+1}(a,c) f(z) + t_2 l_{\mu,\nu}^{\lambda, p, \alpha}(a,c) f(z)}{(t_1+t_2)z^p}\right)^\delta,
$$

and the function $\frac{1+AZ}{1+BZ}$ is the best subordinant.

Theorem 4.2. Let $q(z)$ be convex univalent in unit disk U, Let $\delta, s \in \mathbb{C} \setminus \{0\}$, $\gamma, t, \psi, \tau \in \mathbb{C}$, $q(z) \neq$ 0, and $f \in W$. Suppose that $Re\left\{\frac{q(z)}{z}\right\}$ $\int_{S}^{(z)}(2\tau\gamma q(z)+\psi)\Big\}q'(z) >$

and satisfies the next conditions

$$
\left(\frac{I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{z^p}\right)^{\delta} \in \mathcal{H}[q(0),1] \cap Q, \tag{4.6}
$$
\nand

 $\frac{I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{z^p} \neq 0$. z^p

If the function $r(z)$ is given by (3.9) is univalent in II .

$$
t + \psi q(z) + \tau \gamma q^2(z) + s \frac{z q'(z)}{q(z)} < r(z) \tag{4.7}
$$

implies

$$
q(z) < \left(\frac{l_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{z^p}\right)^{\delta}, \text{ and } q(z) \text{ is the best subordinant.}
$$

Proof: Let the function $k(z)$ defined on U by (3.14).

Then a computation show that

$$
\frac{zk'(z)}{k(z)} = \delta(\alpha + p) \left(\frac{l_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z)}{l_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)} - 1 \right), \quad (4.8)
$$

by setting $\theta(w) = t + \psi \omega + \tau \gamma \omega^2$ and $\phi(w) =$ s $\frac{\delta}{\omega}$, it can be easily observed that $\theta(w)$ is analytic in \mathbb{C} , $\phi(w)$ is analytic in $\mathbb{C} \setminus \{0\}$ and that $\phi(w) \neq$ $0 \quad (W \in \mathbb{C} \setminus \{0\}).$

Also, we get $Q(z) = zq'(z)\phi(q(z)) = s\frac{zq'(z)}{z(z)}$ $\frac{q(z)}{q(z)}$, it observed that $Q(z)$ is starlike univalent in U . Since $q(z)$ is convex, it follows that

$$
Re\left(\frac{ze'(q(z))}{\phi(q(z))}\right) = Re\left\{\frac{q(z)}{s}\left(2\tau\gamma q(z)\right) + \psi\right\}\dot{q}(z) > 0
$$

By making use of (4.8) the hypothesis (4.7) can be equivalently written as

$$
\theta\left(q(z) + zq'(z)\phi(q(z))\right) = \theta\left(k(z) + zk'(z)\phi(k(z))\right)
$$

thus , by applying Lemma (2.3), the proof is completed.

5.Sandwich Results

Combining Theorem (3.1) with Theorem (4.1), we obtain the following sandwich Theorem.

Theorem 5.1. Let q_1 and q_2 be convex univalent in U with $q_1(0) = q_2(0) = 1$ and q_2 satisfies (3.1). Suppose that $Re{\{\eta\}} > 0, \eta, \delta \in \mathbb{C} \setminus \{0\}.$ If $f \in W$, such that

$$
\left(\frac{t_1 l_{\mu,\nu}^{\lambda, p, \alpha+1}(a,c)f(z)+t_2 l_{\mu,\nu}^{\lambda, p, \alpha}(a,c)f(z)}{(t_1+t_2)z^p}\right)^{\delta} \in
$$

 $\mathcal{H}[q(0), 1] \cap Q$,

and the function $G(z)$ defined by (3.3) is univalent and satisfies

$$
q_1(z) + \frac{\eta}{\delta} z q_1'(z) < G(z) < q_2(z) + \frac{\eta}{\delta} z q_2'(z),
$$
\n(5.1)

then

$$
\begin{aligned} q_1(z)&\prec \left(\frac{t_1l_{\mu,\nu}^{\lambda,p,\alpha+1}(a,c)f(z)+t_2l_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{(t_1+t_2)z^p}\right)^\delta\prec\\ q_2(z),\end{aligned}
$$

where q_1 and q_2 are respectively, the subordinant and the best dominant of (5.1).

Combining Theorem (3.2) with Theorem (4.2), we obtain the following sandwich Theorem.

Theorem 5.2. Let q_i be two convex univalent functions in U, such that $q_i(0) = 1$, $q_i(0) \neq$ $(i=1,2)$. Suppose that q_1 and q_2 satisfies (3.8) and (4.8), respectively.

If $f \in W$ and suppose that f satisfies the next conditions:

$$
\left(\frac{I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{z^p}\right)^{\delta} \in \mathcal{H}[Q(0),1] \cap Q,
$$

and

$$
\frac{I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{z^p} \neq 0,
$$

and $r(z)$ is univalent in U, then

 $t + \psi q_1(z) + \tau \gamma q_1^2(z) + s \frac{z q_1'(z)}{z(z)}$ $\frac{dq_1(z)}{q_1(z)}$ < $t + \psi q_1(z)$ + $\tau \gamma q_1^2(z) + s \frac{z q_1'(z)}{z(z)}$ $q_1(z)$ J implies

$$
q_1(z) < \left(\frac{I_{\mu,\nu}^{\lambda,p,\alpha}(a,c)f(z)}{z^p}\right)^{\delta} < q_2(z),
$$

and q_1 and q_2 are the best subordinant and the best dominant respectively and $r(z)$ is given by (3.9).

References:

- [1]R. M. Ali, V.Ravich and , K. G. subramanian, Differential sandwich theorem for certain analytic functions, for East J.Math. Sci.,(2004), 15,87-94.
- [2]R. M. Ali, V.Ravichandran and N.Seenivasagan, on subordination and superordination of the multiplier transformation for meromorphic functions, Bull. Malays . Math.Sci.Soc., 33 (2010),311-324.
- [3] T. Bulbocaco, Differential Subordinations and Superordinations, Recent Results, House of Scientific Bookpubl.,Cluj-napoca, (2005),
- [4]T. Bulboacã, Classes of first order differential superordinations, Demonstration math., 35(2) (2002), 287-292 .
- [5]N.E. Cho, O.H. Kwon and H.M. Srivastava , Inclusion and argument Properties for certain subclasses of multivalent functions associated with a family of linear operators, J. Math. Anal . Appl., 292(2004), 470-483.
- [6]R.M. Goel and N.S. sohi, Anew criterion for Pvalent functions, Proc. Amer .Math. Soc., 78(1980), 535-357.
- [7]S.P. Goyal, P. Goswami and H. Silverman, Subordination and superordivation results for a class of analytic multivalent functions, Int. J. Math. Sci., Article ID 561638, 1-12, (2008).
- [8] Yu. E. Hohlov, Operators and operations in the class of univalent functions, Izv, Vvssh.
- Ucebn. Zaved. Math., 10(1987), 83-89.
- [9]R.Kargar , A.Bilavi, S. Abdolahi and S.Maroufi, A class of multivalent analytic functions defined by anew linear operator , J. Math. Com P.Sci.,8 (2014),326-334.
- [10]J.L.Liu and k.l.Noor, some properties of Noor integral operator , J.Natur. Geom., 21(2002), 81- 90.
- [11]S. S. Miller and P.T. Mocanu , Differential subordinations :Theory and Applications, Series on Monographs and Text Books in Pure and Applied Mathematics, 225, Marcel Dekker, NewYork and Basel, (2000).
- [12]S. S. Miller and P.T. Mocanu, Subordinations of differential superodinations , complex variables, 48(10) (2003) , 815-826 .
- [13]H.Saition, A linear operator and its applications of first order differential subordinations, Math. Japon., 44(1996), 31-38.

Journal of AL-Qadisiyah for computer science and mathematics Vol.11 No.1 Year 2019 ISSN (Print): 2074 – 0204 ISSN (Online): 2521 – 3504

Waggas .G//Salwa .K

- [14]T.N. Shanmugam, S. Shivasubramaniam and H. Silverrman, On sandwich theorems for classes of analytic functions, Int. J. Math. Sci.,Article ID29684(2006).,1-13.
- [15]T.N.Shanmugam, V.Rvichandran and S.Sivasubramanian, Differential sandwich theorems for subclasses of analytic functions , Aust.J.Math.Anal. App1.,3, Article 8(2006).,1.11.
- [16]H.M. Srivastava and M.K.Aouf, A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients , Int. J. Math. App1., 171(1992),1-13.
- [17]N. Tuneski, On certain sufficient conditions for starlikeness, Internat. J.Math.Sci.23(8) (2000),521- 527.

على نظريات الساندويتش التفاضلية من وظائف متعددة التكافؤ المحددة من قبل المشغل الخطي

وقاص غالب عطشان سلوى كلف كاظم قسم الرياضيات , كلية علوم الحاسوب وتكنلوجيا المعلومات , جامعة القادسية , الديوانية-العراق

المستخلص : ا لهدف الرئيسي من هذا البحث هو استخالص بعض النتائج للوظائف التحليلية متعددة التكافؤ التي يحددها المشغل الخطي باستخدام التبعية التفاضلية واإلخضاع .