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The paper describes the fundamental notions cognate to the Spline and B-Spline curves and surfaces for the purport of
their utilization in applications of obnubilated signs perception. By utilizing B-spline surfaces, one can establish
identification algorithms of the obnubilated sources, by designates of their application together with kenned field
techniques. Furthermore, these are largely utilized in computerized graphics for modelling and design, as they have many

geometrical and calculable properties

1- Initiation

algorithms of the The paper describes the fundamental
notions cognate to the Spline and B-Spline curves and
surfaces for the purport of their utilization in
applications of obnubilated signs perception. By
utilizing B-spline surfaces, one can establish
identification obnubilated sources, by designates of
their application together with kenned field techniques.
Furthermore, these are largely utilized in computerized
graphics for modelling and design, as they have many
geometrical and calculable properties.

1.2 FREEFORM CURVES

In projection activities, one is often faced with the
indispensability of constructing curves kenned through
their forms, and not through equations. Thus, the
designer may approximate the form of a curve through a
set of points, and predicated on these, a program can
calculate all the points indispensable for marking the
curve. The Freeform curves are utilized in architecture,
artistic design, for animation, modelling, in the form
perception systems of images, etc. Free forms is
analytically modelled through interpolation and
approximation curves and surfaces.

There are more types of Freeform curves, some of
which is designated only through 2D or 3D points,
while others need the designation of supplemental
geometrical restrictions. (Contiguous vectors within the
given points.)
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There are two geometric modelling ways of the
Freeform curves:

O Based on linear interpolation — the resulted curve
goes through all given points. The higher the number of
the points, the exacter the representation is .

@) Based on the ,smoothing’ of the polygon
composed of the given points — the resulted curve
(called approximation curve) does not go through all the
given points, which have the role of describing the form
and position of the curve. This is why the given points
are called ,describing points’ or ,control points’ of the
curve.

Approximation curves are subsidiary as they do not
require the exact cognizance of the designed object
form. The computerized projection systems of the
Freeform curves sanction the interactive control of a
curve form through smooth forms of kineticism of the
control points.

2.2 PARAMETRIC EQUATIONS OF A
CURVE

The form functions f (X) =y cannot be used for the
design of the interpolation/ approximation curves, due
to the following reasons:

= There may be more points on the
curve for a particular value of X ;



Journal of AL-Qadisiyah for computer science and mathematics
Vol.8 No.l Year 2016

= The forms designed through such

curves are independent of any
coordinate systems and are not
determined through the relation

between the points and a certain
coordinate system, but through the
relation of the given points;

=  The Freeform curves are often planar,
these are not being able to be
represented by non-parametric
equations.

The design of a 3D curve is obtained from a 2D curve
and the addition of the equation that results in the
component Z of the points on the curve.

The parametric equations introduce an auxiliary
variable, U, describing a flat curve by means of two
functions, F,(U) and F, (u), which define the
evolution of the two projections, X and Yy, based on
the parameter U. One point (X,Yy) belongs to the

curve if there is a value U
x=F,(u)andF,(u).

in such a way that

The parametric equations of a line that goes through the
points (X1, y1), (X2, y2) are:

X(u) = x1+u(x2—x1) = a,,u+a,,

y(u) =yl+u(y2-yl)=a u+a,,

For a curve, the polynoms F, (u) and F, (u) have a
degree bigger than 1:

x(u)=a,,u" +a,,,u"" +..+a,u+a,,

n n-1
y(u):anyyu +a,, U+t uta,,
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In the 3D space, a segment of a parametric cubic curve
is defined through the following equation system:

x(U) =a,,u’+a,,u’ +a,, u+a,,

3 2
y(u)=a31yu +a, U +a, U+3a,,
O<uxi

z(u) =a,,u’+a,,u’ +a,,u+a,,

The 12 coefficients are the algebraic factors of the
curves. They determine the form, size and position of
the curve. Two curves with identical form that occupy
two different positions in space have different algebraic
factors. For an easier representation, the vectorial
notation is used:

p(u) =a,u®+a,u’+au+a, , where
a,,a,,8,,4a, are vectors with three components, and

p(u) is the
(X(u), y(u), z(u)) on the curve.

position vector of a point

2.3 SPLINE CURVES

The spline curves are interpolation curves. The word
»spline” refers to an instrument utilized in the technical
design for drawing the planar curves. The spline is an
elastic band fine-tuned at the points through which the
curve must be drawn, by denotes of some weights
called ,,ducks”. A spline curve may by drawn through
an illimitable number of control points .

Between two control points, the form of the spline band
is mathematically represented by a cubic polynomial.
Customarily, a spline curve is represented through a

k degree integral rational function defined by the

components, with differentials of type K —1perpetual
at the connecting points. Thus, the cubic spline curve
has second-order continuity at the connecting points .

Small degree polynomials are being utilized for the
representation of spline curves, in order to reduce the
calculation of the points on the curve and to evade the
numerical inequality. The spline curve is composed of
adjacent segments represented by betokens of
diminutive degree polynomials (2 or 3), as
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a minute degree polynomial cannot interpolate a curve
through an arbitrary number of points.

A cubic spline curve segment is represented by means
of the following parametric equation:

4
p(t):ZBi <t <t2

i=1

Where:

tl and t2 are the values of the parametrical
differential at the initial and the end point of the curve
segment;

p(t) =[x(t) y(t) z(t)] is the position
vector of a point on the curve;

B, =[B, B, B,,] is calculated based on 4

boundary conditions.

Assuming P,, P, are the bending points of the curve
segment and P'1,P'2 are the unit tangent vectors at

the bending points. Considering t, =0 and enforcing
the 4 boundary condiresultsthe following resutls:

Bs :3(P2 _Pl)/t22 _2p; /tzBs

B, =2(P,—P,)?t,sup3+ p’ /t; + p, /12

Generally, a spline curve that goes through a

number of M control points is represented by the
following equation:

4
p () =D B k*to<t<t,,,,

i=1

1<k<n-1
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Where:
B, 1 0 0 0
5 _|Ben 0 1 0 0
Bs’k _3/t|<2+1 _2/tk+1 3/tk2+1 _1/tk+l
B4'k — 2/tl§+1 1/tk2+1 _thiﬂ 1/tl§+1
Py
P,
pk+1
plt<+1

A reduction of the calculation is obtained by taking the
intervals t, —t, , equal to 1 for all the curve segments

0 <t <1.Inthis case, the spline curve is described by
the folllowing matrix equation:

P (t) =[F(t) F2(t) F3(t) F4M)][P
Pea P Ptk+1]T

where:
Fi(t) = 2t° —3t* +1
F2(t) = -2t + 3t?
F3(t) =t° —2t* +t
FA(t) =t° —t?

[F1=[FL(t) F3() FAW]=[t"t? ¢ 1]
2 -2 1 1

-3 3 -2 -1
1 0
1 0 0 O

The following results:

P (O =[FIIG]_[TTIN]IG,]
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The matrices T and N are the same for all the
segments of the spline curve, only the matrix G,
changes from one segment to the other.

2.4 B-SPLINE CURVES

The B-spline curves are approximation curves defined
by means of control points. They are described by
means of polynomial functions defined on portions,
which give them the property of local control. The
segments of the B-spline curve are desbribed through
second or third degree polynoms, this being
independent from the number of the control points.

The B-spline curves are determined by the vectorial
equation:

pU) =P, *N,, (W)

where:

p; are the control points

Ni (u) are the mixture functions (B-spline
functions)

k establishes the degree of the approximation polynom
(k —1) and the continuity order (kK —2) of the curve.

The B-spline functions are determined
recursively, as follows:

Ni,l(u) =1 for ti <u<t,

=0 otherwise

u-t * t.,—u
i N u) + i+1 *
t, +k-1-t, W+

i+k i+1

N; (u) =

This shows that a function N;,, (U) is non-zero on

consecutive intervals K only.

The nodal values t; must make a monotone increasing

sequence (t; <t. ,). There may be real or

Nip (U)
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integral values; they associate the variable U to the
control points P,. If the nodal values are equally

distanced, the vector that they form is uniform, and the
B-spline functions defined as such are uniform.

The uniform vector of the nodal values for an open
curve is defined as folllows:

;=0 for 1 <K
ti=i—k+1 forkSiSn
t|=n—k+2 fori>n

with 0<i<n+k
In this case, the parametrical variable range is:
O<u<gn-k+2

First we consider the expressions of the uniform B-
spline functions of zero and 1 degree, in order to deduct
the ones of second and third degree. We analyze the
given curve by means of 6 control points. (N =5).

(1) Zero degree functions (K =1)

0<u<b

Ny, (u) =1 for 0<U<1
=0 otherwise
Nl,l(u):]' for ISU<2

=0 otherwise

Ns, (W) =1 . 5<u<6

=0 otherwise
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We apply these functions to a random set of 6 control N, (u)=1
points and we have: '
p(u) =FR, for 0<Su<1 =0 otherwise

When we replace them in the expression of the second

pU)=PF ¢, 1<u<?2 degree functions written above, we obtain:

...................................... N, (u) = L—u)*N,, (u)
pW =Pk ;,5<u<6

-1-u
The zero degree curve can be interpreted as being made for 0=u<1
of six segments of disjunct curve of zero length, each =0 _
segment being concentrated at a control point. otherwise
2 (k=2) Ny, (U)=u*N;;(u)+(2-u)—N,,(u)
0<i<70<u<5 =Uu
t0=0 t1=0 t2=1 t3:2 t4:3 t5:4
t;=5 t, =5 =2-u
ice l=<U<2
u—t, . t o+ 2_4 . otherwise
N;,(u) = N, (U) + ————*N;,;, (U) ~ 0
i+1 _ti i+2 ~ ti+l -
for
We r_nust specify the expressions of the first degree N,,(W)=U-1)*N,,(u)+B—-u)*N,,(u)
functions for the new vector of the nodal values.
-u-1
N,,(u)=1 _ =
=0 otherwise
-3-u
N1,1(u):1 for03u<1 for 2<u<3
=0 otherwise =0 otherwise

N,,(u)=1 for ISU<2
Ns,z(u) =(u _2)*N3,1(u)+(4_u)* N4,1(U)

=0 otherwise
—u-2
Ny, (W) =1 . 2<u<3 =
=0 otherwise 4
-4—-Uu
=0 otherwise =0 otherwise
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N, U)=U-3)*N,,(u)+G-u)*N;, ()

- u-3
f0r3SU<4

-5-u
for 4<U<5

=0 otherwise

Ns,z(u) = (u _4)* N5,1(u)

_u-4
=0 otherwise

We apply a set of 6 control points and obtain the
equation of the first degree B-spline curve determined
by the respective points:

pu)=pR* Ny (u+P* Nl,z(u) +o R Ns,z(u)

We can observe that on each intervall SU<I+1

0<i<5 only two mixture functions are non-zero,
N;, and N, ,, so that the equation of the curve may

be rewritten on portions:
p(u) =(A-u)R, +uR

p(u) =(2-uwPR +Uu-1P,
for LSU<2

p(u) =@B-Uu)P, +(uU-2)R,
for 2<u<3

The obtained curve is a sequence of segments of a line,
that matches together the control points, with zero order

continuity (Co) at the connecting points.

(3) The second degree B-spline functions(k = 3)

0<i<8 0<u<4
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Analogously:
- The vector of the nodal values is calculated:

- For obtaining the expressions of the functions
N;;(U), the expressions of the functions N, (U)
must be determined first, then those of the function
N; , (u), this vector being different than the previous

one:
NO,l(u) =1
for U=0
=0
otherwise
N1,1 (U) =1
for U=0
=0
otherwise
N2,1 (U) =1
=0 otherwise
N, u)=1
=0 otherwise
N4,1 (U) =1
=0 otherwise
N5, (uy=1

for 3SU<4
=0
otherwise

N,,(u)=0

N, ,(u)=@1-u) N,,(u)

N,,(u) =uN,, (u)+(2-u) N5, (u)
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Ny, (U) = (u—-1) N3, (u)+(B—-u) N, (u) N,,(u)=0,5(u-1)?* N, (u)+0,5 (-2 u® +10

N, (U) = (U=2) N,y () +(4—u) Ng, (u) D N, (U) +05 (4-u)" N, (u)

N, (u) = (u—-3) Ny, (u) =05 (u-1?
for ISU<2

Novg(u):(l_u)z Nz,l(u) - 05 (—2 u?+10u 1)

:(1—U)2 for 2<u<3
for 0su<1 05 (4—-u)?
=0 for 3<u<4
otherwise
=0
N,5(U)=05 (4—-3u) N,,(U)+0,5 (2—u)? otherwise
N, (u)
3’1 N,;(u)=05U-2)*N,,(u)+05(-3 u® 420U
_ 05y (4-3u) 32) N, (u)
for O<ux<l
= 075 (u - 2)2
2
=05 (2—U) for 2<U<3
for 1<ux<?
. 0,53 U 150U 39
otherwise for 3<u<4
=0
otherwise

N,5(u)=05,2N,;(U)+0,5 (-2 u® +6u-3)

N,,(u)+05 (3-u)? N, N4 (u) = (U—-3)" Ny, ()

2
s _@-3)
f0r0£u<1 forSSUS4
) =0
=05(—2 U +pU-3) otherwise
for LISU<2 . . .
One can notice that only 3 mixture functions are non-
u)? zero on each interval I<SU<i+1, 0<i<4.Asin
=05(3- the previous case, the second degree B-spline equation
otherwise 2<u<3 can be written on intervals.
=0
otherwise

99



Journal of AL-Qadisiyah for computer science and mathematics
Vol.8 No.l Year 2016

The polynomial expression that defines the curve on the

interval 1 =>1+1 is noted p,,(U). As such, the
following is obtained:

p,(u) = (@1-u)’P, +0,5Y (4—3 u)P,+0,5U°P,

p,(Uu)=05(2-u)’P+05(-2 u® +6 u—3)P,
+0,5 (U —1)* P,

p;(u) =05(3—Uu)?P,+05(-2 u® +10
u—11)P,+0,5(u—2)°P,

P4 (1) ~05(4-u)* I:)3+0,5 (-3u®+20
u-32)P,, (u-3)°*P,

The obtained curve is made out of 4 curve segments
connected with C* continuity. The curve gous only
through the points Py, P, is tangent at the segments

P, —P,, P, —P, and also is tangent at each side of
the characterisctic polygon.

Each curve segment is influenced only by three
consequent control points, or a control point can
influence the form of three curve segments only. The
conclusion may also be drawn from the results obtained
for K=1 and Kk =2. Each segment of a B-spline
curve is influenced only by K consequent control

points, or each control point influences K curve
segments only.

The mixture functions attached to the ,interior’ control
points are independent from the number of control

points. For example, for k=3, N=9 N,, and
N, having the same form, being declared with an

interval on the U axis. A mathematical expression of
the mixture functions is necessary, independent of the
number of the control points. Thus, we determine the

expression of the functions N; ;(u), N;,,;(u) for a

i+2,
random interval. In order that the values have the same
expression, we consider. This results in:

100

N;,(u)=1

=0
otherwise

Ni,U)=1

=0
otherwise

Ni+2,1 (U) = l

=0
otherwise

N, (U) =1

for 1 +1SU<i+2

=0
otherwise

Ni,,(U)=1

for 1 +25U<i+3

=0
otherwise

Evan. M

N;,(u)y=Uu-i+2) N;,(u) L@=u) N1, (U)
Ni,(U) =(U—-i+1) Ni+1,1(u)+(i +1-u)
Ni+2,l(u)

Ni+3,2(u) = (u - i) Ni+2,1(u) + (i +2— u)
N 51 (U)

Nis,(U)=@U—-i-1) N; 5, (U)+({i+3-u)
Ni+4,l(u)
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N; ;(u) =os ((u—i+2)?

Ni,l(u) + (U —i+ 2)(i —U) Ni+l,1(u)
Li+1-u)u—i+2) Ny, (u),

(i+1- U)2 Ni+2,1 (W]

Ni+1,3 (u)- 05 t(u—i +1)2
N2 (U)+ U=+ +1-u) N5, (U)

N (i+2-uw)(u-i
Ni+2,1 (U) + (I +2- U)2 Ni+3,1 (U)]

Niioa(U) = 05 (u=i?

Ni W)+ @U—-i)(i+2-u) N, U)
L+3-u)u—i-1)

Ni a1 (u)+(@i+3- U)2 Niq2(W)]

We observe that

Nis(U) =N, ;(U+1)=N; ,;(U+2). The three
functions have the same form, but on consequent

intervals. Therefore, it is better to give up the variable !
in expressing them, that is, to get to a normalized form,
in which U takes values within the range [0,1) on an
interval [i,1+1). In the functional expressions, we

replace the variable U withU*=U—i, make the
substitution U =UX*+i, but in order to make the

notation easier we will note U*+ with U+i. We
obtain:

N, ;(U+i)=05(u+2)?
for -2<u<-1

=os[-U(U+2)+(@—-u)(u+1)]
for —1<u<O0

=05~
for 0SU<1

=0
otherwise
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N, sU+i)=05(U+1)?
for -1<u<0

=0,5[(Uu+1)(L—u)+(2—u)u]
for O<ux<l

2
-05(2-U)
=0
otherwise
. 2
Ni,a(u+i)=05Y

=0,5[u(2—u)+(3-u)(u-1)]
for 1<u<?

2075(3_u)2
for 2<u<3

=0
otherwise

The B-splines defined like this are called periodic B-
Splines. They have the same form, but are staggered on

the U axis, each being non-zero on only three
consequent intervals.

We will represent the equation of the segment of the
second degree B-spline curve, for an interval

I<u<i +1, using the normalized forms, O<u<1:

P; (U) =os
[A-u)?P +(-2u® +2u+1)P_, +U?P_,)]

i+1

The equations of the 4 segments of the second degree
B-spline curve by means of which the B-spline

by 6 points (n=5) is
approximated, can be written in a matrix form:

Pi. (U) =[F 5 (u) Fy5(u) Ry (WP
Pi+l Pi+2]T

determined control

0<i<3
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Or p,(u)=1/6[u* u®u 1]
J(U)=[F,U) F,,U) F;W][P., P
p|( ) [ 1,3( ) 2,3( ) 3,3( )][ i-1 0 _1 3 _3 1 pifl
T .
Pul 1<i<4 3 -6 3 0|| p |1<i<n-2
Where: -3 0 3 0f|piy 0<ux<l
1 4 1 0]|p,,
Fia(U)_ s (U?—2u+1)
, We note:
Fos(U) _ o (—2u? +2u+1
2,3 _0,5( ) U3:[u2u 1]
F,(u 2
3’3( ):0,5u U4:[u3u2u 1]
are the mixture functions for a uniform, periodic, -
second degree B-spline curve segment. 1 -21
M,=1/2[-2 2
The following matrix equation represents a 1 1 0
uniform, periodic, second degree B-spline curve, L
resulted froma N-+1 control points. _
-1 3 -3 1
1 -2 1 M1/63_630 A
= the
pi(u)= os[u*Y 11 -2 0 ) -3 0 3 0
1 0 1 4 1 0
p. basic B-spline matrix
‘;‘1 1<i<n-1
i 0<u<l
Pisa Using these notations, we will rewrite the matrix
equations of the B-spline curves
P - for second degree open curves:
4
pi—l -
2 Py 1<i<n-1
p|( ) 3 3 pl OS <l
R pi+l
P7
The s.imilar form for the uniform, periodic, third degree - For third degree open curves:
B-spline curves is:
pi—l i
I
pi(u)=U,M, O<u<l
i+1
pi+2
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- For second degree closed curves:

Pi-1) mod(n+1)

p;(u)=U,M, Pimod (n+1)
P i1 mod(n+1)
1<i<n+1
O<u<1

- For third degree closed curves:

p(i—l) mod(n+1)

pi(u) =M, P
P (i+1) mod(n+1)
| Plis2ymodinay |
1<i<n+2
O0<ux<l

Wherea mod b is the result of dividing a to.
Properties of the B-spline Curves
1. Multiple control points

An m degree B-spline curve goes always through a
control point of m multiplicity. By introducing a control
point in the vector of the control points on more
consequent positions, one can force the B-spline curve
going through the respective point.

2. Collinear control points

If m+1 consequent control points are located on a
line, then the m degree B-spline curve is located

partially on the respective line. If the points P._,, P,

P.,; are collinear, the segment P, of the second degree

B-spline curve will partially intermingle with the
segment Pa- P'
3. Closed curves

In order to make a M degree B-spline closed curve, it
is sufficient that the first M control points are identical
with the M endpoints.

103

Evan. M

4. The convex hull property

A B-spline curve is completely included in the convex
polygon formed by matching together the control
points.

5. Affine invariance

In order to transform a B-spline curve, it is sufficient to
apply the transformation of the control points and then
to regenerate the curve.

Properties of the second degree B-spline curves

As they are more predictable than the cubic, the second
degree B-spline curves are congruous for the
representation of the high precision text characters. The
characters of the True Type set utilized in the Windows
system are defined utilizing second degree B-spline
curves. Any second degree B-spline curve has withal
the following properties:

Goes through the point located in the middle of
the distance between two consequent control pointst

at this point, the tangent of the curve
intermingles with the segment that matches the two
control points .

The curve is located in the triangle defined by
a control point, and the middle of the segments

F.-R.R-PR

i+1
2.5 Surfaces

The surface modelling is one of the most important
problems in the computerized design and production
systems. The models must offer the design flexibility,
this being a creative type of activity, must be able to
achieve simple implementations of the calculations of
the surface properties and must allow the representation
of a high variety of forms.

A surface can be mathematically determined in three
ways:

(1) by means of an implicit equation as:

F(x,y,2)=0
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(2) By means of an explicit equation, which expresses
the variance of one of the three variants based on the
other two:

X = fx(y,z)OIr y=1f,(x2) o

r2=1.(xy)
(4) By means of parametric equations

x=f, (u,v)

y="F,(UL,V) ymin <u <umax

z=f,(u,v) vmin <v < vmax

As in the case of the curves, the parametric equations
offer many advantages as compared to the other design
methods, among which we can mention here:

o The representation is independent of any
coordinate system;

o One can represent surfaces defined by means
of functions with multiple values;

@)
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o The 3D transformations expressed in
homogeneouscoordinates can be applied

directly on parametric equations;

o The surfaces defined parametrically are
inherently limited, through the variation range
of the parametric variables; any portion of the
surface can be defined by choosing the range
for each variable;

o The parametric equations offer a higher degree
of freedom for the control of a surface.

The parametric equations can be used to show a high
variety of surfaces, such as the ones obtained by means
byspecial scanning and the Freeform surfaces.

2.6 B-spline Surfaces

The B-spline surfaces are approximation surfaces
defined only by points. They are represented by the
following parametric equation:

P(u,w) :i Zn: Pij * Ni (W)*N;, (W)

i=0 =0

Where D;; are the control points that define the surface, and N il (w) are B-spline functions of degree (k —1) and

(I =2) respectively.

“
st J_* ‘
J-*J J',r *J‘ t‘ s
4-4;_-*4_;_".*1,' l'.f_.. j-"'f ‘*“‘1
e ""ﬁ'*r ¢*+ r e

LT

rrrrT
.l.l.l.l.l.l.l.l.l.l.l.l.l.l.l
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The image above, in isometric position (a) and Cavalier
(b), shows the biquadratic B-spline surface

[(~100,0,100) (—100,0,50) (—100,0,0) (~100,0,~50) (—100,0,—100)]
(-50,0,100)  (-50,0,50) (-50,0,0) (-50,0,—50) (—50,0,—100)
o _| (00100) (0,0,50) (0,70,0) (0,0,—50) (0,0,—100)
(50,0,100) (50,0,50)  (50,70,0)  (50,0,—50) (50,0,—100)
(100,0,100)  (100,0,50)  (100,0,0)  (100,0,~50)  (100,0,—100)
| (150,0,100) (150,0,50)  (150,0,0)  (150,0,-50)  (150,0,—100) |

A B-spline curve is obtained by means of the
juxtaposition of more curve segments. The equations
that define the segments of the second and third degree
periodic B-spline curve can be rewritten as follows:

p,(u)=U *M, *P1<s<n+2-k

Where
P.={P, |s-1<i<s+k-2}

And " is the number of the control points.

For k=3 we obtain the matrix expression of the
segment of the first order B-spline curve (second
degree), and for K =4 we obtain the expression of the
segment of the second order B-spline curve (third
degree). A B-spline surface (open, periodic) is obtained
by the juxtaposition of more surface segments, defined
as follows:

P (U,W) =U, *M, *B, *M[ *W
1<s<m+2-k

1<t<n+2+10<u,w<l1

Py ={p; [s—-1<i<s+k-2t-1<j<t+I1-2}

By introducing k=4 and =4 in the above
equation, we obtain the equation of the segment of the
B-spline bicubic surface. We can observe that each
surface segment is determined by 4 x4 control points.

In practice, for the realization of the division operations
of the B-spline bicubic patches, a conversion of the
patches from the B-spline representation to the Bézier
representation is being used.
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(I =k =3) defined by the following matrix of the

control points (m=5n=4).

If
S=U*M *P,*M" *W" the

equation of the B-spline bicubic patch and

B=U*M_,*P,*M_" *W the
equation of the Bézier bicubic patch.

The conversion of the B-spline patch into Bézier patch
assumes the determination of the matrix of the control

points Py, which determines the patch in the Bézier

representation. For this, the following condition is
necessary:

UM *P,*M " *WT =U*M, *P, *M," *W'

or
T T
M, *P,*M =M *P, *M,

We obtain:

PB:[MB&*M Ps *[Msil*Ms]T

S ]*
or

P, = A*P, * AT

where

A=1/6

o O O -
= N DS
A BB DN -
. O O O
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