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Abstract :  
The paper describes the fundamental notions cognate to the Spline and B-Spline curves and surfaces for the purport of 

their utilization in applications of obnubilated signs perception. By utilizing B-spline surfaces, one can establish 

identification algorithms of the obnubilated sources, by designates of their application together with kenned field 

techniques. Furthermore, these are largely utilized in computerized graphics for modelling and design, as they have many 

geometrical and calculable properties 
 

 

 
1- Initiation   
algorithms of the The paper describes the fundamental 

notions cognate to the Spline and B-Spline curves and 

surfaces for the purport of their utilization in 

applications of obnubilated signs perception. By 

utilizing B-spline surfaces, one can establish 

identification obnubilated sources, by designates of 

their application together with kenned field techniques. 

Furthermore, these are largely utilized in computerized 

graphics for modelling and design, as they have many 

geometrical and calculable properties. 

1.2  FREEFORM CURVES 
 In projection activities, one is often faced with the 

indispensability of constructing curves kenned through 

their forms, and not through equations. Thus, the 

designer may approximate the form of a curve through a 

set of points, and predicated on these, a program can 

calculate all the points indispensable for marking the 

curve. The Freeform curves are utilized in architecture, 

artistic design, for animation, modelling, in the form 

perception systems of images, etc. Free forms is 

analytically modelled through interpolation and 

approximation curves and surfaces.  

There are more types of Freeform curves, some of 

which is designated only through 2D or 3D points, 

while others need the designation of supplemental 

geometrical restrictions. (Contiguous vectors within the 

given points.( 

  

 

 

 

There are two geometric modelling ways of the 

Freeform curves: 

O   Based on linear interpolation – the resulted curve 

goes through all given points. The higher the number of 

the points, the exacter the representation is . 

O Based on the ‚smoothing’ of the polygon 

composed of the given points – the resulted curve 

(called approximation curve) does not go through all the 

given points, which have the role of describing the form 

and position of the curve. This is why the given points 

are called ‚describing points’ or ‚control points’ of the 

curve. 

Approximation curves are subsidiary as they do not 

require the exact cognizance of the designed object 

form. The computerized projection systems of the 

Freeform curves sanction the interactive control of a 

curve form through smooth forms of kineticism of the 

control points. 

2.2 PARAMETRIC EQUATIONS OF A 

CURVE 

The form functions yxf )(  cannot be used for the 

design of the interpolation/ approximation curves, due 

to the following reasons:  

 There may be more points on the 

curve for a particular value of x  ;  
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 The forms designed through such 

curves are independent of any 

coordinate systems and are not 

determined through the relation 

between the points and a certain 

coordinate system, but through the 

relation of the given points; 

 The Freeform curves are often planar, 

these are not being able to be 

represented by non-parametric 

equations. 

The design of a 3D curve is obtained from a 2D curve 

and the addition of the equation that results in the 

component z  of the points on the curve. 

The parametric equations introduce an auxiliary 

variable, u , describing a flat curve by means of two 

functions, )(uFx  and )(uFy , which define the 

evolution of the two projections, x  and y , based on 

the parameter u . One point ),( yx  belongs to the 

curve if there is a value u  in such a way that 

)(uFx x  and )(uFy . 

The parametric equations of a line that goes through the 

points ( 1,1 yx ), ( 2,2 yx ) are: 

 xx auaxxuxux ,0,1)12(1)( 
 

 yy auayyuyuy ,0,1)12(1)( 
 

For a curve, the polynoms )(uFx  and )(uFy  have a 

degree bigger than 1: 
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In the 3D space, a segment of a parametric cubic curve 

is defined through the following equation system: 

 xxxx auauauaux ,0,1

2

,2

3

,3)( 
 

 yyyy auauauauy ,0,1

2

,2

3

,3)( 

10  u  

 zzzz auauauauz ,0,1

2

,2

3

,3)( 
 

The 12 coefficients are the algebraic factors of the 

curves. They determine the form, size and position of 

the curve. Two curves with identical form that occupy 

two different positions in space have different algebraic 

factors. For an easier representation, the vectorial 

notation is used: 

 01

2

2

3

3)( auauauaup   , where 

0123 ,,, aaaa  are vectors with three components, and 

)(up  is the position vector of a point 

))(),(),(( uzuyux  on the curve. 

2.3  SPLINE CURVES 

  The spline curves are interpolation curves. The word 

„spline” refers to an instrument utilized in the technical 

design for drawing the planar curves. The spline is an 

elastic band fine-tuned at the points through which the 

curve must be drawn, by denotes of some weights 

called „ducks”. A spline curve may by drawn through 

an illimitable number of control points . 

Between two control points, the form of the spline band 

is mathematically represented by a cubic polynomial. 

Customarily, a spline curve is represented through a     

k degree integral rational function defined by the 

components, with differentials of type   1k perpetual 

at the connecting points. Thus, the cubic spline curve 

has second-order continuity at the connecting points . 

Small degree polynomials are being utilized for the 

representation of spline curves, in order to reduce the 

calculation of the points on the curve and to evade the 

numerical inequality.  The spline curve is composed of 

adjacent segments represented by betokens of 

diminutive degree polynomials (2 or 3), as  
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a minute degree polynomial cannot interpolate a curve 

through an arbitrary number of points. 

A cubic spline curve segment is represented by means 

of the following parametric equation: 

 
1

4

1

*)( 



 i

i

i tBtp 21 ttt   ,  

 Where:  

  and  are the values of the parametrical 

differential at the initial and the end point of the curve 

segment; 

 )([)( txtp  )(ty )](tz  is the position 

vector of a point on the curve; 

 ixi BB [ iyB ]izB  is calculated based on 4 

boundary conditions. 

Assuming 
21, PP  are the bending points of the curve 

segment and 21, tt PP  are the unit tangent vectors at 

the bending points. Considering 01 t  and enforcing 

the 4 boundary condiresultsthe following resutls: 

 11 PB   

 12

tPB   

 321

2

2123 /2/)(3 BtptPPB t
 

 

2

22

2

2

2

12214 //3sup?)(2 tptptPPB t
 

 

      Generally, a spline curve that goes through a 

number of n  control points is represented by the 

following equation: 

 
1

4

1

*,)( 



 i

i

ik tkBtp 10  ktt ,

11  nk  
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A reduction of the calculation is obtained by taking the 

intervals 1 kk tt  equal to 1 for all the curve segments

10  t . In this case, the spline curve is described by 

the folllowing matrix equation: 

 
)(1[)( tFtpk  )(2 tF )(3 tF )](4 tF kP[

1kP
k

tP
T

k
tP ]1  

where: 

 
132)(1 23  tttF

 

 
23 32)(2 tttF 

 

 
ttttF  23 2)(3

 

 
23)(4 tttF 

 

 
)(1[][ tFF  )(3 tF

3[)](4 ttF  2t t ]t
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 The following results: 

 
][)( Ftpk  ][ kG

=
][T ][N ][ kG
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The matrices T  and N  are the same for all the 

segments of the spline curve, only the matrix kG  

changes from one segment to the other.  

2.4 B-SPLINE CURVES 

The B-spline curves are approximation curves defined 

by means of control points. They are described by 

means of polynomial functions defined on portions, 

which give them the property of local control. The 

segments of the B-spline curve are desbribed through 

second or third degree polynoms, this being 

independent from the number of the control points.  

The B-spline curves are determined by the vectorial 

equation: 

 

)(*)( ,

0

uNpup ki

n

i

i




 

where: 

 ip  are the control points 

 
)(, uN ki  are the mixture functions (B-spline 

functions) 

k  establishes the degree of the approximation polynom 

)1( k  and the continuity order )2( k  of the curve. 

 The B-spline functions are determined 

recursively, as follows: 

1)(1, uN i    for 1 ii tut
 

 0   otherwise 

 

)(*)(*
1

)( 1,1

1

1

1,, uN
tt

ut
uN

tkt

tu
uN ki

iki

i
ki

ii

i
ki 
















 

This shows that a function )(, uN ki  is non-zero on 

consecutive intervals k  only. 

The nodal values it  must make a monotone increasing 

sequence )( 1 ii tt . There may be real or  

 

integral values; they associate the variable u  to the 

control points iP . If the nodal values are equally 

distanced, the vector that they form is uniform, and the 

B-spline functions defined as such are uniform.   

The uniform vector of the nodal values for an open 

curve is defined as folllows: 

 
0it                   for ki   

 
1 kiti         for nik   

 
2 knti        for ni   

                              with  kni 0  

 In this case, the parametrical variable range is: 

 20  knu  

First we consider the expressions of the uniform B-

spline functions of zero and 1 degree, in order to deduct 

the ones of second and third degree. We analyze the 

given curve by means of 6 control points. )5( n . 

(1) Zero degree functions )1( k  

60  u  

00 t
, 

11 t
, 

22 t
, 

33 t
, 

44 t
, 

55 t
, 

66 t
 

1)(1,0 uN
   for 10  u  

             =0    otherwise 

1)(1,1 uN
    for 21  u  

             =0     otherwise 

............................... 

1)(1,5 uN
    for 65  u  

             =0     otherwise 
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We apply these functions to a random set of 6 control 

points and we have: 

0)( Pup 
     for 10  u  

1)( Pup 
     for 21  u  

...................................... 

5)( Pup 
     for 65  u  

The zero degree curve can be interpreted as being made 

of six segments of disjunct curve of zero length, each 

segment being concentrated at a control point.  

(2) )2( k  

 

00 t
, 

01 t
, 

12 t
, 

23 t
, 

34 t
, 

45 t
, 

56 t
, 

57 t
 

)(*
2

)(*)( 1,1

12

1,

1

1
2, uN

tt

ut
uN

tt

tu
uN i

ii

i
i

ii

i 

 









 

We must specify the expressions of the first degree 

functions for the new vector of the nodal values. 

1)(1,0 uN
     for 0u  

             =0     otherwise 

1)(1,1 uN
     for 10  u  

             =0     otherwise 

1)(1,2 uN
     for 21  u  

             =0     otherwise 

1)(1,3 uN
     for 32  u  

             =0     otherwise 

1)(1,4 uN
     for 43  u  

             =0     otherwise 

 

1)(1,5 uN
      

              for 54  u  

             =0     otherwise 

When we replace them in the expression of the second 

degree functions written above, we obtain: 

)(*)1()( 1,12,0 uNuuN 
 

              = u1        

                for 10  u  

              = 0    

 otherwise 

)()2()(*)( 1,21,12,1 uNuuNuuN 
 

             = u     

 for 10  u  

             = u2   

               otherwise 21 u  

   = 0    

                for 

)(*)3()(*)1()( 1,31,22,2 uNuuNuuN 
 

    = 1u    

 for 21  u  

    = u3    

 for 32  u  

   = 0     otherwise 

 

)(*)4()(*)2()( 1,41,32,3 uNuuNuuN 
 

    = 2u    

 for 32  u  

    = u4    

 for 43  u  

                            =0     otherwise 

70  i 50  u
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)(*)5()(*)3()( 1,51,42,4 uNuuNuuN 
 

    = 3u    

 for 43  u  

    = u5    

 for 54  u  

    = 0   otherwise 

)(*)4()( 1,52,5 uNuuN 
 

    = 4u    

 for 54  u  

    = 0     otherwise 

We apply a set of 6 control points and obtain the 

equation of the first degree B-spline curve determined 

by the respective points: 

)(*...)(*)(*)( 2,552,112,00 uNPuNPuNPup 
 

We can observe that on each interval 1 iui , 

50  i  only two mixture functions are non-zero, 

2,iN  and 2,1iN , so that the equation of the curve may 

be rewritten on portions: 

10)1()( uPPuup 
   

 for 10  u  

21 )1()2()( PuPuup 
  

 for 21  u  

32 )2()3()( PuPuup 
  

 for 32  u  

............................................... 

The obtained curve is a sequence of segments of a line, 

that matches together the control points, with zero order 

continuity 
)( 0C

 at the connecting points.  

(3) The second degree B-spline functions( )3k  

80  i , 40  u  

 

Analogously: 

- The vector of the nodal values is calculated: 

00 t
, 

01 t
, 

02 t
, 

13 t
, 

24 t
, 

35 t
, 

46 t
, 

47 t
, 

48 t
 

- For obtaining the expressions of the functions 

)(3, uN i , the expressions of the functions )(1, uN i  

must be determined first, then those of the function 

)(2, uN i , this vector being different than the previous 

one: 

1)(1,0 uN
 

for 0u  

             = 0      

                otherwise 

1)(1,1 uN
    

 for 0u  

             = 0      

                otherwise 

1)(1,2 uN
 

              for  10  u  

             = 0      otherwise 

1)(1,3 uN
 

              for 21  u  

             = 0      otherwise 

1)(1,4 uN
  

             for 32  u  

             = 0     otherwise 

1)(1,5 uN
  

 for 43  u  

             = 0 

                otherwise 

0)(2,0 uN
 

)1()(2,1 uuN  )(1,2 uN
 

)2()()( 1,22,2 uuuNuN  )(1,3 uN
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)1()(2,3  uuN )3()(1,3 uuN  )(1,4 uN
 

)2()(2,4  uuN )4()(1,4 uuN  )(1,5 uN
 

)3()(2,5  uuN )(1,5 uN
 

2

3,0 )1()( uuN  )(1,2 uN
 

             = 
2)1( u

   

 for 10  u  

             = 0     

 otherwise 

5,0)(3,1 uN u )34( u 5,0)(1,2 uN 2)2( u

)(1,3 uN
 

             = 
5,0 u )34( u

  

 for 10  u  

             = 0,5 
2)2( u

  

              for 21  u  

             = 0    

 otherwise 

 

5,0)(3,2 uN 2u 5,0)(1,2 uN 2( )362  uu

5,0)(1,3 uN 2)3( u 1,4N
 

             = 0,5 
2u    

               for 10  u  

             = 0,5 ( 2
2u +6 u -3)  

 for 21  u  

             = 0,5 (3-
2)u

   

 otherwise 32  u  

             = 0    

 otherwise 

 

 

5,0)(3,3 uN
2)1( u 5,0)(1,3 uN 2( 102 u

u -11) 5,0)(1,4 uN
2)4( u )(1,5 uN  

              = 0,5 
2)1( u

  

                   for 21  u  

              = 0,5 
2( 102 u u -1)  

                    for 32  u  

              = 0,5 
2)4( u

  

                    for 43  u  

              = 0    

 otherwise 

)(3,4 uN 0,5
2)2( u )(1,4 uN +0,5 3(

2u +20u -

32) )(1,5 uN  

             = 0,5
2)2( u

   

 for 32  u  

             = 0,5
3( 2u +20u -32)  

               for 43  u  

             = 0    

 otherwise 

2

3,5 )3()(  uuN )(1,5 uN
 

             = 
2)3( u

   

 for 43  u  

             = 0    

 otherwise  

One can notice that only 3 mixture functions are non-

zero on each interval 1 iui , 40  i . As in 

the previous case, the second degree B-spline equation 

can be written on intervals.  
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The polynomial expression that defines the curve on the 

interval 1 ii  is noted )(1 upi . As such, the 

following is obtained: 

 0

2

1 )1()( Puup 0,5 u 34(  1)Pu +0,5 2

2Pu  

)(2 up 0,5 1

2)2( Pu +0,5 2( 62 u 2)3 Pu 

+0,5 3

2)1( Pu   

)(3 up 0,5 2

2)3( Pu +0,5 2( 102 u

3)11 Pu  +0,5 4

2)2( Pu   

)(4 up
0,5 3

2)4( Pu
+0,5

3( 202 u

4)32 Pu 
+ 5

2)3( Pu   

The obtained curve is made out of 4 curve segments 

connected with 
1C  continuity. The curve gous only 

through the points 0P , 5P , is tangent at the segments 

01 PP  , 45 PP   and also is tangent at each side of 

the characterisctic polygon.  

Each curve segment is influenced only by three 

consequent control points, or a control point can 

influence the form of three curve segments only. The 

conclusion may also be drawn from the results obtained 

for 1k  and 2k . Each segment of a B-spline 

curve is influenced only by k  consequent control 

points, or each control point influences k  curve 

segments only.  

The mixture functions attached to the ‚interior’ control 

points are independent from the number of control 

points. For example, for 3k , 5n , 3,2N  and 

3,3N  having the same form, being declared with an 

interval on the u  axis. A mathematical expression of 

the mixture functions is necessary, independent of the 

number of the control points. Thus, we determine the 

expression of the functions )(3, uN i , )(3,2 uN i  for a 

random interval. In order that the values have the same 

expression, we consider. This results in: 

 

 

 

1)(1, uN i      

 for 12  iui  

             = 0    

 otherwise 

1)(1,1  uN i     

 for 11  ui  

               = 0    

 otherwise 

1)(1,2  uN i     

 for 1 iui  

               = 0    

 otherwise 

1)(1,3  uN i     

 for 21  iui  

               = 0    

 otherwise 

1)(1,4  uN i     

 for 32  iui  

               = 0    

 otherwise 

)2()(2,  iuuN i )(1, uN i +
)( ui  )(1,1 uN i  

)1()(2,1  iuuN i )(1,1 uN i +
)1( ui 

)(1,2 uN i  

)()(2,3 iuuN i  )(1,2 uN i +
)2( ui 

)(1,3 uN i  

)1()(2,3  iuuN i )3()(1,3 uiuN i 

)(1,4 uN i  
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)(3, uN i
0,5 [

2)2(  iu

))(2()(1, uiiuuN i  )(1,1 uN i  

              +
)1)(1(  iuui )(1,1 uN i +

2)1( ui  )](1,2 uN i  

)(3,1 uN i = 0,5 [
2)1(  iu

)1)(1()(1,1 uiiuuN i  )(1,2 uN i  

               + 
))(2( iuui 

2

1,2 )2()( uiuN i  )](1,3 uN i  

 )(3,2 uN i  0,5 [
2)( iu 

)2)(()(1,2 uiiuuN i  )(1,3 uN i  

                +
)1)(3(  iuui

2

1,3 )3()( uiuN i  )](1,4 uN i  

We observe that 

)2()1()( 3,23,13,   uNuNuN iii . The three 

functions have the same form, but on consequent 

intervals. Therefore, it is better to give up the variable i  

in expressing them, that is, to get to a normalized form, 

in which u  takes values within the range [0,1) on an 

interval )1,[ ii . In the functional expressions, we 

replace the variable u  with iuu * , make the 

substitution iuu  * , but in order to make the 

notation easier we will note iu *  with iu  . We 

obtain: 

)(3, iuN i  = 0,5
2)2( u    

 for 12  u  

                  
= 0,5 )]1)(1()2([  uuuu

 

 for 01  u  

                  = 0,5
2)1( u

   

 for 10  u  

                  = 0     

 otherwise 

 

)(3,1 iuN i  = 0,5
2)1( u    

 for 01  u  

                    = 0,5 ])2()1)(1[( uuuu   

 for 10  u  

                    = 0,5
2)2( u

   

 for 21  u  

                    = 0    

 otherwise 

)(3,2 iuN i  = 0,5
2u     

 for 10 u  

                    = 0,5 )]1)(3()2([  uuuu  

 for 21  u  

                                = 0,5
2)3( u

   

 for 32  u  

                                = 0    

 otherwise 

 

The B-splines defined like this are called periodic B-

Splines. They have the same form, but are staggered on 

the u  axis, each being non-zero on only three 

consequent intervals. 

We will represent the equation of the segment of the 

second degree B-spline curve, for an interval 

1 iui , using the normalized forms, :10  u  

 
)(upi 0,5

)])122()1[( 2

2

1

22

  iii PuPuuPu
 

The equations of the 4 segments of the second degree 

B-spline curve by means of which the B-spline 

determined by 6 control points ( )5n  is 

approximated, can be written in a matrix form: 

 
)([)( 3,11 uFupi  )(3,2 uF )](3,3 uF

iP[

1iP T

iP ]2   30  i  
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Or 

 
)([)( 3,1 uFupi  )(3,2 uF )](3,3 uF

1[ iP iP

T

iP ]1 41  i  

Where: 

 
)(3,1 uF

= 0,5
)12( 2  uu

 

 
)(3,2 uF

= 0,5
)122( 2  uu

 

 
)(3,3 uF

= 0,5
2u  

are the mixture functions for a uniform, periodic, 

second degree B-spline curve segment. 

 The following matrix equation represents a 

uniform, periodic, second degree B-spline curve, 

resulted from a 1n   control points. 

 )(upi = 0,5
2[u u   1] 





















011

022

121





















1

1

i

i

i

p

p

p

10

11





u

ni
 

 

 

The similar form for the uniform, periodic, third degree 

B-spline curves is: 

  

 

 

 

3[6/1)( uupi  2u u    1] 

 

























0141

0303

0363

1331

























2

1

1

i

i

i

i

p

p

p

p

10

21





u

ni
 

We note: 

 
2

3 [uU  u    1] 

 
3

4 [uU  2u u    1] 

 























011

022

121

2/13M  

 



























0141

0303

0363

1331

6/14M   - the 

basic B-spline matrix 

  

Using these notations, we will rewrite the matrix 

equations of the B-spline curves 

- for second degree open curves: 

 

 























1

1

33)(

i

i

i

i

p

p

p

MUup
10

11





u

ni
 

 

- For third degree open curves: 

 



























2

1

1

44)(

i

i

i

i

i

p

p

p

p

MUup 10

21





u

ni
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- For second degree closed curves: 

 

























)1mod()1(

)1mod(

)1mod()1(

33)(

ni

ni

ni

i

p

p

p

MUup

10

11





u

ni
 

- For third degree closed curves:  

 































)1mod()2(

)1mod()1(

)1mod(

)1mod()1(

44)(

ni

ni

ni

ni

i

p

p

p

p

MUup

10

21





u

ni

 

Where a mod b  is the result of dividing a  to. 

 Properties of the B-spline Curves 

 1. Multiple control points  

An m degree B-spline curve goes always through a 

control point of m multiplicity. By introducing a control 

point in the vector of the control points on more 

consequent positions, one can force the B-spline curve 

going through the respective point.  

 2. Collinear control points 

If 1m  consequent control points are located on a 

line, then the m degree B-spline curve is located 

partially on the respective line. If the points 1iP , iP , 

1iP  are collinear, the segment ip  of the second degree 

B-spline curve will partially intermingle with the 

segment ii PP 1 . 

 3. Closed curves 

In order to make a m  degree B-spline closed curve, it 

is sufficient that the first m  control points are identical 

with the m endpoints.  

   

 

4. The convex hull property 

A B-spline curve is completely included in the convex 

polygon formed by matching together the control 

points.  

  5. Affine invariance 

In order to transform a B-spline curve, it is sufficient to 

apply the transformation of the control points and then 

to regenerate the curve.  

Properties of the second degree B-spline curves 

As they are more predictable than the cubic, the second 

degree B-spline curves are congruous for the 

representation of the high precision text characters. The 

characters of the True Type set utilized in the Windows 

system are defined utilizing second degree B-spline 

curves. Any second degree B-spline curve has withal 

the following properties: 

 Goes through the point located in the middle of 

the distance between two consequent control points; 

 at this point, the tangent of the curve 

intermingles with the segment that matches the two 

control points . 

 The curve is located in the triangle defined by 

a control point,    and the middle of the segments

ii PP 1 , 1 ii PP  

2.5 Surfaces 

The surface modelling is one of the most important 

problems in the computerized design and production 

systems. The models must offer the design flexibility, 

this being a creative type of activity, must be able to 

achieve simple implementations of the calculations of 

the surface properties and must allow the representation 

of a high variety of forms.  

A surface can be mathematically determined in three 

ways: 

(1) by means of an implicit equation as: 

0),,( zyxF
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(2) By means of an explicit equation, which expresses 

the variance of one of the three variants based on the 

other two: 

),( zyfx x
or 

),( zxfy y
 or 

),( yxfz z
 

(4) By means of parametric equations 

),( vufx x
 

),( vufy y maxmin uuu   

 
),( vufz z maxmin vvv   

As in the case of the curves, the parametric equations 

offer many advantages as compared to the other design 

methods, among which we can mention here: 

o The representation is independent of any 

coordinate system; 

o One can represent surfaces defined by means 

of functions with multiple values; 

o  

 

o The 3D transformations expressed in 

homogeneouscoordinates can be applied 

directly on parametric equations; 

o The surfaces defined parametrically are 

inherently limited, through the variation range 

of the parametric variables; any portion of the 

surface can be defined by choosing the range 

for each variable; 

o The parametric equations offer a higher degree 

of freedom for the control of a surface. 

The parametric equations can be used to show a high 

variety of surfaces, such as the ones obtained by means 

byspecial scanning and the Freeform surfaces.  

2.6 B-spline Surfaces 

The B-spline surfaces are approximation surfaces 

defined only by points. They are represented by the 

following parametric equation: 





m

i

wuP
0

),( 


n

j

ijp
0

* )(*)( ,, wNuN ljki  

Where ijp  are the control points that define the surface, and )(, wN lj  are B-spline functions of degree )1( k  and 

)1( l  respectively. 

 

 

 

                              A                                                                                B                                                        
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The image above, in isometric position (a) and Cavalier 

(b), shows the biquadratic B-spline surface 
 

 

)3(  kl  defined by the following matrix of the 

control points 
)4,5(  nm

: 









































)100,0,150()50,0,150()0,0,150()50,0,150()100,0,150(

)100,0,100()50,0,100()0,0,100()50,0,100()100,0,100(

)100,0,50()50,0,50()0,70,50()50,0,50()100,0,50(

)100,0,0()50,0,0()0,70,0()50,0,0()100,0,0(

)100,0,50()50,0,50()0,0,50()50,0,50()100,0,50(

)100,0,100()50,0,100()0,0,100()50,0,100()100,0,100(

P

 

A B-spline curve is obtained by means of the 

juxtaposition of more curve segments. The equations 

that define the segments of the second and third degree 

periodic B-spline curve can be rewritten as follows: 

 kkks PMUup **)(  kns  21  

Where 

 
}21|{  ksisPP ik  

And n  is the number of the control points. 

For 3k  we obtain the matrix expression of the 

segment of the first order B-spline curve (second 

degree), and for 4k  we obtain the expression of the 

segment of the second order B-spline curve (third 

degree). A B-spline surface (open, periodic) is obtained 

by the juxtaposition of more surface segments, defined 

as follows: 

 

T

l

T

lklkkst WMPMUwup ****),( 
 

 kms  21  

 lnt  21 1,0  wu
 

}21,21|{  ltjtksispp ijkl

By introducing 4k  and 4l  in the above 

equation, we obtain the equation of the segment of the 

B-spline bicubic surface. We can observe that each 

surface segment is determined by 44  control points.  

In practice, for the realization of the division operations 

of the B-spline bicubic patches, a conversion of the 

patches from the B-spline representation to the Bézier 

representation is being used. 

  

If  

 
TT

SSS WMPMUS **** the 

equation of the B-spline bicubic patch and 

 
TT

BBB WMPMUB **** the 

equation of the Bézier bicubic patch. 

The conversion of the B-spline patch into Bézier patch 

assumes the determination of the matrix of the control 

points BP , which determines the patch in the Bézier 

representation. For this, the following condition is 

necessary: 

TT

BBB

TT

SSS WMPMUWMPMU ******** 
 

or 

 

T

BBB

T

SSS MPMMPM **** 
 

 We obtain: 

 SBB MMP *[
1


]*

T

SBS MMP ]*[*
1

 

or 

 
T

SB APAP **
 

where 





















1410

0420

0240

0141

6/1A
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 حمزه ايفان ماضي

 جامعة بتشتي –رومانيا 

 

 

  : المستخلص

ها في اتنًعشفة استخذايوانسطىح  (Bائح يٍ َىع )انششائح وانششانًشابهة نًُحُيات رات انطبيعة الافكاس الاساسية  يسهظ انضىء عهى انبحث

نهًصادس انًبهًة، عٍ  استخذاو سطىح انًُحُيات، يًكٍ نهًشء اٌ يُشئ خىاسصييات كشف انهىية تطبيقات فهى الاشاسات انًبهًة. ويٍ خلال

ى َطاق واسع في انشسىيات انًحىسبة تستخذو هزِ انتقُيات عه ، اضافة انى رنك،(kennedطشيق تخصيص استعًانها سىيةً يع تقُيات حقم )

  انعذيذ يٍ انخصائص انهُذسية وانقذسات انحسابية. نهًُزجة وانتصًيى،  كًا تًتهك
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