Journal of AL-Qadisiyah for computer science and mathematics Vol.11 No.2 Year 2019

ISSN (Print): 2074 - 0204  ISSN (Online): 2521 — 3504

Math Page 54 — 62 Haibat .K/ Ali .S

Approximaitly Quasi-Prime Submodules and Some Related

Concepts
Haibat K. Mohammadali* Ali Sh. Ajeel?
Department of Mathematics Department of Mathematics
College of Computer Science and Mathematics College of Computer Science and Mathematics
University of Tikrit University of Tikrit
dr.mohammadali2013@gmail.com Ali.shebl@st.tu.edu.ig
Recived : 10\2\2019 Revised : 17\ 3\ 2019 Accepted : 27\3\2019

Available online : 24 /4/2019

Abstract:

“Let R be a commutative ring with identity and B is a left unitary R-module. A proper submodule E of B is called a
quasi-prime submodule, if whenever rsb € E, where r,s € R, b € B implies that either rb € E or sb € E”. As a
generalization of a quasi-prime submodules, in this paper we introduce the concept of approximaitly quasi-prime
submodules, where a proper submodule E of B is an approximaitly quasi-prime submodule, if whenever rsb € E,
where r,s € R, b € B implies that either b € E + soc(B) or sb € E + soc(B), where soc(B) is the intersection of
all essential submodules of B. Many basic properties, characterization and examples of this concept are given.
Furthermore, we study the behavior of approximaitly quasi-prime submodules under R-homomorphisms. Finally, we
introduced characterizations of approximaitly quasi-prime submodule in class of multiplication modules.

Keywords. Prime submodules, Quasi-prime submodules, Approximaitly prime submodules, Socle of submodules,
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1. Introduction

A quasi-prime submodule was introduced and
studied in 1999 by [1] as a generalization of a prime
submodule, where a proper submodule E of an R-
module B is called a prime, if whenever rb € E,
where r € R, b € B implies that either b € E or
r € [E:g B] where [E:xB] ={r € R:vB S E} [3],
Recently several generalizations of quasi-prime
submodules were introduced such as “Weakly quasi-
prime, Nearly quasi-prime, WE-quasi-prime, Weakly
quasi 2-absorbing, Nearly quasi 2-absorbing, and
Pseudo quasi 2-absorbing submodules see
[14,12,6,7,8,9]”. In this paper, we give another
generalization of a quasi-prime submodule, where a
proper submodule E of B is an approximaitly quasi-
prime submodule, if whenever rsb € E, where
r,s € R, b € B implies that either rb € E + soc(B)
or sb € E + soc(B). The concept of approximaitly
quasi-prime submodule is also, generalization of the
concept of approximaitly prime submodules which
appear in [10], also generalization of prime
submodules. Recall that an R-module B is
multiplication if every submodule E of B is of the
form E = IB for some ideal I of R, in particular
E = [E:x B]B [4]. Let E and D be a submodule of a
multiplication R-module B with E = IB and D = JB
for some ideals I and J of R, then ED = IJB that is
ED =1ID. In particular EB = IBB =IB = E. Also
forany b € B, we define Eb = E(b) = Ib [15].

2. Basic properties of Approximaitly

Quasi-Prime Submodules

In this part of the paper we introduce the
definition of approximaitly quasi-prime submodule,
and give some basic properties, examples and
characterizations of this concept.

Definition 2.1 A proper submodule E of B is said
to be an approximaitly quasi-prime submodule(for
short app-quasi-prime), if whenever rsb € E, where
7,5 € R, b € B implies that either rb € E + soc(B)
or sh € E + soc(B). An ideal I of aring R is an app-

55

quasi-prime ideal of R if and only if I is an app-
quasi-prime submodule of an R-module R.

Remark 2.2 It is clear that every quasi-prime
submodule is an app-quasi-prime, but the convers is
not true in general, the following example explain
that:

Example 2.3 Let B = Z,,, R = Z and E = (0), and
soc(Zy,) = (2). E is an app-quasi-prime submodule
of B since if rsb € E, where r,s €Z, b€ Z;,,
implies that either vb € E +{2) = (2) or sh€E +
(2) = (2). But E is not a quasi-prime submodule of
B, since 3.4.2 € E, but neither 3.2 € Enor4.2 € E.

The following proposition gives a characterization
of app-quasi-prime submodules.

Proposition 2.4 Let B be an R-module, and E be
a proper submodule of B. Then E is an app-quasi-
prime submodule of B if and only if whenever
IJD € E, where I,] are ideals in R and D is a
submodule of B, implies that either ID € E +
soc(B) orJD € E + soc(B).

Proof (=) Suppose that IJD € E, where I,] are

ideals in R and D is a submodule of B, and with
ID € E + soc(B) and JD & E + soc(B). So there
exists d;,d, € D and r €1, s €] such that rd, &
E + soc(B) andsd, € E + soc(B). Since E is an
app-quasi-prime submodule of B and rsd; € E and
rd, € E + soc(B) implies that sd; € E + soc(B).
Also rsd, € E and sd, € E + soc(B) implies that
rd, € E + soc(B). It follows that either ID C E +
soc(B) orJD € E + soc(B).

(&) Assume that rsb € E, where r,s€R, b €B
implies that (r)(s)(b) € E, so by hypothesis either
(r)(b) € E + soc(B) or (s)(b) € E + soc(B). Thus
either rb € E + soc(B) or sb € E + soc(B). Hence
E is an app-quasi-prime submodule of B.
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As direct application of proposition 2.4 , we get the
following corollaries.

Corollary 2.5 Let B be an R-module, and E be a
proper submodule of B. Then E is an app-quasi-
prime submodule of B if and only if whenever
rsD € E, where r,s € R and D is a submodule of B,
implies that either rD € E + soc(B) or sD € E +
soc(B).

Corollary 2.6 Let B be an R-module, and E be a
proper submodule of B. Then E is an app-quasi-
prime submodule of B if and only if whenever
rIb € E, where r € R, b € B and I is a ideal of R,
implies that either rb € E 4+ soc(B) or Ib S E +
soc(B).

Corollary 2.7 Let B be an R-module, and E be a
proper submodule of B. Then E is an app-quasi-
prime submodule of B if and only if whenever
IJb € E, where I,] are ideals in R, and b € B,
implies that either Ib € E + soc(B) or Jb S E +
soc(B).

Proposition 2.8 Let B be an R-module, and E be
a proper submodule of B with soc(B) € E. Then E is
an app-quasi-prime submodule of B if and only if
[E + soc(B): b] is a prime ideal of R for each b € B.

Proof (=) Let rs€[E+soc(B):b], where

r,s €R, implies that rsb € E + soc(B). But
soc(B) € E, it follows that E + soc(B) = E, hence
rsb € E. But E is an app-quasi-prime submodule of
B, implies that either rb € E + soc(B) or sh € E +
soc(B). Thus either r € [E + soc(B):b] or s € [E +
soc(B): b].

(&) Suppose that rsb € E, where r,s €R, b € B

implies that either rbs € E € E + soc(B), it follows
that rbs € E + soc(B), hence rs € [E + soc(B): b].
But [E + soc(B):b] is a prime ideal of R, implies
that either r €[E +soc(B):b] or s€[E+
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soc(B): b], it follows that either b € E + soc(B) or
sb € E + soc(B).

Proposition 2.9 Let B be an R-module, and E be
a proper submodule of B. Then E is an app-quasi-
prime submodule of B if and only if [E:grs] & [E +
soc(B):gr] U [E + soc(B):g s] forall r,s € R.

Proof (=) Let b € [E:grs], implies that rsb € E.

But E is an app-quasi-prime submodule of B, then
either rb € E +soc(B) or sb€E+soc(B). It
follows that either b € [E + soc(B):gr] or b€
[E + soc(B):g s]. Thus [E:;prs] & [E +
soc(B):gr] U [E + soc(B):g s]

(&) Now, let rsb € E, where r,s € R, b € B, then

b€ [Egrs] € [E +soc(B):gr]UJ[E +

soc(B):g s], implies that b € [E + soc(B):zr] or
b € [E + soc(B):gs]. Hence rb € E + soc(B) or
sh € E +soc(B). Thus E is an app-quasi-prime
submodule of B.

Proposition 2.10 Let B be an R-module, and E be
a proper submodule of B such that E is an app-quasi-
prime submodule of B. Then [E:zrsb] & [E +
soc(B):grb] U [E + soc(B):g sb] for all r,s €R,
b € B.

Proof Let x € [E:prsb], where r,s €R, b€ B,
implies that rs(xb) € E. But E is an app-quasi-prime
submodule of B, then either r(xb) € E + soc(B) or
s(xb) € E + soc(B), it follows that either x € [E +
soc(B):grb] or x € [E + soc(B):gsb]. Hence
x € [E + soc(B):grb] U [E + soc(B):g sb].  Thus
[E:grrsb] € [E + soc(B):grb] U [E + soc(B):g sb].

Remark 2.11 Let B be an R-module, and E is an
app-quasi-prime submodule of B, it is not necessary
that [E:B] is an app-quasi-prime ideal of R. For
example in a Z-module Z,, , (0) is an app-quasi-
prime submodule, but [{(0): Z,,] = 12Z is not app-
quasi-prime ideal of Z-module Z. Since 2.2.3 € 12Z,
but 2.3 ¢ 12Z + soc(Z) =12Z + 0 = 12Z.
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Proposition 2.12 Let B be an R-module, and E is
an app-quasi-prime submodule of B with soc(B) &
E. Then [E: B] is an app-quasi-prime ideal of R.

Proof Let rst € [E:B], where r,s,t € R, implies
that rs(tB) < E. Thus since E is an app-quasi-prime
submodule of B, then by Corollary 2.5 either
r(tB) € E + soc(B) or s(tB) € E + soc(B). But
soc(B) € E, implies that E + soc(B) = E. Hence
either r(tB) S E or s(tB) S E. That is either
rt €E{E:B] S [E:B] +soc(R) or ste{E:B]c
[E: B] + soc(R). Therefore [E:B] is an app-quasi-
prime ideal of R.

Recall that an R-module B is faithful if

anngB = (0) [4].

Before we introduce the converse of Proposition
2.12 we recall the following lemmas:

Lemma 2.13 [4, Coro. 2.14] Let B be a faithful
multiplication R-module then soc(R)B = soc(B).

Recall that an R-module B is a non-singular
provided that Z(B) =B, where Z(B) ={b€EB:
bl = 0 for some essential ideal I of R} [5].

Lemma 2.14 [5, Coro. 1.26] If B is a non-
singular R-module, then soc(R)B = soc(B).

Proposition 2.15 Let B be a faithful
multiplication R-module and E is a proper submodule
of B. If [E: B] is an app-quasi-prime ideal of R, then
E is an app-quasi-prime submodule of B.

Proof Suppose that rsb € E, where r,s € R, b € B
implies that rs(b) € E. Since B be a multiplication,
then (b) = JB for some ideal J of R. Thatis rs/B <
E, it follows that rs/ < [E: B]. But [E: B] is an app-
quasi-prime ideal of R, then by Corollary 2.5 either
r] € [E:B] +soc(R) or s] S [E:B]+soc(R), it
follows that either r/B < [E:B]B + soc(R)B or
s/B € [E:B]B + soc(R)B. Hence, by Lemma 2.13
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soc(R)B = soc(B), and since B is multiplication
[E:B]B = E. therefore either rb € E + soc(B) or
sb € E + soc(B). Hence E is an app-quasi-prime
submodule of B.

Proposition 2.16 Let B be a non-singular
multiplication R-module and E is a proper submodule
of B. If [E: B] is an app-quasi-prime ideal of R, then
E is an app-quasi-prime submodule of B.

Proof Follows in similar way of Proposition 2.15 and
using Lemma 2.14 .

Lemma 2.17 [13, Coro. Of Theo. 9] Let I
and J be ideals of a ring R, and B is a finitely
generated multiplication R-module. Then IB € JB if
andonly if I € J + annB.

Proposition 2.18 Let B be a faithful finitely
generated multiplication R-module. If J is an app-
quasi-prime ideal of R, then JB is an app-quasi-prime
submodule of B.

Proof Suppose that rsb € JB, where r,s € R, b € B.
Then rs(b) € JB. Since B is a multiplication, implies
that (b) = IB for some ideal I of R. Thus rsIB € JB.
But B is a finitely generated, so by Lemma 2.17

rsl € J + annB. But B is faithful, it follows that
annB = (0), hence rsI € ], but J is an app-quasi-
prime ideal of R, then by Corollary 2.5 either
rl €] + soc (R) or sl € ] + soc(R), it follows that
either rIB S JB+soc(R)B or sIBCS B+
soc(R)B. But by Lemma 2.13 soc(R)B = sov(B).
Hence rIB < JB + soc (B) or sIB € JB + soc(B), it
follows that either b € /B + soc (B) or sb € JB +
soc(B). Therefor JB is an app-quasi-prime
submodule of B.

Proposition 2.19 Let B be a finitely generated
multiplication non-singular R-module, and J is an
app-quasi-prime ideal of R with annB < J. Then JB
is an app-quasi-prime submodule of B.
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Proof Similar steps of Proposition 2.18 and using
Lemma 2.14 and the condition annB < J implies that
J +annB =].

Remark 2.20 The intersection of any two app-
quasi-prime submodules of an R-module B not
necessary app-quasi-prime submodule of B, the
following example shows that.

Example 2.21 Let B be the Z-module Z and E = 27
and D = 3Z. It is clear that E and D are app-quasi-
prime submodules of B, but E n D = 6Z is not app-
quasi-ptime submodule of B since 2.3.1 € Z, but
2.1 ¢ 6Z+ soc(B) and 3.1 € 6Z + soc(B), where
soc(B) = (0).

Proposition 2.22 Let B be an R-module, and E, D
are app-quasi-prime submodules with E < soc(B)
and D € soc(B). Then E n D is an app-quasi-prime
submodule of B.

Proof Suppose that rsb € E N D, where r,s €R,
b € B, then rsb € E and rsb € D. Since both E and
D are app-quasi-prime submodules of B, so either
rhb € E+soc (B) or sb € E +soc(B) and either
rb € D +soc (B) or sb €D +soc(B). But EC
soc(B) and D < soc(B), it follows that E +
soc(B) = soc(B) and D + soc(B) = soc(B) and
EnND C soc(B), implies that END + soc(B) =
soc(B). Thus we have either rb € E N D + soc (B)
or sh € END +soc(B). That is EN D is an app-
quasi-prime submodule of B.

Lemma 2.23 [11, Lemma 2.3.15] Let B be an
R-module, and E, D, F are submodules of B with D is
contained in F then (E+D)NF=(ENF)+
(DbDNnF)=(ENF)+D.

Lemma 2.24 [2, Coro. 9.9] Let B be an R-
module, and E submodule of B, then soc(E) = EnN
soc(B).

Proposition 2.25 Let B be an R-module, and E, D
are two submodules of B with D is not contained in E
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and soc(B)<S D. If E is an app-quasi-prime
submodule of B, then E N D is an app-quasi-prime
submodule of D.

Proof Since D is not contained in E, then EN D is a
proper submodule of D. Now , let rshe ENnD
where r,s€R, beD < B, then rsb € E and
rsb € D. But E is an app-quasi-prime submodule of
B, then either rb € E +soc(B) or sh€E+
soc(B), since b € D, it follows that either b € (E +
soc(B))nD or sbe(E+soc(B))nD. Since
soc(B) < D, then by Lemma 2.23

We have (E + soc(B)) N D = (E N D) + soc(B) N
D, and by Lemma 2.24 we have soc(B)ND =
soc(D). Hence either rb € END + soc (D) or
sb € END +soc(D). Thus E N D is an app-quasi-
prime submodule of D.

Proposition 2.26 Let f € Hom (B, B’) be an R-
epimorphism, and E is an app-quasi-prime
submodule of B’. Then f~1(E) is an app-quasi-prime
submodule of B.

Proof It is clear that f~1(E) is a proper submodule
of B. Now, let rsb € f~1(E), where r,s €ER, b € B,
implies that rsf(b) € E. since E is an app-quasi-
prime submodule of B’, so either rf(b) EE +
soc(B") or sf(b) €E+soc(B'). Hence either
rhb € fY(E) + f~Y(soc(B")) € fY(E) + soc(B)
or sb € f~YE) + f(soc(B")) € f~1(E) +
soc(B). That is either rb € f~1(E) + soc(B) or
sb € f71(E) + soc(B). Therefore f~1(E) is an app-
quasi-prime submodule of B.

Proposition 2.27 Let f € Hom (B,B’) be an R-
epimorphism, and E be an app-quasi-prime
submodule of B with Ker f € E. Then f(E) is an
app-quasi-prime submodule of B'.

Proof f(E) is a proper submodule of B'. If not,
suppose that f(E) = B', let b € B, then f(b) € B' =
f(E), implies that f(b) = f(e) for some e €EE, it
follows tat f(b—e)=0, so b—e€ Ker f CE,
hence b € E, that is E = B contradiction. Now let
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rsb' € f(E), where r,s € R, b’ € B'. Since f is an
epimorphism, then f(b) = b’ for some b € B, thus
rsf(b) € f(E), it follows that rsf(b) = f(e) for
some e €EE. That is f(rsh—e) =0, so rsh —e €
Ker f C E, implies that rsb € E. But E is an app-
quasi-prime submodule of B, then either rb € E +
soc(B) or sb € E + soc(B), it follows that either
rf(b) € f(E)+ f(soc(B)) € f(E) +soc(B') or
sf(b) € f(E)+ f(soc(B)) < f(E) + soc(B").
Hence either rb’ € f(E) +soc(B") or sb' € f(E) +
soc(B"). Thus f(E) is an app-quasi-prime
submodule of B'.

Proposition 2.28 Let B, B’ be R — modules, and
E be a proper submodule of B’, such that E +
soc(B') is a quasi-prime submodule of B’, with
Homyg (B,E + soc(B")) is a proper submodule of
Homg (B,B"). Then Homy, (B, E + soc(B")) is app-
quasi-prime submodule of Homy (B, B").

Proof Suppose that rsf € Homg (B, E + soc(B"))
where r,s €R, f € Homy (B,B"). Then for each
b € B, we have rsf(b) € E +soc(B"). But E +
soc(B") is quasi-prime submodule of B’, then either
rf(b) € E + soc(B") of sf(b) € E + soc(B'). That
iS rf € Homg (B,E + soc(B’)) C Homg (B,E +
soc(B’)) + soc(HomR (B,B’)) or sf € Homy (B,
E + soc(B")) € Homg (B,E + soc(B")) +
soc(Homg (B,B")). Thus Homy (B, E + soc(B") is
app-quasi-prime submodule of Homy (B, B").

Proposition 2.29 Let B=B, ® B, be an R-
module, where B;, B, be modules, and E = E; @ E,
be submodule of B with E;, E, are submodules of
By, B, respectively with E € soc(B). If E is an app-
quasi-prime submodule of B, then E; and E, are app-
quasi-prime submodules of B, and B, respectively.

Proof Suppose that b, € E; , wherer,s ER, b; €
B, then rs(b;,0) € E. Since E is an app-quasi-
prime submodule of B, then either r(b,0) € E +
soc(B) or s(by,0) € E + soc(B). But E € soc(B),
implies that FE + soc(B) = soc(B) = soc(B;)®
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soc(B,). If 1r(by,0) € soc(B;)®soc(B,), implies
that rb, € soc(B,) € E; +soc(B;) If s(by,0) €
soc(B,)®soc(B,), implies that sb, € soc(B;) €
E, 4+ soc(B;). Hence rb; € E; + soc(B,) orsh; €
E; + soc(B;). Therefore E; is an app-quasi-prime
submodule of B,

Similarly E, is an app-quasi-prime submodule of B,.

Proposition 2.30 Let B=B, ®B, be an R-
module, where B;, B,is an R-modules, then.

1) E is an app-quasi-prime submodule of B;, with
E S soc(B;) and B, is a semi simple if and only if
E®B, is an app-quasi-prime submodule of B.

2) D is an app-quasi-prime submodule of B, with
D < soc(B,) and B, is a semi simple if and only if
B;®D is an app-quasi-prime submodule of B.

Proof
(1) (=) Let rs(by,b,) € E @ B,, Where r,s €R,

(b1, by) € B, then rsb; € E and rsb, € B,. BUt E is
an app-quasi-prime submodule of B;, and E <
soc(B;), then either rb; € E + soc(B;) = soc(B;)
or sb; € E + soc(B;) = soc(B;). Now since B, isa
semi simple, then by [2, p221] soc(B,) = B,. So, if
rb; € E + soc(By) = soc(B;) then  (by,b,) €
soc(By)®soc(B,) =soc(B,®B,) SE®B, +
soc(B, @ B,). If if sb; € E + soc(B;) = soc(B;)
then s(by, by) € soc(B;)®soc(B;) = soc(B; @
B,) € E @ B, + soc(B; @ B,). Thus E®B, is an
app-quasi-prime submodule of B.

(&) Let b, € E , where r,s €R, b; € By, then for

each b, € B, rs(by, b,) € E®B,. But E®B, is an
app-quasi-prime submodule of B, so, either
r(bi,by) € E®B, + soc(Bi®B,) or s(by,by) €
E®B, +soc(B®B,). If r(by,b,) € E®B, +
soc(B;)®soc(B,), since E Csoc(B;), then
E + soc(B;) = soc(B;), and soc(B,) =B, $0,
r(by, b,) € E®B, + (E + soc(B,))®B, implies that
r(by,by) € (E + soc(B,))®B,, it follows that
by € E + soc(B;). Similarly if s(b,,b,) € E®B, +
soc(By)®soc(B,), implies that sb; € E + soc(B;).
Therefore E is an app-quasi-prime submodule of B;.
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(2) In similar way we can prove (2).

Remark 2.31 1t is clear that every prime
submodule is an app-quasi-prime submodule while
the convers is not true in general as the following
example shows that.

Example 2.32 Consider the Z-module Z,, the
submodule E = (0) is an app-quasi-prime submodule
of Z,, since for each r,s € Z, and b € Z,, with
rsb € E, we have either vb € E + soc(Z,) = E +
(2) or sb € E +soc(Z,) = E + (2). But (0) is not
prime submodule of Z,, because 2.2 € {(0), 2 € Z,
2€Z,,but2 e (0)and 2 ¢ [{0):Z,] = 4Z.

Recall that a proper submodule E of an R-
module B is called an app-prime submodule of B, if
whenever rb € E, with r € R, b € B, implies that
either b € E + soc(B) orrB € E + soc(B) [10].

Remark 2.33 1t is clear that every app-prime
submodule is an app-quasi-prime submodule , while
the converse is not true in general, as the following
example shows that.

Example 2.34 Consider the Z-module Z&®Z, and
E = (0)®2Z, E is not app-prime, since 2(0,1) € E,
but (0,1) € E + soc(Z®Z), and 2 ¢ [(0)D2Z +
soc(Z®Z): Z®dZ] = (0). But E is an app-quasi-
prime because E is a quasi-prime submodule of
ZDZ.

Proposition 2.35 Let B be an R-module, and E be
a proper submodule of B, with soc(B) € E. Then E
is an app-quasi-prime submodule of B if and only if
[E:g I] is an app-quasi-prime submodule of B for
every ideal I of R.

Proof (=) Let rsb € [E:xI], with r,s €ER, b € B,

implies that rsbl € E, that is rsba € E for each
a € 1. Since E is an app-quasi-prime submodule of
B, it follows that either rba € E + soc(B) or
sha € E + soc(B), but soc(B) € E, implies that
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E + soc(B) = E. Thus either rba € E or sha € E.
That is either rb € [E:xI] € [E:g I] + soc(B) or
rb € [E:gI] € [E:x I] + soc(B). Hence [E:xI] is an
app-quasi-prime submodule of B.

(&) Since [E:z I] is an app-quasi-prime submodule

of B for each ideal I of R, thus put I = R, we get
[E: R] = E is an app-quasi-prime submodule of B.

Proposition 2.36 Let B be a multiplication R-
module, and E be a proper submodule of B. Then E
is an app-quasi-prime submodule of B if and only if
whenever FDb € E, for some submodules F and D
of B and b € B, then either Fb € E + soc(B) or
Db € E + soc(B).

Proof (=) Suppose that FDb € E, for some

submodules F and D of B and b € B. But B is a
multiolication then F =IB and D =JB for some
ideals I,] of R, thus FDb =1Jb € E. But E is an
app-quasi-prime submodule of B, then by Corollary
2.7 either Ib € E + soc(B) or Jb € E + soc(B). It
follows that either Fb € E + soc(B) or Db S E +
soc(B).

(&) Assume that IJb € E, where ,] are ideals in R

and b € B. Since B is a multiplication it follows that,
IDb = FDb S E, so by hypothesis either Db € E +
soc(B) or Fb S E + soc(B), that is either Ib € E +
soc(B) or Jb € E + soc(B). Hence by Corollary 2.7
Then E is an app-quasi-prime submodule of B.

Proposition 2.37 Let B be a multiplication R-
module, and E be a proper submodule of B. Then E
is an app-quasi-prime submodule of B if and only if
whenever FDL < E, for some submodules F, D and L
of B, then either FL € E 4+ soc(B) or DLC E +
soc(B).

Proof (=) Suppose that FDL € E, for some

submodules F, D and L of B. But B is a
multiolication then F =IB and D = JB for some
ideals I,] of R, thus FDL = IJL € E. Since E is an
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app-quasi-prime submodule of B, then by Proposition
2.4 either IL € E + soc(B) or JL € E + soc(B). It
follows that either FL € E + soc(B) or DL S E +
soc(B).

(&) Assume that IJL < E, where I,] are ideals in R

and L is a submodule of B.Since B is a multiplication
it follows that, IDL = FDL € E, so by hypothesis
either FL € E + soc(B) or DL € E + soc(B), that is
either IL € E + soc(B) or JL € E + soc(B). Hence
by Proposition 2.4 E is an app-quasi-prime
submodule of B.

Proposition 2.38 Let B be a faithful finitely
generated multiplication R-module, and E be a
proper submodule of B with soc(B) € E. then the
following statements are equivalent.

1) E is an app-quasi-prime submodule of B.

2) [E:g B] is an app-quasi-prime ideal of R.

3) E = IB for some app-quasi-prime ideal I of R.

Proof (1) =(2) Follows by Proposition 2.12
(2) =(1) Follows by Proposition 2.15
(2) =(3) Since [E:g B] is an app-quasi-prime ideal

of R, and E = [E:; B]B, it is follows that E = IB and
I = [E:g B] an app-quasi-prime ideal of R.
(3) =(2) Suppose that E = IB for some app-quasi-

prime ideal I of R. But B is a multiplication we have
E = [E:x B]B = IB. Thus since B is faithful finitely
generated multiplication, then by Lemma 2.17 we
have I = [E: B], it follows that [E:; B] is an app-
quasi-prime ideal of R.
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