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ABSTRACT

In this paper some sufficient conditions are obtained to insure the existence of positive solutions which is relatively
bounded from one side for nonlinear neutral differential equations of second order. We used the Krasnoselskii’s fixed point
theorem and Lebesgue’s dominated convergence theorem to obtain new sufficient conditions for the existence of a

Nonoscillatory one side relatively bounded solutions. These conditions are more applicable than some known results in the
references. Three examples included to illustrate the results obtained.
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1. INTRODUTION

This paper is concerned with the existence of a positive
relatively bounded solution of the neutral differential
equations of the form

(a@® () — q(®O)x ()"
—pOf(tx(®),x(@(®)),x' (), x'(@(¢)) =0.  (L.1)

with respect to equation (1.1), throughout we shall assume
the following:

() p,q € C([to, +2),RY),a € C([ty, +%), (0,0)),t =

to > 0,t, €R.

(i) 7, 0 € C([ty, +), R),

a(t) <t lim,_, T(t) = oo0,lim,,_,, a(t) =
(i)f € C([ty,©) x R*, R), f is nondecreasing function,
and xf(t,x(t),x(a(t)),x’(t),x'(a(t))) >0, x+0. By
a solution of Eq.(1.1) we mean a function x €
C[(t; — p(ty),»),R), p(t;) = min{z(t),o(t)}, forsome
t; =ty such that a(®)(x()—q@®)x(—1(t)) is
continuously differentiable on [t;,») and such thatx(t)
satisfy Eq.(1.1) for t > t;. A solution x(t) is said to be
nonoscillatory if it is either eventually positive or
eventually negative that is there exists t, = t,, such that
either x(t) > 0 or x(t) < 0 for all t > t,, otherwise is
said oscillatory [10].

Recently there have been a lot of activities concerning the
existence of nonoscillatory solutions for neutral
differential equations. In 1999, S. Tanaka [12] study the
first order differential equations:

d

7X@ + hOx ()] + of (t,x(g())) = 0
and established some sufficient conditions to insure the
existence of positive solution of previous equation. In
2002, Y. Zhou, B. Zhang [14], found some sufficient
conditions for the existence of nonoscillatory solutions the
following equation:

n

av [x(t) + cx(t — 1)) + (D) P(t)x(t — 0)

den
—Q(®)x(t —8)].
In 2005, Y. Yu, H. Wang [13] , studied the nonoscillatory
solutions of a class of second-order nonlinear neutral delay
differential equations with positive and negative
coefficients of the form:

r@®E® +POx(t— 1)) + QOf(x(t — 7))
- Q,(Dg(x(t—0,)) =0

(t) <t,

In 2009, B. Dorociakova and R. Olach [5] studied the first
order delay differential equations:

X'(t) + p(®)x(®) + q©)x(z(t)) = 0.
In the same year I. Culkov, L. Hanutiakov, R. Olach [3]
studied the second order nonlinearneutral differential
equations

d2

2z X@® —a®x(t - D] = p(Of (x(t = 0)).
In 2011,R. Olach etc. al [4], studied the first order neutral
differential equations:
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d

2 X® —a®Ox(t - 0] = pOf (x(t — 0))
In 2012, L. Lietc. al[9], studied the existence of a
bounded nonoscillatory positive solution for the equation.

d
2 x® +a®x(t -] +pOf (x(t - )
+q®)g(xE-p))=0
In 2013, T. Canadan [1],obtained sufficient conditions for
first-order nonlinear neutral differential equations to have
nonoscillatory solutions for different ranges of p,(t) and
p, (t, & )of the forms:
[[x() = p1(®)x(t = D] + Qu()G(x(t — ) = 0
d

[[x(@®) —p@®x(t —D]]" + f Q(O)G(x(t = §))dg =0

and
Y

b
3@+ [ o xc - 9| 1

d
+ j Q(OG(x(t— &) dE=0

L0+ AOX(E ~ )+ Po(Ox(C + )]

+Q1 (g1 (x(t = 01)) = Q2D g2 (x(t + 03)) = 0
In 2017, F. Kong [8], studied the Existence of
nonoscillatory solutions of a kind of first-order neutral
differential equation:

L0 + POX(E ~ 1) 4 Po(OX(E + )]

+Q1 ()91 (x(t = 01)) = Qa() g (x(t + 0)) — f(£) = 0.
In 2018, B. Cma and M. Tamer Senel[2], obtained some
sufficient conditions for the existence of positive solutions
of variable coefficient nonlinear second order neutral
differential equation with distributed deviating arguments
of the form:

by ba
x(t) — f P(t, & )x(t —§)dg +ff(t,x(a(t,f))d§

=0

In this paper we prove that the existence of solution of
Eqg.(1.1) is relatively bounded, and we show that the
solution is bounded from one side by function from above
and below by function and ratio function respectively.
some sufficient conditions for this purpose are obtained.
Definition 1.1 A function x(t) is said to be relatively
bounded from below (above) if there is a function y(t)and
constant ksuch thaty(¢) < x(t) < k(k < x(t) < y(¢)).
The following fixed point theorem and Lebesgue’s
dominated convergence theorem will be used to prove the
main results in the next section.
Lemma 1.2[7] (Krasnoselskii’s Fixed Point Theorem).

Let X be a Banach space, let Qbe a bounded closed
convex subset of X, and let S;, S, be maps of 2 into X
such that S;x + S,y € Q for every pair x,y € Q. If S; is
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contractive and S, is completely continuous, then the
equation S; x + S,x = xhas a solution in Q.

Theorem 1.3 [11] (The Lebesgue Dominated
Convergence Theorem)

Let {f,,} be a sequence of measurable functions on E.
Suppose there is a function g that is integrable over E and
dominates{f,,} on E in the sense that If |f,(x)| < g(x) on
E for all n. If {f,} - {f} pointwise a.e. on E, then f is
integrable over E and

limp_, [, fo = [, fwhereE is afinite measurable set.

2.EXISTENCE OF ONE SIDE RELATIVELY
BOUNDED SOLUTIONS:

In this section we will establish several sufficient
conditions to insure the existence of a nonoscillatory
solutions which are one side relatively bounded by
functions and a ratio of positive functions on [t;,)of
Eq.(1.1), t; = t,. Without loss of generality we will
discuss the existence of eventually positive solution and
the existence of eventually negative solution can be
discussed in similar way.

The following conditions will be used in the next results:
H1.O<q®)<c<1

H2. M; < f(t,.) < M,, M;, M, # 0, are constants.
H3.mx(t) < f(t,.) < myx(t), my,m, # 0, are
constants

Theorem 2.1. Suppose that H1, H3 hold, and there exist
bounded function wu € C([ty, «),[0,)), a constant
N* > 0, and p(t;) = t,such that

q(t)u(z(ty))
u(e) s = (2.1)
u(t) —q@u(z®) _ [ (*p©)
e min{u () <[ [ fee
1
<o (1-q) 22)

Then Eq.(1.1) has a nonoscillatory relatively bounded
from below.

Proof. Let C([ty, +),R) be the set of all continuous
bounded functions with the norm ||x|| = supes,|x(0)I.
Then C([ty, +), R) is a Banach space. We define a

closed, bounded, and convex subset Q of C([t,, +), R) as

follows:
Q= {x = x(t) € C([ty, +), R): u(t) < x(t) < N*¥,
N* >0,
t >t} (2.3)
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For simplicity let

f(&,x(0) = f(t,x(t), x(z(t)), x (t), x (t — a(t))).
Now we define two maps S; and S,: Q —

C([ty, +), R)as follows:

_ {q@®x(z(@)), t=t,
SO ={§ e, h<ts<t,
(S22)(0) =
< p)
_ { [ [ Egrexoyis eza g,
u(t) — q(t)u(r(ty)) ity STty
We will show that for any x,y € Q we have S;x + S,y €
0.
From condition (2.2) it follows that for t > t;
“ p)
ft j a® 2 déds < o (2.5)

Forevery x,y € Qand t > t;, with regard (2.2) we obtain
(51)(8) + (S)(8)

= q®)x((t)) +J-°Of p(§)

(f)f(f y() déds

< q(ON* +m21v*f f pg déds

SN*(q(t)+m2N*f f%d{ds)SN*.

For t € [t,, t1], we have

(512 (8) + (520 () = (S12)(&1) + u(t) — q(t)u(r(t))
< q(t)x(z(t)) + N (1 — q(t)).
< q(t)N*+N*(1—q(t))=N".

Furthermore, for t > t;, with regard (2.2) we obtain

(5120 (8) + (S0 () =

= q(Ox((D) + f f ”gf(f y(©)) déds,

> q(Ou(®) +m, f f pgf(f y(©)) déds,
> q(Ou(e() +my f pg ©) deds,

> q(Ou(e() +my f pg ©) deds,

> q(Ou(z(t)) + my minfu(t)} f P s
- 1t2t1 ¢ a(é)

> u(t).
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Let ¢t € [to, t;], from Eq.(2.4), with regard to (2.1) we get
(5:)(0) + (S (0) =
= (Sp0)(t) +u(®) — q(t)u(e(ty))

= q(t)x(e(t) +u(t) — q(tdu(z(t),
= CI(t1)u(T(t1)) +u(t) — Q(t1)u('f(t1))
= u(t).

Thus, we have proved that S;x + S,y € Q, for any
X,y € Q.
We will show that S; is a contraction mapping on Q. For

x,y € Qandt > t; we have
ISyx = Syyll = futh(Sm(t) — (S ©
2ty

= fgtplq(t)X(T(t)) —q(@)y ()]
< fgtpq(t)IX(f(t)) —y(@(®)]
<cllx—yll

Also for t € [to, t;].
IS1x = Syyll = sup [(S1x)(8) — (S:) ()]

= [(512) (t1) — (S1¥) (&)

= [q(t)x(e(t) — a )y ((t)]
= q(t)[x(z(t) — y((tD)|

< ctossttlgt1|x(‘r(t)) - y(‘r(t))|

=cllx -yl
Hence
IS1x = Syyll < cllx — yll.
Thus S; is a contraction mapping on Q.
To show that S, is completely continuous. First we will

show that S, is continuous. By (2.5) and H2 it follows:

e 1C3)
ft f P (sx(©)dsds

a($)

Let x;, = x,(t) € Qbe such that x, (t) — x(t) as k — oo.

< m,N* f @dfd <. (2.8)

Because of Qs closed, x = x(t) € Q. For t > t; we have

1(S2xi) (&) = (S2x) (Ol = fgtpl(szxk)(t) = (S0) (@)

= sup 71755 (76 xu©)) = 16 x) ) agas|
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< [ [ E ) - ases

Since

IF (5, %4(9) = f(5,%(§))| - Oas k — o0,
by applying the Lebesgue  dominated convergence

theorem, we obtain
,l(iggoll(szxk)(t) - (Sx)@®)I =0

This means that S, is continuous.

Now to prove S,Q is relatively compact, we have to show
that  {S,x:x €Q}is uniformly  bounded and
equicontinuous on [t,, ], according to Arzeld-Ascoli
theorem [6]. It is clear that from (2.3) we get {S,x : x €
Q}is uniformly bounded. To show {S,x:x € Q} is
equicontinuouson [t,, ). Let x € Qand any & > 0, with
regard to (2.8), there exists t, = t; large enough so that

[ pgf(s X(©))déds <5 t> 1, 2.9)

Then, forx € Q, T, > T, = t,, we have
[1(S2x1)(T2) — () (Tl =
= sup |(Syxx)(T2) — (Szx)(Ty)l

T,>T;2t,
< 1S2x ) (T + 1(S2x) (T

© 1 p(E)
< f f B S (6 xe))dgds

© 1 p(E)
+ f f B (ex(©)dsas

<s4o=
2 2—5.

For xeQandt, <T, <T, <t,, we get
1(S22)(T2) = (S2x) (Tl =

= sup
t1< T1<Tp< t.

[(S2)(T3) — (Sx)(Ty)|

p(&)
fT 2 f P (6 x@)dsds

t1< T1<Tz< t.

- j TP e x(@)) deds

) a®
p(&)
j f P (6 x©)dsds
p(t)

< m; T <L‘a<XT {a( )}(TZ )

&
p)
T1<t< T, 'a(t)

[(S2x)(T) — ($x)(T)| <¢, if 0<T,—T; <6

Thus there exists §; = , such that
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Finally, for any x € Q, t, < T, <T, <t;, and for any
>0,

[(S2%)(T3) — (S,x) (T =0 < gif 0<T,—T, <3,
Hence, S,Q is relatively compact. By Lemma 1.2 then
Eq.(1.1) has a nonoscillatory relatively bounded from
below. The proof is complete.

The next theorem we will give another new sufficient
conditions to prove that the Eq.(1.1) has a nonoscillatory
relatively bounded from above by v(t).

Theorem 2.2.Suppose that H1, H3 hold, and there exist
bounded function v € C*([t,, ), [0, %)),p(t;) = ¢, such
that

T o[ 2

< _ - > tq. .
< Igl%f{v(f)} [v(®) —q@®Ov(E()].t = t. (2.10)
Then Eq.(1.1) has a nonoscillatory relatively bounded
from above.
Proof. Let C ([ty, +0),R) be the set of all continuous
bounded functions with the norm ||x|| = sup; 5 ¢, |x()I.
Then C([t,, +0), R) is a Banach space. Let Q be a closed
bounded, and convex subset of C ([t,, +o0) , R)defined as

Q= {x=x(t) € C([ty, +0),R): N, < x(t) < v(t),

N, >0, t=t,}) (2.11)

and the two mapsS; and S,: Q = C ([ty, +), R)defined
as

_ {q@®)x((D)), t >ty
CRICR k) St
Sx)(@®) = ©
“["p
- {ft f (E)f(f x(§))déds 2t 0
v(t) — q(t)v(r(ty)) te<t<t,

We will show that for any x,y € 2 we have S;x + S,y €
0.
Forevery x,y € Qandt = t;, we obtain

(S10) () + (S (@) =
p(§)

= q(O)x(z(t)) +£ f a($)

< qOV(z(®) + m, f f %y(é’)dé’ds

< q(t)v(r(t)) +m2f f %v(f)d{ds

< qOV(E(®) +m, rt‘;‘”z‘i‘{”(“}J pg

< q@vE®) + (v() - q(t)v(T(t))) =v(t)
Let t € [to, 1], using (2.12) we get
(51)(8) + (520 (0 = (1) (&) + v(t) — q(t)v(z(t1))
< Q((tl))x(’f(tl)) +v(6) — q(t)v(r(ty))
= v(t).

Furthermore, for t > t;, we get

——f(&y(9))déds

déds
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(1)) + (S20)(0) =

= gOx(x©) + [ pgf(f y(©))déds

> qON, +m, f f % ©)déds
“p(&)

2 aON. + 75 (t) TG N

> q(t)N, + N.(1 - (t)) > N,.
Then for t € [t,, t;]. From equation (2.11) and (2.12), we
have
(5:2)(8) + (520 (©) = (S12)(&1) + v(t) — q(t)v(T(t1))
= q(t)x(t(ty)) +v(t) — q(t)v(T(ty))
= q(t)N, + N, — q(&,)N, = N,
Thus we have proved that S;x + S,y € 2 forany x,y € Q.
We can treat the rest of the proof in similar way as in the
proof of theorem (2.1). By Lemma 1.2 there is an x, € Q
such that S;xq + S,x9 = x,. We conclude that x,(t)is a
positive solution of (2.2). The proof is complete.
In the next theorem we will give another new sufficient

conditions to prove that the Eq.(1.1) has a nonoscillatory

one side relatively bounded from below by ratio function

u(t)
E.
Theorem2.3. Suppose that H1, H2 hold, and there exist
bounded  function  u € CI([ty, ), [0,0)), p(t;) =
to such that
ulty) _ u(®
i) > a(t) to < t< ty. (2.13)
a(z(®u®) — q@a®u®) _ ij r(§)
Mya(t)a(z(t)) a@®)

< 1 1 > 2.14
‘E( —q®),t > t;. (2.14)

Then Eq.(1.1) has a nonoscillatory relatively bounded
from below.

Proof. Let C([tg, +), R)be the set of all continuous
bounded functions with the norm |[x|| = sup; s ¢, |x()I.
Then C([ty, +0) ,R)is a Banach space. We define a
closed, bounded, and convex subset Q
of C([ty, +0) , R)as follows:

déds

n= {x = x(t) € C([ty, +),R): %s x(t) < N* N*
>0,t> to}. (2.15)
The two maps S; and S,: Q —» C ([t,, +0), R)defined as
_{q@©x(@) Sttt
69O ={§ e tstst,
(Szx)(t) =

p(f)

(Szx)(t1) oSt st
We will show that for any x,y € QO we have S;x + S,y €
Q.
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Forevery x,y € Qand t > t;, we obtain

EHO 0=
= qOx@) + | f pé)f(f y(©))déds
My (o )
<q(ON' + ) f S y©dsds

. p(s‘)
<N+ f f (6)
< q(@©N"+ (N"—q()N") =
For t € [t,, t;], we have
(S10) () + (S2) () = (S1x) (&) + (S0 (ty) < N™
Furthermore, for t > t,, we get
(S12) (@) + (S () =

= O ®) + f f pgf(s‘ y(©))deds
q(t) “p(§)
> a( (t))u( (t)) +ME£ )S Tf)dfds ( )
q(t) a(z(t))u(t) — q®)a()u(z(t)
C0) u(z®) + aDa(r(®)
_u(®)
-1

Let t € [to, t4]. Using (2.13), we get
(S10) (@) + (S20) (@) = (S1x)(t1) + (S2¥) (1)
u(ty) _ u(®)

“alty) " a(t)
Thus we have proved that S;x + S,y € Q for any x,y €
Q.We can treat the rest of the proof in similar way as in
the proof of theorem (2.1). By Lemma 1.2 there is an
X € Qsuch that S;x, + S,x, = xo. We conclude that
xo(t) is a positive solution of Eq.(1.1). The proof is
complete.
In the next theorem we will give another new sufficient

conditions to prove that the Eq.(1.1) has a nonoscillatory

v(t)

a(t)’
Theorem2.4.Suppose that H1, H3 hold, and there exist
bounded function v € C([ty, ), [0,0)),p (t;) = t, such
that

p(f)
_(1“’“)) ff a®®
<a(T(f))v(t) qg®)a®)v(z(t))

m, rt‘li‘f{”(t)} a(t)a(z(t))
Then Eq.(1.1) has a nonoscillatory relatively bounded
from above.
Proof. Let C ([ty, +0),R) be the set of all continuous
bounded functions with the norm |[x|| = sup; >, |x(t)].
Then C([tg, +0),R)is a Banach space. We define a
closed, bounded, and convex subset Q
of C([ty, +0), R)as follows:

relatively bounded from below by ratio function —=

t>t,.(2.17)

Hussain .A/Bashar.A

n= {x—x(t) € C([tg, +0),R): N, < x(t) S% t
> to, N, > 0}.(2.18)

We now define two maps S; and S,:Q -
C([to, +0) , R)as follows:

qOx®)  t=t
E)(©) = {(Slx)(tl) Gt <t<t
(Szx)(tr) =
[ pgf(f x())déds  t > t,
={ (2.19)
{@ NCICICY) B
la® "“VaGk@)y T 7

We will show that for any x,y € Q we have S;x + S,y €
0.
For every x,y € Q and t > t,, we obtain

(S2)() + (S,)(6) = o
B “p
= q(Ox(@(®) + f o Ey@©)azds

q(t) p(&)
= aGeay VO A me f J agp) Y P)dds

q(t) *p(&)
< 2 (0) —=v(§)déds

a($)
q(t) p(§)
< @) v(t(t)) + m, rgag({u(t)}]t j ——dé&ds

a($)
ION q(®) (())+a(r(t))v(t)—q(t)a(t)v(r(t))
a(z(®)

a(®a(r((1)
_v(t)
G}

For t € [to, t1], we have
(S10)(®) + (S (1) v(t) (7(t1))
v(t(t,
= (slx)(t(l); N (((1))63@@1))
v(t(t,
< q(e)x( ) + o5~ 1) 1y

(@) v v(a(t) (D)
<97y Tao T Waee) T e

Furthermore, for t > t,, we get
(S10) (@) + (S0 () =

= g(Ox( (D) + f f pgf(f y(©))déds

My (% p(§)
| s
> q(ON, + N.(1- g(®) = N..

Let t € [t,, t;]. From Egs. (3.21) and (3.22), we get
(510 (@) + (S22 (@) =
v(t) v(t, —7(t1))

= (S1x)(t)) + —= a(t) q(tl)m

v vz (1)
= q(t)x((ty)) + at) q(t1) a(t(ty))

v(t(t)) + m, J-

68




Journal of AL-Qadisiyah for computer science and mathematics Vol.11 No.2 Year 2019

ISSN (Print): 2074 — 0204

ISSN (Online): 2521 — 3504

v(t) v(z(t1))
= AN + oy 1 oa ey
> q(t)N, + 8 q(t,)N, = N,.

Thus we have proved that S;x + S,y € Q forany x,y € Q.
We can treat the rest of the proof in similar way as in the
proof of theorem 2.1. By Lemma 1.2 there is an x, €
Q such that S;x, + S,x, = x,. We conclude that x,(t)is a
positive solution of Eq.(1.1). The proof is complete.
Example2.5. Consider the following nonlinear Neutral
differential equation

d(d
— | Z@OE® - axt - )

2
- p@® (? + 1) ~ 0. (2.20)
Where a(t) = e 15, p(t) = %e‘”, and q(t) = 0.3, Let

u@®) = e 1< f(Lx®) =2+1<3,t>1t =1.

Solution: It is clear that condition (2.1) holds, since
e—O.Sf < e—0.5(t1—2)’ t() <t< tl
To show condition (2.2) oftheorem (2.1) verified:

Mil(u(t)—q(t)u(r(t))) < ft ’ f Pg deds

= Miz(l -q®), t=1,
Let Ry (t) = — (u(t) — q()u(z(£))), Ry(t) = 0.5¢705¢,
and
1
R3(0) = E(l —q(®).

Then R;(t) < R,(t) < R3(t), for t = 1 so all conditions
of Theorem 2.1 hold, by Theorem there exists a positive
solution of Eq.(2.20).

One Side Relatively Bounded From
Below
0.4
0.3 -
2
s 02 —R1
x
0.1 - =E—-R2
0 - R3
123456782910
t-axis

Figure 2.1:Thegraph of R, (t), R,(t), andR5(t), of theorem
(21)

Example 2.6. Consider the following nonlinear Neutral
differential equation

i( (a®(x(®) - g - 1))))

Hussain .A/Bashar.A

(t)( 51nt+15)—0 t=>0, (2.21)
(10+5t) p(t) =

where a(t) = m q()=0.5, and

v(t) = 2 — e‘t,l < f(t,x(®) = Esmt +15<2 t, =
2.

Solution. To show condition (2.10) of theorem (2.2)
verified:

1 “p)

—[1—q(t f ——déds

ml[ q(®] < a®) §ds

[v(®) — q(®Ov(z(®)]

m, rtr;agx{v(t)}

) = {1-

1 1+ 0.8t
Let R,(t) = [1 —q@®LR,(t) = o and
Ra(0) = [V(t) q(t)v(f(t))].

m, rgegf{v(t)}

Then R;(t) < R,(t) < R;(t), for t =1 so all conditions
of Theorem 2.2 hold, by Theorem there exists a positive
solution of Eq.(2.21).

One Side Relatively Bounded From
Above
2.5
¢ o]
x
< 1.5
v 1 R3
05 - =i—R2
0 ——R1
1 23 456 7 809
t-axis

Figure 2.2:Thegraph of R, (t),R,(t),and R5(t), of
theorem (2.2)

Example 2.7. Consider the following nonlinear Neutral
differential equation

d
dt( (a®(x(® — q@x(c ~ 1))))

-p)(cost+1)=0, t=0, (2.22)
Wherea(t) = 275¢, p(t) = 2733, and q(t) = 0.5, and
u(t) = 27951 < f(t,x(t)) =cost+1<2, t; =2.
Solution:It is clear thatcondition (2.13)holds, since

u(tl) u(t) 2—0.5t1 2—0 .5t
- = 20,0 t< 2
a(tl) a(t) 2—1.5t1 2-15t
To show condition (2.14) of theorem (2.3) verified:
a(r(t))u(t) — q(t)a(t)u(r(t)) < f°° fm@dg{d
Mia(t)a(t — 1) -

1
< E(1 —q®),t >t

a(r(t))u(t) — q(t)a(t)u(‘r(t))

Let Ry (D) = Mya(®)a(z(D))

)’
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2—0.5t—3

LO=Ta

and
1
R3;() = , (1-q®).

Then R,(t) < R,(t) < R;(t), for t = 1 so all conditions
of Theorem 2.3 hold, by Theorem there exists a positive
solution of Eq.(2.22).

One Side Relatively Bounded From Below By
Ratio Function

0.3
0.25 - 3
0.2
0.15 —R1

0.1 —mR2
0.05 -

o 4 R3
1 3 5 7 9 11 13 15

t-axis

R-axis

Figure 2.3:Thegraph of R;(t),R,(t),and R;(t), of
theorem (2.3).
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