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Abstract: In the present research, we have proposed a new approach for model selection in Tobit 

regression. The new technique uses Bayesian Lasso in Tobit regression (BLTR). It has many features that 

give optimum estimation and variable selection property. Specifically, we introduced a new hierarchal 

model. Then, a new Gibbs sampler is introduced. We also extend the new approach by adding the ridge 

parameter inside the variance covariance matrix to avoid the singularity in the case of multicollinearity or 

in case the number of predictors greater than the number of observations. A comparison was made with 

other previous techniques applying the simulation examples and real data. It is worth mentioning, that the 

obtained results were promising and encouraging, giving better results compared to the previous methods.  
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1. Introduction:  

We are aware of that regression analysis is one 

of the statistical procedures that illustrate the 

relationship between explanatory variables and 

the dependent variables (outcome). If the 

explanatory variables values are known, then the 

regression analysis assistance us to predict the 

values of the dependent outcome variable. In 

addition, in order to reach accurate results from 

the studied event, the selected model must 

correspond the available data as best as possible, 

and the proposed regression process for the data 

in question will lead to results that are close to 

real reality. For each type of data, there is a 

suitable regression process. For example, if the 

quantitative data for the dependent outcome 

variable and the assumptions of the form can be 

dealt with using the conventional regression 

procedure, and if binary data is available for the 

dependent outcome variable, it can be dealt with 

using the logistic regression procedure. But, if 

the observations are partially constrained with 

the dependent variable and not constrained in the 

other part, these data are called censored data. 

The application of the conventional regression 

with this type of data will lead to biased 

parameters on the one hand, and inconsistent on 

the other hand. Therefore, it is necessary to 

determine a regression process that is 

proportional to this data. So, the Tobit regression 

process is appropriate to those data, it is 

elucidating the relationship among the non-

negative dependent outcome variable and the 

independent explanatory variables. The function 

of Tobit regression is a mixed function, it deals 

with two-part data, each part of the outcome 

variable data will take a given distribution. The 

dependent variable data that equal to zero will 

take the cumulative distribution function of the 

normal distribution, and the data is larger than 

zero will take probability density function 

distribution. The Tobit regression has been used 

in many studies, and the statisticians have 

applied this regression in many packages of 

different statistical language programs, such as 

the Tobit function in AER package and 

MCMCtobit function in MCMCpack package. 

However, when the independent variables are 

too large or low ratio the number of observations 

to the number of variables, then it is very 

difficult to distinguish the independent variables 

that are important and influential in describing 

the linear regression model, which leads to the 

instability of the model, thus the model lacks the 

validity of the prediction. To get rid of these 

problems, statisticians resorted to the mechanism 

of selecting the important and influential 

variables, while at the same time eliminating as 

much as possible from the explanatory variables 

that are not important. This mechanism called by 

variable selection process (VS). 

One of these VS processes is Lasso technique 

(Tibshriani, 1996) for parameter estimation. 

Specifically, Tibshriani (1996) introduced Lasso 

technique in order to interpretability of 

regression models, and get better prediction 

accuracy. The aim of the Lasso regression is to 

obtain a subset of the estimations that reduces 

the prediction error of the outcome variable, by 

imposing a constraint on model parameters that 

cause shrank the unimportant explanatory 

variables and reduced to zero. Park and Casella 

(2008) explicated that the parameters of the 

Lasso regression can be estimated by the 

Bayesian pattern. Hans (2009) introduced a new 

aspect of the Bayesian treatment of Lasso 

regression, by using a news Gibbs sampler for 

Bayesian Lasso regression. And then, Mallick 

and Yi (2014) developed the previous methods 

by using a new method called a new Bayesian 

Lasso, this proposed procedure for VS and 

coefficient estimation in linear regression. The 

findings of Mallick in his research were very 

good and proved their efficiency from the 

previous Bayesian processes used. The good 

results notified in Mallick process encourage us 

to use the new Bayesian procedure in Tobit 

regression. 
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2. Bayesian Lasso Tobit regression: 

The general formula of Tobit regression is 
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where    is a dependent outcome variable, and 

  
  is a latent variable. Then   

  is given by 

            

where    is     vector of responses,   is the 

    matrix of regressors, and the predictors   is 

                 , 

  is     vector of error and distributed 

normal       ,        is a number of 

independent variables, and   is the number of 

observations. 

As we highlighted in introduction, the Lasso 

model are widely used as regularization process 

for coefficient estimation in regression problems. 

The Lasso regression formulated as following 
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where   is a positive penalty parameter. On the 

other hands, Bayesian inference naturally 

overcomes this problem by providing a valid 

measure of standard errors based on the Monte 

Carlo Markov chain (    ) outputs. Results 

from the Bayesian Lasso are superbly like those 

from the regular Lasso. Although even though a 

lot of computationally intensives, the Bayesian 

Lasso is very simple to execute and 

automatically provides interval estimates for all 

parameters, together with the variance error.   

Following Andrews and Mallows (1974), Park 

and Casella (2008) represented the prior 

distribution of   as follows 
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Later, a new representation of the Laplace 

density given by Mallick and Yi (2014) as 

follows 
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They pointed out that the posterior distribution  

   |      is similar to the original Bayesian 

Lasso procedure of Park and Casella (2008) and 

the new representation has gorgeous properties. 

In this research, following Mallick and Yi 

(2014), we propose a new hierarchical 

representation of the Bayesian Lasso Tobit 

regression (BLTR). 

2.1 Hierarchical form of BLTR: 

Mallick and Yi (2014) presented a new Gibbs 

sampler by using the following representation: 
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In this research, we adopted the above formula 

as follows: 
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Then, the hierarchical model of BLTR is 
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where             

2.2 Full Conditional Posterior Distributions 

of BLTR: 

Firstly, With the properties of Bayesian, we can 

get a   posterior distribution as following 
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In practice, the above Gibbs sampler perform 

very well. However, the above estimator of  ̂     

is highly unsteady in the existence of 
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multicollinearity. In addition, the matrix     is 

singular if the number of explanatory variables   

is more than the number of observations  . 

Gupta and Ibrahim (2007) have proposed a 

method to deal with these situations. 

Specifically, they added a ridge parameter inside 

the variance covariance matrix. So, we'll add a 

ridge parameter to remedy actual challenges that 

may appears with multicollinearity and 

overfitting problems.  

Now, return to the previous equation (6) and add 

ridge parameter   to the equation 
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where      denotes an indicator function.  

 

2.3 Computation: 

In the beginning, we specify Gibbs samples for 

our procedure BLTR by initiate with the initial 

valuations for parameters  , and   , then we 

carry out the following procedures: 

 Sampling   : 

To apply equation (7), Firstly, we produce   
  

from the standard exponential distribution. After 

that, we must set      
   |  | by 

implementing the inversion process. 

 Sampling  :  

To apply equation (10), we must generate    

coefficients at the beginning of the algorithm, 

after that, we generate   coefficients from 

truncated normal distribution with the 

parameters (     
       

    ). 

 Sampling   :  

To apply equation (8), we sampling    from the 

inverse gamma distribution with shape 

parameters 
 

 
   and rate parameters 

 

 
    

             . 

 Sampling   :  

 

At last of computation procedure, we apply 

equation (9) to generate   from truncated gamma  

distribution with shape parameter     and rate 

parameter d.  

3. Simulation analysis: 

In this chapter of the research, we test our 

proposed method and measure its performance 

compared to previous methods for estimating 

parameters and VS in Tobit regression. This test 

is carried out by applying simulation examples 

to the BLTR, Tobit regression process (Tr) by 

applying the AER package (Kleiber, Zeileis, 

2017), Bayesian Tobit regression process (BTr) 

by applying the MCMCpack package (Martin, 

Quinn, Park, 2018), the Bayesian Tobit Quantile 

regression process (BTqr), and Bayesian Lasso 

Tobit quantile regression process (BLTqr) by 

applying the Brq package (Alhamzawi, 2018). 

All these packages will be implemented in R 

language. The standard comparison of the 

methods mentioned above is a median of means 

absolute deviations MMAD for estimated 

coefficients. The MMAD formula is 

                 |  ̂     |  

where the parameter  ̂ is a vector of estimated 

coefficients and the parameter    is a vector of 

true coefficients values in the simulation 

Haider .K 

5 



 
 
 
 
 

1 

Journal of AL-Qadisiyah for computer science and mathematics     Vol.11   No.2   Year  2019 

ISSN (Print): 2074 – 0204       ISSN (Online): 2521 –  3504 

examples. This paper, we set a=b=c=d=0.1 and 

 =0.01. 

3.1 i.i.d random errors examples: 

A clarification of what we will do in this 

simulation, that we will create 7 independent 

variables from the normal distribution with 

parameters (0,   ). 

3.1.1 Example 1: 

In this simulation example, we create 100 

observations, the pair-wise correlations between 

each independent variable equalize to    |   |,  

and we proposed true regression coefficients as 

follows 

 

                    ⏟        
 

   

And we simulated   
  by implementing the 

equation below 

  
                              

                

                    

Method    MMAD SD 

BLTR 

1 

0.2703062 0.0975433 

Tr 0.2721350 0.1000219 

BTr 0.2934124 0.1170751 

BTqr 0.3189504 0.1306618 

BLTqr 0.3199308 0.1170562 

BLTR 

4 

0.5410527 0.1470687 

Tr 0.5416789 0.1471063 

BTr 0.5560823 0.1788521 

BTqr 0.6188514 0.1755557 

BLTqr 0.5894346 0.1280350 

Table 1: Example 1 results of MMADs and SDs 

3.1.2 Example 2: 

This example is same as example above except 

for the setting that we set the true regression 

coefficients as follows 

                      

And we simulated   
  by implementing the 

equation below 

  
                              

Method    MMAD SD 

BLTR 

1 

0.3081883 0.0961881 

Tr1 0.3089278 0.0965812 

BTr1 0.3182100 0.1002961 

BTqr1 0.3385647 0.1115737 

BLTqr 0.3356854 0.1069906 

BLTR 

4 

0.6366920 0.1454593 

Tr1 0.6474908 0.1438293 

BTr1 0.6723154 0.1916782 

BTqr1 0.7007120 0.1982751 

BLTqr 0.6723090 0.1548616 

 

Table 2: Example 2 results of MMADs and SDs 

3.1.3 Example 3: 

In this example, the data is same 's as previous 

example except for the setting that we set the 

true regression coefficients as follows 

                      

And we simulated   
  by implementing the 

equation below 

  
                       

Method    MMAD SD 

BLTR 

1 

0.2566264 0.0696783 

Tr 0.2566902 0.0686645 

BTr 0.2578269 0.0756091 

BTqr 0.2822730 0.0789196 

BLTqr 0.2683786 0.0768525 

BLTR 
4 

0.5326660 0.1788678 

Tr 0.5334055 0.1736695 
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BTr 0.5583471 0.2114098 

BTqr 0.6365335 0.2154937 

BLTqr 0.5643628 0.1859721 

Table 3: Example 3 results of MMADs and SDs 

3.1.4 Example 4: 

In this example, the number of observations is 

same as previous examples, but the pair-wise 

correlations between    and    equal to 0.5, and 

we proposed true regression coefficients as 

follows 

                      

And we simulated   
  by implementing the 

equation below 

 

 

 

 

 

  
            

Method    MMAD SD 

BLTR 

1 

0.3217117 0.1160644 

Tr 0.3330405 0.1111610 

BTr 0.3250991 0.1318257 

BTqr 0.3530526 0.1459358 

BLTqr 0.3444863 0.1351279 

BLTR 

4 

0.6028703 0.1810483 

Tr 0.6111545 0.1960355 

BTr 0.6133544 0.2150937 

BTqr 0.6840337 0.2079322 

BLTqr 0.6308881 0.1883775 

Table 4: Example 4 results of MMADs and SDs 

3.1.5 Example 5: 

In this example, we proposed the same true 

regression coefficients in example 4 with low 

correlation, the pair-wise correlations between    

and    equal to 0.3. 

Method    MMAD SD 

BLTR 

1 

0.3045046 0.1077820 

Tr 0.3078803 0.1041962 

BTr 0.3137167 0.1174676 

BTqr 0.3455615 0.1187870 

BLTqr 0.3238524 0.1193782 

BLTR 

4 

0.6084789 0.1946236 

Tr 0.6196739 0.1952582 

BTr 0.6322880 0.2173044 

BTqr 0.6659606 0.2514506 

BLTqr 0.6103007 0.2106599 

Table 5: Example 5 results of MMADs and SDs 

3.1.6 Example 6: 

In this example, we proposed the same true 

regression coefficients in example 4 with high 

correlation, the pair /wise correlations between 

   and    equal to 0.8. 

 

Method    MMAD SD 

BLTR 

1 

0.2977267 0.0989983 

Tr 0.3073310 0.1006740 

BTr 0.3033420 0.1002597 

BTqr 0.3316455 0.1130165 

BLTqr 0.3050782 0.1122129 

BLTR 

4 

0.5450217 0.1661782 

Tr 0.5640171 0.1665735 

BTr 0.5920677 0.1766288 

BTqr 0.6169659 0.1918481 

BLTqr  0.5463471 0.1691286 

Table 6: Example 6 results of MMADs and SDs 

From the tables of the previous examples 

(1,2,3,4,5 and 6), we find that BLTR approach 

was better than the other methods used in the 

comparisons. The MMADs results of BLTR 

procedure were relatively less than these results 

of the other procedures. This indicates the 
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quality of the performance of the BLTR process 

in terms of coefficient estimation and VS. 

3.2 Heterogeneous random errors 

example: 

The errors in this example are considered to 

confirm the performance of BLTR process for 

VS. We created 100 observations, and 8 

independent variables, 5 of these variables are 

represented as standard normal noise variables. 

In addition, we set       {  
   } 

Where   
                , 

                       , 

                 

               ,                 , 

              ,                

Method MMAD SD 

BLTR 0.24361931 0.06380391 

Tr 0.24409931 0.06427611 

BTr 0.24687247 0.06492119 

BTqr 0.28280945 0.07813537 

BLTqr 0.27495522 0.07614802 

 

 

Table 4: Heterogeneous example results of 

MMADs and SDs 

Table 4 lists MMADs and SDs of heterogeneous 

example. The results in this example prove that 

the effectiveness of the BLTR procedure is very 

good compared to all other procedures (Tr, BTr, 

BTqr, BLTqr). 

4. Real Data: 

The identification and detection of the causes 

about increasing the rate wheat production are 

one of the priorities of agricultural economist 

researchers. The identification of the real factors 

to increase production among several factors has 

no effect, can help predict the future the rate of 

increase in wheat production. Hence the 

importance of this research, which attempts to 

identify some variables and to show how strong 

their impact on the rate of increase in wheat 

production. We perform BLTR within the four 

processes in wheat production data for 

comparison in terms of accurate prediction and 

VS. The real data in this research are taken from 

the national wheat development program in 

Qadisiyah, this data has been documented in 

2017. The wheat production data includes 11 

variables within 584 observations, these 

variables are sorting as follows in tables 5. 

symbol 
Variable 

description 
Rank 

Rank 

description 

   
The outcome 

variable 

Percentage increases of wheat 

product 

   Urea Numeric 
The quantity 

in kilogram 

   Sowing date 

1 Ideal 

2 Early 

3 Late 

   
The quantity 

of sowing 

wheat seeds 

Numeric 
The quantity 

in kilogram 

   
Laser field 

leveling  

1 Not using  

2 Using 

   
Compound 

fertilizer 
Numeric 

The quantity 

in kilogram 

   Sowing seed  

1 Not using 

  

 machine 2 Using 

   

Planting 

successive 

 Mung bean

crop 

1 Planting 

2 Not planting 

   
Herbicide for 

weeds 

controls 

Numeric 
The quantity 

in milliliter 

   
High-

Potassium 

fertilizers 

Numeric 
The quantity 

in kilogram 

    
Micro 

Elements 

fertilizer 

Numeric 
The quantity 

in gram 

Table 5: The top 11 worthy variables selected by 

BLTR process 

Note: Dunam is equal to 2500 square meters. 
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 Estimate 

(25%, 95%) 

Estimate 

(25%, 95%) 

Estimate 

(25%, 95%) 

BLTR 
-0.04318 

(-0.3604, 0.2674) 

0.02136  

(0.0200, 0.0236) 

-0.67632  

(-0.7575, -0.6240) 

Tr 
-0.08492 

(-0.8722, 0.7024) 

0.02093  

(0.0137, 0.0280) 

-0.66365 

(-0.7864, -0.5409) 

BTr 
-0.08198 

(-0.8986, 0.7196) 

0.02097 

(0.014, 0.028) 

-0.66566 

(-0.791, -0.546) 

BTqr 
-1.2292 

(-1.7985, -0.5204) 

0.02444 

(0.0181, 0.0306) 

-0.65595  

(-0.8025, -0.5117) 

BLTqr 
-0.89837  

(-1.5441, -0.1278) 

0.02406  

(0.0173, 0.0306) 

-0.65542  

(-0.8053, -0.5068) 

          

BLTR 
-0.02206 

(-0.0247, -0.0201) 

1. 28907 

(0.9941, 1.5631) 

0.00502 

(0.0034, 0.0072) 

Tr 
-0.02179 

(-0.0347, 0.0088) 

1.35717  

(0.6808, 2.0335) 

0.00491  

(-0.0076, 0.0174) 

BTr 
-0.02179  

(-0.035, -0.008) 

1.35763 

(0.658, 2.035) 

0.00492  

(-0.008, 0.018) 

BTqr 
-0.00574  

(-0.0176, -0.0030) 

1.44739  

(0.4979, 2.3409) 

-0.00528  

(0.0167, 0.0069) 

BLTqr 
-0.00992  

(-0.0235, 0.0009) 

1.28474  

(0.4120, 1.9695) 

-0.00308  

(-0.0142, 0.0097) 

          

BLTR 
-0. 11009 

(-0.3843, 0.1310) 

0. 91981 

(0.8406, 0.9880) 

0. 00439 

(0.0039, 0.0050) 

Tr 
-0. 14263 

(-0.8376, 0.5525) 

0. 93283 

(0.6111, 1.2545) 

0. 00432 

(0.0027, 0.0059) 

BTr 
-0.14509  

(-0.840, 0.559) 

0.93068  

(0.601, 1.259) 

0.00432  

(0.003, 0.006) 

BTqr 
0.23115  

(-0.6298, 1.1661) 

0.99091  

(0.6657, 1.3012) 

0.00512  

(0.0037, 0.0066) 

BLTqr 
0.26520  

(-0.2931, 1.0838) 

0.95502  

(0.6188, 1.2851) 

0.00503 

(0.0036, 0.0065) 

         

BLTR 
 0.03285 

(0.0322, 0.0339) 

00622  

(0.0060, 0.0064) 
 

Tr 
0. 03268 

(0.0255, 0.0399) 

0. 00623 

(0.0045, 0.0079) 
 

BTr 
0.03269  

(0.026, 0.040) 

0.00625 

(0.005, 0.008) 
 

BTqr 
0.02432  

(0.0136, 0.0353) 

0.00763  

(0.0048, 0.0102) 
 

BLTqr 
0.02531  

(0.0146, 0.0368) 

0.00746 

(0.0047, 0.0099) 
 

Table 6: Coefficients estimation and Credible 

intervals (25%, 95%) 

In table 6, the results showed the coefficients 

estimation and credible intervals (low credible 

interval LCI 25%, high credible interval HCI 

95%). The credible intervals results of BLTR 

process are narrower than Tr, BTr, BTqr, and 

BLTqr process, and our proposed method is 

including all the estimations of other methods. 

 

 

 

Diagram 1: Histograms of coefficients 

estimation for BLTR process 
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Diagram 2: Trace plots of coefficients estimation 

for BLTR process 

 

 

 

 

Diagram 3: Autocorrelations of coefficients 

estimation for BLTR process. 

In diagram 1, which illustrates the histograms of 

BLTR process coefficients estimation, these 

coefficients are based on posterior samples of 

10,000 recurrences. These histograms displayed 

that the conditional posteriors of BLTR 

coefficients are stationary for its underlying 

truncated normal distribution. In diagram 2, 

showed the BLTR coefficients trace plots, these 

plots show a reasonably good approximation, 

and the noise has been significantly deviated and 

the chain has reached stability and the center 

remains relatively constant. This means that the 

chain is fully mixed and convergent. At last, 

from diagram 3, the plot showed the BLTR 

coefficients estimation autocorrelations, the 10 

covariates in these data are highly correlated, 

and these MCMC chains in BLTR process was 

practically well. 

 

5.Conclusions: 

This research has presented a new process for 

model selection of Tobit regression, we 

proposed the BLTR method to estimates the 

coefficient with VS process. We developed new 

Bayesian hierarchical model for BLTR. In 

addition, we provided the Gibbs samples for the 

BLTR method. We demonstrated the advantages 

of the new procedure in both simulations and 

analysis of real-data. The results showed that our 

procedure performed well in terms of VS and 

parameters estimation. 
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 اًحذاس حْبج لاسْ الب٘ضٕ

 ح٘ذس كاظن عباط

 خاهعت المادس٘ت-كل٘ت الاداسة ّالالخصاد-لسن الاحصاء

 

 

 الخلاصت :

فٖ اًحذاس حْبج ، حوخاص ُزٍ الطشٗمت   Bayesian Lassoطشٗمت  الدذٗذة فٖ الخمٌ٘ت اسخخذهٌا. اًحذاس حْبج فٖ الٌوْرج لاخخ٘اس خذٗذا ًِدا الخشحٌا ، البحث ُزا فٖ

 بخْس٘ع ّلوٌا أٗضًا. Gibbs هي خذٗذة عٌ٘اث لذهٌا ثن. خذٗذًا ُشه٘اً ًوْرخًا لذهٌا ، الخحذٗذ ّخَ علٔ. ّاخخ٘اس الوخغ٘شاث الأهثل الخمذٗش حعطٖ الخٖ الو٘ضاث هي بالعذٗذ

 عذد عي الوعاهلاث عذد صٗادة حالت فٖ حعذد الاسحباط ب٘ي الخغ٘شاث أّ حالت فٖ الخفشد لخدٌب الخباٗي هصفْفت داخل ridgeالخذاخل  هعلوت إضافت طشٗك عي الدذٗذ الٌِح

 علِ٘ا الحصْل حن الخٖ الٌخائح أى بالزكش الدذٗش ّهي. الحم٘م٘ت ّححل٘ل الب٘اًاث الوحاكاة أهثلت مباسخخذا الخٖ الأخشٓ السابمت الخمٌ٘اث هع هماسًت إخشاء حن. الوشاُذاث

 .السابمت هع الطشق بالوماسًت أفضل ًخائح أعطج هوا ، ّّاعذة هشدعت كاًج
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