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Abstract

Count data, including zero counts arise in a wide variety of application, hence models for counts
have become widely popular in many fields. In the statistics field, one may define the count data as that
type of observation which takes only the non-negative integers value. Sometimes researchers may
Counts more zeros than the expected. Excess zero can be defined as Zero-Inflation. Data with abundant
zeros are especially popular in health, marketing, finance, econometric, ecology, statistics quality
control, geographical, and environmental fields when counting the occurrence of certain behavioral and
natural events, such as frequency of alcohol use, take drugs, number of cigarettes smoked, the
occurrence of earthquakes, rainfall, and etc. Some models have been used to analyzing count data such
as the zero-inflated Poisson (ZIP) model and the negative binomial model. In this paper, the models,

Poisson, Negative Binomial, ZIP, and ZINB were been used to analyze rainfall data.
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Introduction

Count data reflects the number of
occurrence of certain characteristic in a fixed
period of time, that is, Count data are non-
negative integers {0,1,2,3,..}. Count data
becomes popular in a wide areas of interesting
sciences; such as finance, marketing, health
care, weather, and others. Count data with
excessive zeros are prevalent in a wide variety
of disciplines, in many of these areas of
sciences, Sometimes researchers may Counts
more zeros than the expected. Excess zero can
be defined as Zero-Inflation. Excess zero
sometimes may be the reason of occurs Over-
dispersion (variance a lot larger than mean).
Over-dispersion concept is commonly used in
the analysis of discrete data. Therefore, linear
regression is not applicable procedure to
estimate the parameters of predictors due to the
distribution of the

asymmetric response

variable. Under these limitations, Poisson
regression and Negative binomial regression

are used to model the Count data.

Lambert (1992) discussed this matter
and suggested “zero-inflated Poisson” model
with an application in manufacturing quality
also suggested by Greene (1994). Models for
Zero-Inflation have become of interesting so in

this work | focus on the excess zero case.

In some commonly used discrete
distributions the mean of the distribution
related to the variance, the reason of exhibit
That s,

appear in the data in which there is evidence

Over-dispersion. Over-dispersion

that variance of the dependent variable is

greater than the mean.
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Data with abundant zeros are especially
health,

econometric, ecology, statistics quality control,

popular in marketing,  finance,
geographical, and environmental fields when
counting the occurrence of certain behavioral
and natural events, such as frequency of
alcohol use, take drugs, number of cigarettes
smoked, the

occurrence of earthquakes,

rainfall, and etc.

Famoye and Consul (1992)

“generalized Poisson” distribution which can

proposed

take consideration of “over-dispersion” of

Poisson  distribution. The extension of
generalized Poisson distribution is “zero-
inflated  generalized  Poisson”  (ZIGP)

suggested by Famoye and Singh (2006).

Some other models have been used to
analyzing count data such as the “zero-inflated
Poisson” (ZIP) model. In existence of “over-
dispersion” in the data “negative binomial”
model can be preferred when Poisson mean
has a gamma distribution. A normal stretch of
“negative binomial” model to accommodate
increase zeros in the data is “zero-inflated

negative binomial” (ZINB) model discussed by
Mwalili (2008).

The difference between negative binomial
and Poisson models is that negative binomial
models can be used when “over-dispersion”
exists even in the nonzero part of the
distribution™™. In this paper, 1 focus on the
models, Poisson, Negative Binomial, ZIP, and

ZINB to analyze rainfall data.
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Poisson Reqgression Model (PRM)

Poisson regression model is a non-
linear (log-linear) regression models and it is
convenient for the analysis of count or rate
data. Poisson regression is similar to the
multiple regression excepting that the response
(y) variable is an observed count that follows
the

possible values of (y) are “non-negative

“Poisson distribution”. Therefore, the
integers”. Suppose we have a random sample
Y1,...,¥Yn drawn from Poisson distribution, then

the p.m.f of y;, As follow

e‘ﬂiu?’i
pOLw) =——— ;¥ =012,.. (1)
Vi:
By assumptions of GLM, We have
Yi~P(u); EY;) = p;,Var(Y) =w; , and
U = e &XitXiq) — oX'B
Where X' =a+ f1X;; + -+ BgX;q  and

Xi1, ..., Xiq are the independent variables.
Given the p.m.f in (1) and using the
method of maximum likelihood and assuming
independence of the observations, We can
estimate regression parameters as follow

n
Yie_l'l'i
=] |5
Ayl

L

Taking the log of both sides,

log(L) = Xi'(log(u”ie™#1) —log(y))
= Xi'(log(u”t) + log(e™#1) —

log(y:D)
= X i log(wy) — p; —log(yih)
= ST X' — eX'F —log(y:!))

By taking partial derivatives of the
parameters and equalizing the likelihood

equation to zero
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dlog(L)
ap

=YL (yX —XeX'P)=0

9 - ,
@;mw —eX'F —log(y;))

)

Applying numerical methods such as “Newton

Raphson” to solve equation (2).

“Poisson regression model” is suitable for
modeling “count data” but in practice, Usually,
the variance of count data overrides its mean,
Count  data

resulting  Over-dispersion.

underlying  Over-dispersion and Poisson
regression model leads to bias results, and
under estimation of the parameters which
effects on the standard errors and P-value. This
Over-dispersion may be due to a random
the

unobserved variation component in

function of X'.

Negative Binomial Regression Model

(NBRM)

Negative binomial regression is one of

types of generalized linear models in which the
“dependent variable” Y is a count of the
number of times an event occurs. Negative
binomial regression is similar to the multiple
regression excepting that the response variable
(y) is an observed count that follows the *
negative binomial distribution”. Therefore, the
possible values of (y) are  “nonnegative
integers”.

To address the problem of “over-

113

dispersion” in “a Poisson regression”,
“Negative Binomial regression” model has
been wused, by allowing for the random
variation component in Poisson conditional a
mean (u) through the parameter (a). Negative

binomial regression is a popularization of
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Poisson regression which relax the restrictive log(L)
assumption that the variance is equal to the [y-log( au; )—llog(l 4 au-)]
mean made by the Poisson model. Suppose n |7 T+ap/ «a ) ' |
that yi,...,y, are a random sample from the = Z +logl' (yi +E>
i=1
Negative binomial distribution, then the p.m.f 1
g P —logl(y; + 1) — logT (E)

of y, is expressed as

S 2 Vi
p o) = s i) )

;y=012,.. (3

By assumptions of GLM, We have
1
VieNB (wig) 3 EC) =, Var(r) =

i+ apf

Where X' =a+ Xy + -+ B4Xiq and

Xi1, ..., Xiq are the independent variables.

Given the p.m.f in (3) and using the
method of maximum likelihood and assuming
independence of the observations, We can

estimate regression parameters as follow

L= HP(Yi;ﬂi)
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log(L)
aeX'B

] L R
dlog| ————= | ——log(1 + aeX?
e g(“ae”) —log( )

- Z 1
= cfv +2
- +log (yl + a)
1
—logl'(y; + 1) — logT (E)

By taking partial derivatives of the
the likelihood

parameters and equalizing
equation to zero

dlog(L) 0
B 0B
|Z?=1| +logl (yl- + i) —logl'(y; + 1) | =
L1 ~logr (%) 1]
0 (4
alog(L) 0
Ja da
|Zz=1 +logTl (yl ) logl"(yl +1) - ”
L1 logr (3) 1]
0 (5

Applying numerical methods such as “Newton

Raphson” to solve equations (4) and (5).
Zero-Inflated Models (Z1)

Excess zeros in certain population is
lead to Zero-Inflation which is made up two

types of data subgroups (data generation), the
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first subgroup is a set of only zeros count (true
zeros and false zeros), and the second
subgroup is a set of count variables (with true
zeros) that distributed according to Poisson
distribution (Lambert 1992, Van den Broek

1995).

Zero-Inflated Poisson  Regression

Model (ZIPR)

The “zero-inflated Poisson” regression is

used for modelling count data that show over-
dispersion and zero counts (excess zeros). This
model consider there are two types of data
sources, the first source is zero type and the
second is comes from data follows Poisson
distribution.
According to Lambert (1992), the
response variable Y; is independent with
Y;~0 with probability (6;) and Y;~ Poisson
w; with probability (1 — 6;)
Where 6; is the probability that observation (i)
is in the always zeros subgroup.
Therefore,
Pr(Y;=0)=6;+(1-6;) x
Pr(Count process at (i)gives a zero) (6)

By assumption the Yifollows a Poisson

distribution with mean y;
P tily: = 0) = ﬂ
;!
Subsequently
The term
Pr(Count process at (i)gives a zero)

is given by

o
PYi=os kily; = 0) =

Hence, Equation (6) can now be rewritten as

18

Luay .H/ Ahmad .N

Pr(Y; =0) =6; + (1 — e ™ @)
With probability that Y; is a non-zero count,
we have

Pr(Y; =y;) =

+(1 — 6;) X Pr(Count process) (8)
Hence, Equation (8) can be rewritten as follow
Pr(Y; = yily; > 0) =

e_”i.uiyi

TR

it

(1-6)

Furthermore, The probability density function

for a ZIP model is given by

9i+(1_9i)e_l‘i lfyl =0

e_V'i,uiyl
(1-0)"

p(Y,=y) =

(10)

By GLM™, p; = ™ | where X
are knows independent variables, Lambert
(1992) suggested the functional form for
modelling the parameter 6; as logistic
function, which is given by
Log (L> =7y

1-6;
and therefore,
eZ'ivi

0= Tyerm 0

Where; Z : the covariates and y : are regression

coefficients.

The corresponding Log-Likelihood function is

given as follow

log(L) =

n |I(y; = 0)log(8; + (1 —6;)e ™) +
Y| 100> 0)tog = ) — i +
i yilog(u;) —log(y:1)

(D
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Subsequently
E(yilx) = p;(1 - 6;)
Var(yilx) = (1 — 6)(w; + 6:uf

Zero-Inflated  Negative  Binomial

Regression Model (ZINB)

In the same way “zero-inflated Negative
binomial” regression is used for modelling
count data that show over-dispersion and zero
counts (excess zeros). This model consider
there are two types of data sources, the first

source is zero type and the second is comes

from data follows Negative binomial
distribution.
According to Lambert (1992), response

variable Y ; is independent with

Y;~0 with  probability (6;) and

Y;~Negative binomial (,ui,i) with
probability (1 + 6;)

Therefore,

Pr(Y;=0)=6;+(1-6;) X

Pr(Count process at (i)gives a zero) (12)

by assuming the Y; follows a Negative

binomial distribution with mean y;

p(yis mily 2 0) =

1 1 .
Tit+y) ( 1 )a( ap; )yl
PGry+1) \1+ap) \1+ap;

Subsequently

The term
Pr(Count process at (i)gives a zero) is

given by
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|~

(=0 gz = ()
p(ye=0 mfyiz0)= (-

Hence, Equation (12) can now be written as
1

Pr(Y; = 0) = 0 + (1 - 0) (1 am)

(13)

for the probability that Y; is a non-zero count;
Pr(Y; =) =

(1 — 6;) X Pr(Count process) (14)
Hence, Equation (14) can be rewritten as

follows

r+z)

p(Y; =yly; >0)=(1-6;)
r(F)roi+o

1
a

(a) ()
1+ ay; 1+ ay;

Therefore, the probability density function for

(15)

a ZINB model is given by

P(Y;=y) =

9i+(1—9i)< )% ify;=0

1+ ay;

1

1-6)

r(n+g) (

r(2)ro.+ 1

( au; )J’i
1+(Xﬂi

By GLM™ =

knows independent variables, Lambert (1992)

1 )E
1+ ay;

ify;>0  (16)

Xp; where X are
suggested the functional form for modelling
the parameter 6; as logistic function, which is

given by

0; ,
Log <1T€l> =z
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and therefore,

eZ’iyi

b= T O

Where; Z : the covariates and y : are regression
coefficients.
The corresponding Log-Likelihood function

of (16) is given as follow

log(L) =
I(y; = 0)log

0i+ (1 =60 (1 + aui>

n I(y; > 0)(log((1 - 6;) +
ri+3)
r(3)ro.+1
(yi + %) log(1 + aw;) +
yilog(au;))

(17)
i log

Subsequently

Where m; = log(Py(Y;|X,)) — log(P,(Y;1X))) .
If V>1.96, then the first model is preferred. If
V<-1.96, then the second one is preferred. If |

V | <1.96, none of the models are preferred.

Data Analysis

Data were collected from database of the
Meteorology and Seismology Organization in
Iraq for Hilla weather station. The weather

station are located in central Iraqg, specifically

Luay .H/ Ahmad .N
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E(Y) =w(1-6)
Var(Y) = (1 — 6) (w; + au?) + pf (67 + 6,)
Model Selection

It is important that we have one or more a
criterion to consider the best results and choose
the appropriate model for data representation.
There are several methods that provide a
measure for selecting the appropriate model,
The following four methods will be used: AIC
is an evaluating model fit for a given data
among different types of non-nested models ,
and its formula is given as AIC = —2logL +
2k , BIC is another estimator for evaluating
model fit for a given data among different
types of non-nested models, and its formula is
given as BIC = —2logL + klogn ,
Likelihood ratio test (LR) is a statistical test
used to compare two nested models, its
formula is given as LR = —2log(L,/L,), and
Vuong test (V) is a statistical test used to

compare non-nested models™, It is defined as

in the city of Hilla (about 116 kilometers south
of Baghdad).

The count response variable of interest to be
modeled "Rainfall hours" measured at Hilla
The

consists of six climate variables derived from

weather station. predictor variables

Iragi  Meteorological  Organization  and

Seismology ~ database,  which  include

measurements of rainfall, sea pressure, station
pressure, wind speed, temperature, and
humidity, as shown in Table (1). Data contain
observations of (731) for two years (2016 and

2017).
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Table 1. Summary statistics of explanatory variables and response variable used in our count data

regression models in Hilla weather station.

variables Minimum First . Third Maximum
Median Mean

value quarter quarter value
Wind speed ( m/s) 0 0.6 1.4 1.619 2.3 9.3
Temperature (°C) 3 15.8 25 23.97 32.85 405
Station pressure 0.9908 1.0007 1.0068 1.0074 1.0131 1.3804
(1bar/1000)
Sea pressure 0.9947 1.0046 1.0108 1.0109 1.0171 1.0287
(1bar/1000)
Humidity (%) 17 31.8 40.6 4454 56 94
Rainfall (hours) 0 0 0 0.6553 0 20

The distribution of the number of non-rainfall hours in Hilla weather stations for the two years is

shown in figure 1

Figure 1. Distribution of Rainfall huors in Hilla station

Frequency

10 15 20

Rainfall huors

Table 2. Fit statistics of Poisson regression
_ ) model, 2016-2017 Rainfall count data
Poisson Regression

criterions Hilla weather station
The model fit statistics and estimated
o ) . -2Log Likelihood 1466.649
coefficients of Poisson regression model are
o AlC 1478.649
given in Table 2 and Table 3.
BIC 11506.216

Table 3. Estimated coefficients of Poisson regression model, 2016-2017 Rainfall count data in Hilla
weather station

Parameter Estimate Standard Error z Value Pr > |z|
Intercept 43.305973 14.941807 2.898 0.00375
Wind speed 0.2477 0.0253 9.79 <2e-16
Temperature 0.031051 0.017090 1.817 0.06922
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Station pressure

-4.573125 20.646534 -0.221 0.82471
Sea pressure -45.002287 25.235835 -1.783 0.07454
Humidity 0.096406 0.004648 20.742 <2e-16

Since the variance of count data usually
exceeds the conditional mean, the equality of
variance and mean should always be checked
after the development of a Poisson regression.
We conducted a test of over-dispersion and

Negative Binomial Reqgression

In order to address the issue of over-dispersion,
we used The model fit statistics and estimated
coefficients of Negative Binomial regression
model are given in Table 4 and Table 5.

The results of this test are shown below Table 4. Fit statistics of Negative Binomial

likelihood ratio test of H.: Poisson, as regression model, 2016-2017 Rainfall count

restricted NB model, Critical value of test data
statistic at the alpha= 0.00 level: 2.7055, For criterions Hilla weather station
Hilla weather station, Chi-Square test statistic= .

-2Log Likelihood 892.7366
579.6014 p-value = <2.2e-16. The

AlC 906.7386
significance of X 2_statistics implies the

BIC 938.8995

existence of over-dispersion. Therefore, in the
next section, we develop Negative Binomial

model to handle the issue of over-dispersion.

Table 5. Estimated coefficients of Negative Binomial regression model, 2016-2017 Rainfall count data
in Hilla weather station

Parameter Estimate Standard Error z Value Pr> |z
Intercept 72.08011 46.31368 1.556 0.12
Wind speed 0.43955 0.09276 4.738 2.15e-06
Temperature -0.05902 0.04534 -1.302 0.193
Station pressure 548177 47.6056 -0.115 0.908
Sea pressure -70.94321 65.8155 -1.078 0.281
Humidity 0.0921 0.01372 6.715 1.88e-11
Alpha 0.15 0..0248

Lambert (1992) and Mullahy (1986) indicated
that Negative Binomial regression might not be

an appropriate model for count data with
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excess zeros because it increases the
probabilities of both zero and non-zero counts.
Since the initial data analysis of our data
implied excess zeros (more than 87.8% of the
responses in Hilla weather station , have non-
Rainfall days (rainfall hours are zeros)), we
develop Zero-inflated regression to handle

excessive number of zeros.

Zero-Inflated Regression Models

To fixable the excess zeros problem in non-
Rainfall days (rainfall hours are zeros), We

used Zero-inflated regression models.

Luay .H/ Ahmad .N

Zero-Inflated Poisson  Regression

(ZIPR) Model

We used the same explanatory variables in
both parts of the ZIPR model. The model fit

statistics and estimated coefficients of ZIPR

model are given in Table 6 and Table 7.

Table 6. Fit statistics of Zero-Inflated Poisson
Regression (ZIPR) model, 2016-2017 Rainfall
count data

criterions Hilla weather station

-2Log Likelihood 841

AlC 865.0707

BIC 880.5665

Table 7 Estimated coefficients of Zero-Inflated Poisson Regression (ZIPR)model, 2016-2017 Rainfall

count data in Hilla weather station

Parameter Estimate Standard Error z Value Pr> ||
Poisson _ Intercept -1.784e+00 3.533e+01 -0.05 0.96
Poisson _ Wind speed -2.866e-02 2.556e-02 -1.122 0.262
Poisson _ Temperature 4.288e-02 6.296e-02 0.681 0.496
Poisson _ Station pressure 1.481e+02 5.419e+03 0.027 0.978
Poisson _ Sea pressure -1.469e+02 5.428e+03 -0.027 0.978
Poisson _ Humidity 3.300e-02 4.345e-03 7.595 3.09e-14
Logit _ Intercept -150.15360 54.76032 -2.742 0.00611
Logit _ Wind speed -0.65697 0.10337 -6.356 2.07e-10
Logit _ Temperature 0.07375 0.05397 1.366 0.1718
Logit _ Station pressure 3.67363 78.0384 0.047 0.96245
Logit _ Sea pressure 151.68983 85.93739 1.765 0.07754
Logit _ Humidity -0.10703 0.01641 -6.521 6.96e-11
Zero-Inflated Negative Binomial Regression Table 8. Fit statistics of Zero-Inflated
(ZINBR) Model Negative Binomial Regression (ZINBR)

We used the same explanatory variables in
both parts of the ZINBR model. The model fit
statistics and estimated coefficients of ZINBR

model are given in Table 8 and Table 9.

model, 2016-2017 Rainfall count data

criterions Hilla weather station
-2Log Likelihood 774.8

AlIC 800.7555

BIC 814.3665

Table 9. Estimated coefficients of Zero-Inflated Negative Binomial Regression (ZINBR) model, 2016-

2017 Rainfall count data in Hilla weather station
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Parameter Estimate Standard Error z Value Pr > |z|

NB _ Intercept 4.450441 28.89126 0.154 0.877577
NB _ Wind speed -0.01452 0.047221 -0.307 0.758472
NB _ Temperature 0.025615 0.023359 1.097 0.272823
NB _ Station pressure 18.075792 27.86469 -0.627 0.520412
NB _ Sea pressure -23.29534 28.50922 0.775 0.418057
NB _ Humidity 0.032441 0.007135 4,547 5.44e-06
Logit _ Intercept -144.89025 51.27398 -2826 0.00472
Logit _ Wind speed -0.66723 0.10557 -6.320 2.61e-10
Logit _ Temperature 0.07038 0.04973 1.415 0.15701
Logit _ Station pressure -0.12663 31.50265 -0.004 0.99679
Logit _ Sea pressure 150.17569 59.40599 2.528 0.01147
Logit _ Humidity -0.10567 0.01591 -6.643 3.07e-11
Log (Alpha) 0.937272 0.280696 3.339 0.000841

Table 11. Model comparison by likelihood
ratio test for nested models for Hilla weather

Model Comparison

We used Vuong test to compare non-nested station
models and Likelihood ratio test to compare Nodel ikelihood Ratio Test | Preferred
nested models, The results of all the Vuong (p-value) model
. . P vs NB 0.99 NB
tests are summarized in Table 10 and the
results of all Likelihood ratio tests are .
Note:

summarized in Table 11. Furthermore, the

H o - the simpler model is preferred.

results of all information criterions (fit

statistics) for all models were summarized in H 1 - the more complex model is preferred.

Table 12. If p-value < 0.05, we reject H , H, is

Table 10. Model comparison by Vuong test for

non-nested models for Hilla weather station preferred.

Table 12. Fit statistics of all models, 2016-

Model \Vuong Statistic rl::wrc?;glrmd 2017 Rainfall count data Hilla weather station
ZIP vs P 6.969103 ZIP —
ZIP vs NB 1.4564090 NONE criterions
ZIPvsZINB | -2.579764 ZINB models 2Log
ZINB vs P 7.092766 ZINB Likelinood | AIC BIC
.943327 ZINB i
ZINBvsNB | 59433 Poisson 1466.649 | 1478.649 | 11506.216
regression
. (13 1 H NB
Note: “If V > 1.96, the first model is regression 892.7366 | 906.7386 | 938.8995
preferred. If V < -1.96, then the second one is ZIPR 841 865.0707 | 880.5665
preferred. If |V [<1.96, none of the models are ZINBR 774.8* | 800.7555* | 814.3665*%

preferred .

*The best model.



Journal of AL-Qadisiyah for computer science and mathematics

ISSN (Print): 2074 — 0204

Vol.11 No.2 Year 2019

ISSN (Online): 2521 — 3504

Application results

After estimating the regression parameters

for all models using real counting data. The

test criteria values for all models were obtained

for the purpose of comparing these models and

selecting the best ones to represent our data.
The results in Table 12 indicated that Zero-

Inflated Negative Binomial (ZINB) regression

model was the best count data model for our

data,

Although it is hard to distinguish

Negative Binomial, and Zero-Inflated Poisson

(ZIP) regression models, they are better than

Poisson regression model.
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