

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS

ISSN:2521-3504(online) ISSN:2074-0204(print)

Strongly b star(Sb*) – cleavability(splitability)

Ghazeel . A. M. Jallalh

Department of Mathematics , Education Faculty - Sirte University , Libya .Email: gjellala@yahoo.com

ARTICLE INFO

Article history: Received: 17 /3/2019 Rrevised form: 08 /4/2019 Accepted : 30 /04/2019 Available online: 09 /06/2019

Keywords:

sb* - pointwisecleavable, Irresolute - pointwise cleavable **.**

ABSTRACT

A. Poongothai and R. Parimelazhagan[5] introduced some new type of separation axioms and study some of their basic properties. Some implications between T_{0} , T_{1} and T_{2} axioms are also obtained. In this paper we studied the concept of cleavability over these spaces: (\sin^* -T_o, \sin^* -T₁, \sin^* -T₂) as following: 1- If $\mathcal P$ is a class of topological spaces with certain properties and if X is cleavable over $\mathcal P$, then

 $X \in \mathcal{P}$ 2- If $\mathcal P$ is a class of topological spaces with certain properties and if Y is cleavable over $\mathcal P$, then

YE \mathcal{P} .

1. Introduction

In 1985 Arhangl' Skii [1] introduced different types of cleavability(originally named splitability) as following : A topological space X is said to be cleavable over a class of spaces P , if for $A \subset X$ there exists a continuous mapping $f: X \to Y \in \mathcal{P}$ such that $f^{-1}f(A) = A$, $f(X)=Y$.

Throughout this paper, X and Y denote the topological spaces (X, τ) and (Y, σ) respectively. Let A be a subset of the space X, the interior and closure of a set A inXare denoted by $int(A)$ and $cl(A)$ respectively. The complement of A is denoted by A^c .

2-Preliminaries

In this section, we recall some definitions and results which are needed in this paper. **Definition 2.1. [3]**

A topological space X is called a T_0 - space if and only if it satisfies the following axiom of Kolmogorov. (T_0) If *x* and y are distinct points of X, then there exists an open set which contains one of them but not the other.

Corresponding author :*Ghazeel A. M. Jallalh*

Email addresses: giellala@yahoo.com

Definition 2.2. [3]

A topological space X is a T_1 -space, if and only if it satisfies the following separation axiom of Frechet. (T_1) , if x and y are two distinct points of X, then there exist two open sets, one containing *x* but not y and the other containing y but not *x*.

Definition2.3 [6]

A topological space X is said to be a T_2 - space or housdorff space, if and only if for every pair of distinct points x and y of X, there exist two disjoint open sets, one containing x and the other containing y.

Definition2.4 [3]

A subset $A \subseteq X$ is said to be Sb^{*}-closed set if cl(int($A \subseteq U$, whenever $A \subseteq U$ and U is b-open in *X*. The complements of closed sets Sb^{*}-closed set is Sb^{*}- open sets .The family of all sb^{*}-open sets of a space X is denoted by $sb*O(X)$.

Theorem2.5[5]

Let X be a topological space and *A* be a subset of X. Then *A* is Sb*open iff *A* contains a Sb* open neighbourhood of each of its points .

Definition2.5 [3]

A map *f*: $X \rightarrow Y$ is said to be Sb^* -open map if the image of every open set in X is Sb^* -open in Y.

Definition2.6 [3]

Let X and Y be topological spaces. A map *f*: $X \rightarrow Y$ is called strongly b^{*} - continuous (sb^{*}- continuous) if the inverse image of every open set in Y is sb* - open in X.

Definition 2.7 [3]

Let X and Y be topological spaces. A map $f: X \rightarrow Y$ is called strongly b^{*} -closed (briefly sb^{*} - closed) map if the image of every closed set in X is sb*- closed in Y.

Definition 2.8 [3]

Let X and Y be topological spaces. A map $f: (X, \tau) \to (Y, \sigma)$ is said to be sb^{*} - Irresoluteif the inverse image of every sb^{*} - closed(respectively sb* - open) set in Y is sb* - closed (respectively sb* - open) set in X.

Definition 2.9 [5]

A topological space X is said to be $sb*-T_0$ if for every pair of distinct points x and y of X, there exists a $sb*-open$ set G such that *x*∈ G and *y*∉G or *y*∈ G and *x*∉G.

Definition 2.10 [5]

A space X is said to be sb^{*}- T_i if for every pair of distinct points x and y in X, there exist sb^{*} - open sets U and V such that $x \in U$ but $y \notin U$ and $y \in V$ but $x \notin V$.

Definition 2.11 [5]

A space X is said to be $sb*-T_2$ if for every pair of distinct points x and y in X, there are disjoint $sb*-$ open sets U and V in X containing x and y respectively.

3- sb* – **cleavability**

Definition 3.1

A topological spaces X is said to be sb*- pointwise cleavable over a class of spaces $\mathcal P$ if for every point $x \in X$ there exists a sb*- continuous mapping $f: X \to Y \in \mathcal{P}$, such that $f^{-1}f(x) = \{x\}.$

Definition 3.2

A topological spaces X is said to be sb* Irresolute - pointwise cleavable over a class of spaces $\mathcal P$ if for every point $x \in X$ there exists a sb* - Irresolute - continuous mapping $f: X \to Y \in \mathcal{P}$, such that $f^{-1}f(x) = \{x\}.$

Remark3.1

By a sb*- -open(closed) pointwise cleavable ,we mean that the sb*-(Irresolute) continuous function $f: X \to Y \in \rho$ is an bijective and open(closed) respectively.

Theorem 3.1[3]

If a map $f: X \longrightarrow Y \in \rho$ is continuous, then it is sb* - continuous but not conversely.

Example 3.1

Let $X = \{a, b\}$, $\tau = \{X, \phi, \{a\}, \{b\}\}$, $Y = \{p, q\}$, $\sigma = \{Y, \phi, \{p\}, \{q\}\}$, let $f: (X, \tau) \longrightarrow (Y, \sigma)$ is a sb*-continuous map defined by $f(a) = p$, $f(b) = q$ To show that X sb*- pointwise cleavables over Y as follows :

Clearly f is sb* - continuous function.

Now, $a \in X$, $f(a) = \{p\}$, $f^{-1}f(a) = f^{-1}\{p\} = \{a\}$, alsob $\in X$, $f(b) = \{q\}$, $f^{-1}f(b) = f^{-1}\{q\} = \{b\}$, then X is sb*- pointwise cleavable over Y.

Proposition 3.1

Let X be a sb* - irresolute pointwise cleavable over a class of sb*- T_0 spaces P , then $X \in P$.

Proof:

Let $x \in X$, then there exist sb^{*}T₀- spaceY and sb^{*} irresolute continuous mapping $f: X \to Y \in \rho$, such that $f^{-1}f(x) = \{x\}$. This implies that for every $y \in X$ with $x \neq y$, we have $f(x) \neq f(y)$, since Y is a sb* T_0 -space, so there exists a sb*-open set G in Y contains one of the two points but not the other. Let $f(x) \in G$, $f(y) \notin G$, then $f^{-1}f(x) \in f^{-1}(G), f^{-1}f(y) \notin f^{-1}(G)$. This implies that $x \in f^{-1}(G)$ and $y \notin f^{-1}(G)$, since f is a sb*irresolute a continuous, so $f^{-1}(G)$ is a sb*-open set in X. Therefore X is sb* T_0 - space.

Theorem 3.1.[5]

Every subspace of a sb^* - T_0 . space is sb^* - T_0 .

Proposition 3.2

Let X be a sb* T_0 -space is a sb* - irresolute pointwise cleavable over

a class \mathcal{P} , of space Y, then Y is sb* T_0 -space ,hence Y $\in \mathcal{P}$

Proof:

Let $y \in Y$, then there exists a sb*-irresolute continuous mapping $f: X \to Y \in \rho$ such that $f^{-1}f\{f^{-1}(y)\} = f^{-1}(y)$. This implies that for every $x \in Y$ with $x \neq y$, we have $f^{-1}(x) \neq f^{-1}(y)$, since X is a sb*- T_0 -space, so there exists a sb*-open setsU contains one of the two points but not the other .Let $f^{-1}(y) \in U$ and $f^{-1}(x) \notin U$, then $ff^{-1}(y) \in f(U)$ and $f f^{-1}(x) \notin f(U)$. This implies that $y \in f(U)$ and $x \notin f(U)$. Therefore Y is sb* T_0 -space, hence Y $\in \mathcal{P}$

Proposition 3.3

Let X be a sb^{*} - irresolute pointwisecleavable over a class of sb^{*}- T_1 spaces P , then $X \in P$.

Proof:

Let $x \in X$, then there exist as \mathbb{R} $*$ -T₁-space Y and a sb^{*} - irresolute- continuous mapping $f: X \to Y \in \mathcal{P}$ such that $f^{-1}f(x) = \{x\}$. This implies that for every $y \in X$ with $x \neq y$, we have $f(x) \neq f(y)$. Since Y is sb*-T₁ space, so there exist two sb*-- open sets U and V such that $f(x) \in U$, $f(y) \notin U$ and $f(y) \in V$, $f(x) \notin V$, then $f^{-1}(x) \in f^{-1}(U)$, $f^{-1}f(y) \notin f^{-1}(U)$ and $f^{-1}f(y) \in f^{-1}f(V)$, $f^{-1}f(x) \notin f^{-1}(V)$. This implies that $x \in f^{-1}(U)$, $y \notin f^{-1}(U)$ and $y \in f^{-1}(V)$, $x \notin$ $f^{1}(V)$. By a sb*-irresolute - continuity of f, $f^{-1}(U)$, $f^{-1}(V)$ are sb*-open sub sets in X. ThenX is sb*- \overline{T}_1 spaces, hence $X \in \mathcal{P}$.

Proposition 3.4

Let X be a sb^{*} - pointwisecleavable over a class of T_1 - spaces P , then X is sb^{*} - T_1 - space **Proof:**

Let $x \in X$, then there exist a T_1 - space Y and a sb*- continuous mapping $f: X \to Y \in \mathcal{P}$ such that $f^{-1}f(x) = \{x\}$. This implies mapping $f: X \to Y \in \mathcal{P}$ such that $f^{-1}f(x) = \{x\}$, $f^{-1}f(x) = \{x\}$. This implies that for every $x^* \in X$ with $x \neq x^*$, we have $f(x) \neq f(x^*)$. Since Y is T_1 -space, so there exist two open sets G and H such that $f(x) \in G$, $f(x^*) \notin G$ and $f(x^*) \in H$, $f(x) \notin H$, then $f^{-1}f(x) \in f^{-1}(G)$, $f^{-1}f(x^*) \notin f^{-1}(G)$ and $f^{-1}f(x^*) \in f^{-1}(H)$, $f^{-1}f(x) \notin f^{-1}(H)$. This implies that $x \in f^{-1}(H)$, $x^* \notin f^{-1}(G)$ and $x^* \in f^{-1}(H)$, $x \notin f^{1}(H)$. By a sb^{*} - continuity of f, then $f^{-1}(G)$, $f^{-1}(H)$ are sb^{*}- open sub sets in X. Thus X is sb^{*}- T_1 - space, hence $X \in \mathcal{P}$.

Proposition 3.5

LetX be sb* T_1 -space is a sb* - open pointwise cleavable over a class of spaces \mathcal{P} , then Y is sb* T_1 -space, thus $Y \in \mathcal{P}$.

Proof:

Lety $\in Y$, then there exist a sb* T₁-space X and sb* - open continuousmapping $:X \rightarrow Y \in \mathcal{P}$, such that $ff^{-1}(f^{-1}(y)) = f^{-1}(y)$. This implies that for every $x \in Y$ with $y \neq x$, we have $f^{-1}(y) \neq f^{-1}(x)$. Since X is sb* T_1 -space, so there exist two sb*-open sets V and W, such that $f^{-1}(y) \in V$, $f^{-1}(x) \notin V$ and $f^{-1}(x) \in W$, $f^{-1}(y) \notin W$. Then $ff^{-1}(y) \in f(V)$, $ff^{-1}(x) \notin f(V)$ and $ff^{-1}(x) \in f(W)$, $ff^{-1}(y) \notin f(W)$. This implies that $y \in f(V)$, $x \notin f(V)$ and $x \in f(W)$, $y \notin f(W)$, since f is a sb* open, so $f(V)$, $f(W)$ are open sb* sets of Y, then Y is sb* T_1 -space. Therefore $Y \in \mathcal{P}$.

Proposition 3.6

Let X be sb*- T_2 - space is a sb*- open pointwise cleavable over a class P of spaces Y, then Y is sb*- T_2 - space, thus $Y \in \mathcal{P}$.

Proof:

Let $y_1 \in Y$, then there exist a sb^{*}- T_2 - space X and a sb^{*} open continuous mapping $f: X \to Y \in \mathcal{P}$ such that $f^{-1}f(f^{-1}(y)) = f^{-1}(y)$. Thisimplies that for every $y_2 \in Y$, with $y_1 \neq y_2$, we have $f^{-1}(y_1) \neq f^{-1}(y_2)$, so there exist x_1, x_2 in X, such that $x_1 = f^{-1}(y_1)$, $x_2 = f^{-1}(y_2)$ with $x_1 \neq x_2$, Since X is sb*- T_2 , so there exist two sb* open sets G, H such that $f^{-1}(y_1) \in G$, $f^{-1}(y_2) \in H$ and $G \cap H = \emptyset$, then $ff^{-1}(y_1) \in f(G)$, $ff^{-1}(y_2) \in f(H)$. Since f is sb* open, then $f(G)$, $f(H)$ are sb* open sets of Y andy₁ ∈ f (G), $y_2 \in f(H)$ and $f(G) \cap f(H) = f(G \cap H) = f(Q) = \emptyset$. Thus Y is sb*- T_2 - space , then $Y \in \mathcal{P}$.

Proposition 3.7

Let X be sb^{*} - open pointwise cleavable over a class of sb^{*}- T_2 -spaces \mathcal{P} , then $X \in \mathcal{P}$ **Proof:**

Let $x \in X$, then there exist a sb*- T_2 space Y and a sb*- continuous mapping $f: X \to Y \in \mathcal{P}$ such that $f^{-1}f(x) = \{x\}$. This implies that for every $y \in Y$ with $x \neq y$, we have $f(x) \neq f(y)$. Since Y is sb*- T_2 , so there exist two sb*open sets U and V such that $f(x) \in U$, $f(y) \in V$ and $U \cap V = \emptyset$, then $f^{-1}(f(x)) \in f^{-1}(U)$, $f^{-1}(f(y)) \in f^{-1}(V)$, this implies that $x \in f^{-1}(U)$, $y \in f^{-1}(V)$, since f is sb*- continuous, so $f^{-1}(U)$, $f^{-1}(V)$ are sb* open sets of X and $f^{-1}(U) \cap f^{-1}(V) = f^{-1}(U \cap V) = f^{-1}(\emptyset) = \emptyset$. Thus X is sb*- T_2 - space, then $X \in \mathcal{P}$.

4-conclusion:

In this paper we have studied and proved these cases:

1) If $\mathcal P$ is a class of (sb*- T_0 , sb*- T_1) spaces with certain properties and if X is a sb*- irresolute pointwisecleavable over P, then $X \in \mathcal{P}$, also if \mathcal{P} is a class of (sb*- T_0 , sb*- T_1) spaces with certain properties and if X is a sb*irresolute pointwisecleavable over \mathcal{P} , then $Y \in \mathcal{P}$.

2) If $\mathcal P$ is a class of (sb*- T_1 , sb*- T_2) spaces with certain properties and if X is point wise $s b^*$ – cleavable over $\mathcal P$, then $X \in \mathcal{P}$, also if $\mathcal P$ is a class of sb^* - T_1 spaces with certain properties and if X is a sb* - irresolute pointwisecleavable over P , then $X \in P$.

3) If $\mathcal P$ is a class of $(sh^*$ - $T_1 \cdot sb^*$ - T_2) spaces with certain properties and if X is point wise sb^* cleavable over $\mathcal P$, then Y is (sb^* - T_1 's b^* - T_2) respectively, then $Y \in \mathcal{P}$.

References

[1] Arhangel'skii, A.V, A general concept of cleavability of topological spaces over a class of spaces, Abstracts Tirasp. Symp. ·Stiinca, Ki·sinev, (1985), 8-10.

[2] A. Poongothai and R. Parimelazhagan , sb* - closed sets in topological spaces, Int. Journal of Math.Analysis, 6, 47(2012), 2325-2333.

[3] A. Poongothai and R. Parimelazhagan , Strongly b* - continuous functions in Topological spaces, International Journal of Computer Applications, Volume 58, No.14(2012), 8 - 11.

[4] A. Poongothai and R. Parimelazhagan , sb* - irresolute maps and homeomorphisms in Topological spaces, Wulfenia Journal, Vol 20, No. 4(2013). 164 A.

[5] A. Poongothai and R. Parimelazhagan , sb* - Separation axioms, International Journal of Mathematics and Soft Computing, Vol.5, No.2 (2015), 155 - 164.

[6] D. Andrijevic, On b-open sets, Mat. Vesink, 48(1996), 59 - 64.

[7] D. Andrijevic, Semi-preopen sets, Mat. Vesnik, 38(1)(1986),24-32.