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A B S T R A C T 

The present paper deals with the peristaltic motion of Jeffrey fluid with varying temperature 
and concentration through a porous medium in a coaxial uniform circular tube. The fluid is 
assumed to be non-Newtonian, namely Jeffrey fluid. The inner tube is uniform, while the outer 
flexible tube has a sinusoidal wave traveling down its wall. The analytical formulas of the 
velocity and temperature have been obtained in terms of the Bessel function of first and 
second kinds. The numerical formula of the axial velocity, temperature and concentration are 
obtained as functions of the physical parameters of the problem (Darcy number, magnetic 
parameter, thermal Grashof number, Reynolds number, Prandtl number, and Schmidt 
number) with other physical parameters are obtained. The Influence of physical parameters 
of the problem on this formula are discussed numerically and illustrated graphically through 
a set of figures. 

 

MSC. 76A05, 76Wxx. 

1 . Introduction"" 
Peristalsis is a mechanism to pump the fluid by means of moving contraction on the channel walls. This process has 
quite useful applications in many biological systems and industry, it occurs in swallowing food through the 
esophagus, chyme motion in the gastrointestinal tract, the vaso motion of small blood vessels such as venules, 
capillaries , and arterioles, urine transport from kidney to bladder, sanitary fluid transport of corrosive fluids, a 
toxic liquid transport in the nuclear industry, and so forth. In view of such physiological and industrial applications, 
the peristaltic flows has been studied with great interest by the various researchers for viscous and non-Newtonian 
fluids [6], [11], [2]. Viscosity is one of the most important specifications in fluids. It is a very effective factor in the 
transfer and movement of blood within veins, arteries, blood vessels and capillaries in the human body and animals.  
It is also important in the process of oil production, which determines the flow of reservoir fluids through the pores 
found in rocks containing oil. Viscosity is of great importance in the fields of industrial chemistry, food, beverages, 
paints, printing, organic chemistry, the environment and so on. There are many studies in the scientific literature on 
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fluid movement in the channel, for examples; the effect of heat transfer on the (MHD) oscillatory flow of a Jeffrey 
fluid with variable viscosity model through porous medium studied by Al-Khafajy [1]. M. Vidhya [12] studied the 
flow of blood through the veins and arteries. [8] Variable viscosity was studied through porosity the medium 
method of homotopy analysis is used to solve problem, [5] effect of Heat Transfer on the Oscillation Flow of 
Hydrodynamical Magnetism of Williamson Fluid through Porosity average, [4] , [3] They studied the variable 
viscosity during a porous medium ,flows through a porous medium occur in filtration of fluids. Several 
investigations have been published by using generalized Darcy’s law where the convective acceleration and viscous 
stress are taken into account [9], [10], [5]. The study considers a mathematical model for the influence of varying 
temperature and concentration on MHD peristaltic Transport for Jeffrey fluid with variable viscosity through Porous 
channel. The study uses the perturbation technique series to solve the problem. The results of the physical 
parameter problem are discussed by using the graphs. 
 

2. Mathematical Formulation 

Consider a peristaltic flow of an incompressible Jeffrey fluid in a coaxial uniform circular tube. The cylindrical 
coordinates are considered, where 𝑅 is along the radius of the tube and  𝑍 coincides with the axes of the tube as 
shown in figure (1). 
                                                                                   𝜆 

𝑅 , 𝑈                                                                                                            c  

                              b 

                                                                             𝑟2̅(𝑍, 𝑡)                              𝑎2 

                    𝑍 ,𝑊                                                                                                  𝑎1                                            

                                     𝐵0                 

  

 

Fig. (1): Geometry of the problem. 

 
The geometry of wall surface is described as:  

𝐻(�̅�, 𝑡̅) = 𝑎 + 𝑏𝑠𝑖𝑛 [
2𝜋

𝜆
(�̅� − 𝑐𝑡̅)]                                                                                                                                                             (1) 

where a is the average radius of the undisturbed tube, b is the amplitude of the peristaltic wave, 𝜆 is the wavelength, 
c is the wave propagation speed, and  𝑡̅ is the time. 

3. Basic Equations  

The basic equations governing the non-Newtonian Jeffrey fluid are given by:   

𝛻�̅� = 0,                                                                                                                                                                                                            (2)                      

The momentum equation is given by:  

𝜌(𝑉.̅ ∇)�̅� = ∇𝜏̅ + 𝜇𝑒 𝐽 ̅ × �̅� −
𝜇(𝑇)

𝐾∗
�̅� + 𝜌𝑔𝛽𝑇(𝑇 − 𝑇0) + 𝜌𝑔𝛽𝐶(𝐶 − 𝐶0),                                                                                         (3) 

The temperature equation is given by:       

𝑐𝑝. 𝜌(𝑉.̅ ∇)𝑇 = 𝐾. ∇2𝑇 − ∇. 𝑞𝑟 − 𝑄𝑇,                                                                                                                                                        (4)                                 
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The concentration equation is given by:     

(𝑉.̅ ∇)𝐶 = 𝐷𝑚∇
2𝐶 +

𝐷𝑚𝑘𝑇

𝑇𝑚
∇2𝑇.               (5)       

Where  ∇2=
1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕

𝜕𝑟
) (Laplace operator). Also �̅� is the velocity,  𝜇(𝑇) is the variable viscosity, 𝐾∗is the permeability, 

�̅� = (0, 𝐵0, 0) is the magnetic field, 𝜎 is the electrical conductivity, 𝜇𝑒  is the magnetic permeability, and 𝜏̅ is the 
Cauchy stress tensor. Also T and C are the temperature and concentration of the fluid, K is the thermal conductivity, 
𝑐𝑝is the specific heat capacity at constant pressure, 𝐷𝑚is the coefficient of mass diffusivity, 𝑇𝑚 is the mean fluid 

temperature and 𝑘𝑇 is the thermal diffusion ratio. 

4. Constitutive Equations  

The constitutive equations for an incompressible Jeffrey fluid are given by:  

𝜏̅ = −�̅�𝐼 ̅ + 𝑆̅,                                                                                                                                                                                                  (6) 

 𝑆̅ =
𝜇(𝑇)

1+𝜆1
(�̅̇� + 𝜆2�̅̈�),                                                                                                                                                                                     (7) 

where 𝑆̅ is the extra stress tensor, �̅� is the pressure, 𝐼 ̅is the identity tensor, 𝜆1 is the ratio of relaxation to 
retardation times, �̅̇� is the shear rate, and 𝜆2 is the retardation time. 

5. Method of solution  

Let 𝑈 and �̅� be the respective velocity components in the radial and axial directions in the fixed frame, respectively. 
For the unsteady two – dimensional flow, the velocity components may be written follows: 

𝑉 = (𝑈(�̅�, 𝑧̅), 0, �̅�(�̅�, 𝑧)̅).                                                                                                                                                                           (8) 

The temperature and concentration functions may be written as follows:  
𝑇 = 𝑇(𝑟, 𝑧), 𝑎𝑛𝑑  𝐶 = 𝐶 (𝑟, 𝑧).                                                                                                                                                                  (9) 

The equations of motion (2) – (7) and the constitutive relations (8), (9) take the form  
𝜕�̅�

𝜕�̅�
+

𝑈

�̅�
+

𝜕�̅�

𝜕𝑍
= 0,                                                                                                                                                                                        (10)                                                                                                    

𝜌 (
𝜕𝑈

𝜕𝑡̅
+ 𝑈

𝜕𝑈

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕𝑍
) = −

𝜕�̅�

𝜕�̅�
+

1

�̅�

𝜕

𝜕�̅�
(�̅�𝑆�̅̅��̅�) +

𝜕

𝜕𝑍
(𝑆̅�̅�𝑍) −

�̅��̅��̅�

�̅�
−

𝜇(𝑇)

𝑘
𝑈,                                                                                    (11)                   

𝜌 (
𝜕�̅�

𝜕𝑡̅
+ 𝑈

𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕𝑍
) = −

𝜕�̅�

𝜕𝑍
+

1

�̅�

𝜕

𝜕�̅�
(�̅�𝑆�̅̅�𝑍) +

𝜕

𝜕𝑍
(𝑆�̅̅�𝑍) + 𝜌𝑔𝛽𝑇(𝑇 − 𝑇0) + 𝜌𝑔𝛽𝐶(𝐶 − 𝐶0) − 𝜎𝐵0

2𝑆𝑖𝑛2(ℴ)�̅� −
𝜇(𝑇)

𝑘
�̅�   

                                                                                                                                                                                                                        (12)                                                                                                 

𝜕𝑇

𝜕𝑡̅
+ 𝑈

𝜕𝑇

𝜕�̅�
+ �̅�

𝜕𝑇

𝜕𝑍
=

𝐾

𝑐𝑝𝜌
(
𝜕2𝑇

𝜕�̅�2
+

1

�̅�

𝜕𝑇

𝜕�̅�
+

𝜕2𝑇

𝜕𝑍2
) −

16𝜎0𝑇2
𝐸

3𝑘0𝑐𝑝𝜌

1

�̅�

𝜕

𝜕�̅�
(�̅�

𝜕𝑇

𝜕�̅�
) −

𝑄

𝑐𝑝𝜌
𝑇,                                                                                    (13)

                                   

 

𝜕𝐶

𝜕𝑡̅
+ 𝑈

𝜕𝐶

𝜕�̅�
+ �̅�

𝜕𝐶

𝜕𝑍
= 𝐷𝑚 (

𝜕2𝐶

𝜕�̅�2
+

1

�̅�

𝜕𝐶

𝜕�̅�
+

𝜕2𝐶

𝜕𝑍2
) +

𝐷𝑚𝑘𝑇

𝑇𝑚
(
𝜕2𝑇

𝜕�̅�2
+

1

�̅�

𝜕𝑇

𝜕�̅�
+

𝜕2𝑇

𝜕𝑍2
).                                                                                      (14)   

   In the fixed coordinates (�̅�,�̅�) the flow between the two tubes is unsteady. It becomes steady in a wave frame (r, z) 
moving with the same speed as wave in the Z -direction. The transformation between the two frames is: 
�̅� =   �̅� , 𝑧̅  =  �̅�  −  𝑐𝑡̅,                                                                                                                                                                               (15) 
�̅� = 𝑈 , �̅�  = �̅�  + c,                                                                                                                                                                                  (16) 
Where (�̅�, 𝑧)̅ and (𝑈, �̅�) are the velocity components in the moving and fixed frames, respectively. After using these 
transformations, the equations of motion are;   

(
𝜕𝑢

𝜕�̅�
+

𝑢

�̅�
+

𝜕�̅�

𝜕�̅�
) = 0,                                                                                                                                                                                     (17) 

𝜌 (�̅�  
𝜕𝑢

𝜕�̅�
+ �̅�

𝜕𝑢

𝜕�̅�
) = − 

𝜕�̅�

𝜕�̅�
 +  

1

�̅�

𝜕

𝜕�̅�
(�̅�𝑆�̅��̅� ) + 

𝜕

𝜕�̅�
(𝑆�̅��̅� ) −

𝑆�̅��̅�

�̅�
−

𝜇(𝑇)

𝑘
�̅�,                                                                                              (18)     

𝜌 (�̅�  
𝜕�̅�

𝜕𝑟
+ �̅�

𝜕�̅�

𝜕𝑧
) = −  

𝜕�̅�

𝜕�̅�
 +   

1

�̅�

𝜕

𝜕�̅�
(�̅�𝑆�̅��̅� ) +

𝜕

𝜕�̅�
(𝑆�̅��̅� )+𝜌𝑔𝛽𝑇(𝑇 − 𝑇0) + 𝜌𝑔𝛽𝐶(𝐶 − 𝐶0) − 𝜎𝐵0

2𝑆𝑖𝑛2(ℴ)�̅� −
𝜇(𝑇)

𝑘
�̅�,         (19)              

                                     
𝜕𝑇

𝜕𝑡̅
+ �̅�

𝜕𝑇

𝜕�̅�
+ �̅�

𝜕𝑇

𝜕�̅�
=

𝐾

𝑐𝑝𝜌
(
𝜕2𝑇

𝜕�̅�2
+

1

�̅�

𝜕𝑇

𝜕�̅�
+

𝜕2𝑇

𝜕�̅�2
) −

16𝜎0𝑇2
𝐸

3𝑘0𝑐𝑝𝜌

1

�̅�

𝜕

𝜕�̅�
(�̅�

𝜕𝑇

𝜕�̅�
) −

𝑄

𝑐𝑝𝜌
𝑇,                                                                                        (20)                 

𝜕𝐶

𝜕𝑡̅
+ 𝑈

𝜕𝐶

𝜕�̅�
+ �̅�

𝜕𝐶

𝜕𝑍
= 𝐷𝑚 (

𝜕2𝐶

𝜕�̅�2
+

1

�̅�

𝜕𝐶

𝜕�̅�
+

𝜕2𝐶

𝜕𝑍2
) +

𝐷𝑚𝑘𝑇

𝑇𝑚
(
𝜕2𝑇

𝜕�̅�2
+

1

�̅�

𝜕𝑇

𝜕�̅�
+

𝜕2𝑇

𝜕𝑍2
).                                                                                      (21)     



Ahmed.A / Dheia.G                                                                                                                                             JQCM - Vol.11(3) 2019  . pp Math 38-49             41 

 

Where �̅� and �̅� are the velocity components in the �̅� and 𝑧̅ directions, respectively, 𝜌 is the density, �̅� is the pressure, 
𝜇 is the viscosity. In order to simplify the governing equations of the motion, we may introduce the following 
dimensionless transformations as follows: 

𝑆 =
𝑎2�̅�

𝜇𝑐
, 𝜇 =

𝜇(𝑇)

𝜇(𝜗)
, 𝑟 =

�̅�

𝑎2
 , 𝑧 =

�̅�

𝜆
 , 𝛿 =

𝑎2

𝜆
, 𝑢 =

𝜆𝑢

𝑎2𝑐
, 𝑤 =

�̅�

𝑐
, ϑ =

𝑇−𝑇0

𝑇1−𝑇0
, 𝜑 =

𝐶−𝐶0

𝐶1−𝐶0
 , 𝑅𝑛 =

𝜌𝐾0 𝐶𝑝𝑣

4𝑇2
2𝜎0

, 𝑟1 =
𝑟1̅̅ ̅

𝑎2
= 𝜀

𝐷𝑎 =
𝐾

𝑎2
2  , 𝑃𝑟  =  

𝜇𝐶𝑝

𝐾
, 𝑀ℴ

2 =
𝜎𝐵0  

2

𝜇
𝑠𝑖𝑛2(ℴ)𝑎2

2, 𝑅𝑒  =  
𝜌𝑐𝑎2

𝜇
, ∅ =

𝑏

𝑎2
, 𝑟2 =

𝑟2̅̅ ̅

𝑎2
= 1 + ∅ sin(2𝜋𝑧̅) , 𝐺𝑐 =

𝜌𝑔𝛽𝑐𝑎2
2(𝐶1−𝐶0)

𝜇𝑐

𝑆𝑐 =
𝜇𝑐𝑝

𝐾
, 𝑆𝑟 =

𝐷𝑚𝑘𝑇(𝑇1−𝑇0)

𝑇𝑚(𝐶1−𝐶0)
, 𝐺𝑟 =

𝜌𝑔𝛽𝑇𝑎2
2(𝑇1−𝑇0)

𝜇𝑐
, 𝑝 =

𝑎2
2�̅�

𝜇𝜆𝑐 }
 
 

 
 

          (22) 

where  ∅ is the amplitude ratio, 𝑅𝑒  the Reynolds number, 𝐷𝑎 the Darcy number, 𝑆𝑟  the Soret number, 𝑅𝑛 the 
Radiation parameter, 𝑆𝑐  the Schmidt number, 𝑀ℴ

2 the magnetic parameter and , 𝛿 is the dimensionless wave number. 
Substituting (22) into equations (17) - (21), we have: 

(
𝜕𝑢

𝜕𝑟
+

𝑢

𝑟
+

𝜕𝑤

𝜕𝑧
) = 0,                                                                                                                                                                                     (23) 

𝑅𝑒  𝛿
3(𝑢 

𝜕𝑢

𝜕𝑟
+ 𝑤

𝜕𝑢

𝜕𝑧
) = − 

𝜕𝑝

𝜕𝑟
 + 𝛿 

1

𝑟

𝜕

𝜕𝑟
(𝑟𝑆𝑟𝑟  ) + 𝛿

2  
𝜕

𝜕𝑧
(𝑆𝑟𝑧 ) − 𝛿

𝑆𝜗𝜗

𝑟
−

𝑎2

𝑘
𝛿2𝑢,                                                                          (24)        

𝑅𝑒𝛿 ( 𝑢 
𝜕𝑤

𝜕𝑟
+ 𝑤

𝜕𝑤

𝜕𝑧
) = − 

𝜕𝑝

𝜕𝑧
 +  

1

𝑟
𝑆𝑟𝑧 +

𝜕

𝜕𝑟
(𝑆𝑟𝑧 ) + 𝛿 

𝜕

𝜕𝑧
(𝑆𝑧𝑧 ) − (𝑀1

2 +
𝜇(𝜗)

𝐷𝑎
)𝑤 + 𝐺𝑟𝜗 + 𝐺𝑐𝜑 − (𝑀ℴ

2 +
𝜇(𝜗)

𝐷𝑎
)          (25)                           

 𝛿 ( 𝑢 
𝜕𝜗

𝜕𝑟
+ 𝑤

𝜕𝜗

𝜕𝑧
) =

1

𝑝𝑟
(
𝜕2𝜗

𝜕𝑟2
+

1

𝑟

𝜕𝜗

𝜕𝑟
+ 𝛿2

𝜕2𝜗

𝜕𝑧2
) +

4

3𝑅𝑛

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝜗

𝜕𝑟
)  − Ω𝜗 ,                                                                                        (26) 

𝛿 ( 𝑢 
𝜕𝜑

𝜕𝑟
+𝑤

𝜕𝜑

𝜕𝑧
) =

1

𝑆𝑐
(
𝜕2𝜑

𝜕𝑟2
+

1

𝑟

𝜕𝜑

𝜕𝑟
+ 𝛿2

𝜕2𝜑

𝜕𝑧2
) + 𝑆𝑟 (

𝜕2𝜗

𝜕𝑟2
+

1

𝑟

𝜕𝜗

𝜕𝑟
+ 𝛿2

𝜕2𝜗

𝜕𝑧2
).                                                                                  (27)             

where 

𝑆𝑟𝑟 =
2𝛿  𝜇(𝜗)

1+𝜆1
 [1 +

𝑐𝜆2𝛿

𝑎2
(𝑢

𝜕

𝜕𝑟
+ 𝑤

𝜕

𝜕𝑧
)(
𝜕𝑢

𝜕𝑟
)],                                                                                                                                           (28) 

𝑆𝑟𝑧 =
 𝜇(𝜗)

1+𝜆1
 [1 +

𝑐𝜆2𝛿

𝑎2
(𝑢

𝜕

𝜕𝑟
+ 𝑤

𝜕

𝜕𝑧
)(
𝜕𝑤

𝜕𝑟
+ 𝛿2  

𝜕𝑢

𝜕𝑧
)],                                                                                                                               (29) 

𝑆𝜗𝜗 =
2𝛿  𝜇(𝜗)

1+𝜆1
 [
𝑐𝜆2𝛿

𝑎2
(
𝑢

𝑟
 
𝜕𝑢

𝜕𝑟
−

𝑢2

𝑟2
 +

𝑤

𝑟

𝜕𝑢

𝜕𝑧
] ,                                                                                                                                                (30) 

𝑆𝑧𝑧 =
2𝛿  𝜇(𝜗)

1+𝜆1
 [1 +

𝑐𝜆2𝛿

𝑎2
(𝑢

𝜕

𝜕𝑟
+ 𝑤

𝜕

𝜕𝑧
)(
𝜕𝑤

𝜕𝑟
)],                                                                                                                           (31)            

the related boundary conditions regarding to the dimensionless variables in the wave frame are given by: 

𝑤 = −1, 𝑢 = 0, 𝜗 = 1 , 𝜑 = 1 at  𝑟 = 𝑟1 = 𝜀                            
𝑤 = −1, 𝑢 = 0, 𝜗 = 0 , 𝜑 = 0at  𝑟 = 𝑟2 = 1 + ∅. 𝑆𝑖𝑛(2𝜋𝑧)

}                                                                                                                  

(32) 

   The general solution of the governing equations (22) - (26) in the general case seems to be impossible; therefore, 
we shall confine the analysis under the assumption of small dimensionless wave number. It follows that  𝛿 ≪ 1. In 
other words, we considered the long-wavelength approximation. Along to this assumption, equations (23) - (27) 
become: 

(
𝜕𝑢

𝜕𝑟
+

𝑢

𝑟
+

𝜕𝑤

𝜕𝑧
) = 0,                                                                                                                                                                                     (33) 

𝜕𝑝

𝜕𝑟
= 0,                                                                                                                                                                                                           (34) 

𝜕𝑝

𝜕𝑧
= 

1

𝑟
𝑆𝑟𝑧 +

𝜕

𝜕𝑟
(𝑆𝑟𝑧 ) − (𝑀ℴ

2 +
𝜇(𝜗)

𝐷𝑎
)𝑤+𝐺𝑟𝜗 + 𝐺𝑐𝜑 − (𝑀ℴ

2 +
𝜇(𝜗)

𝐷𝑎
),                                                                                       (35)  

(
1

𝑅𝑒𝑝𝑟
+

4

3𝑅𝑛
) (

𝜕2𝜗

𝜕𝑟2
+

1

𝑟

𝜕𝜗

𝜕𝑟
) − Ω𝜗 = 0,                                                                                                                                                   (36)  

1

𝑆𝑐
(
𝜕2𝜑

𝜕𝑟2
+

1

𝑟

𝜕𝜑

𝜕𝑟
) = −𝑆𝑟 (

𝜕2𝜗

𝜕𝑟2
+

1

𝑟

𝜕𝜗

𝜕𝑟
),                                                                                                                                                   (37) 
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Where   𝑆𝑟𝑟 = 𝑆𝜗𝜗 = 𝑆𝑧𝑧 = 0  and  𝑆𝑟𝑧 =
 𝜇(𝜗)

1+𝜆1
 (
𝜕𝑤

𝜕𝑟
)                                                                                                                        (38)        

Replacing 𝑆𝑟𝑧  from equation (38) in equation (35), we have: 

𝜕𝑝

𝜕𝑧
=

1

𝑟

 𝜇(𝜗)

1+𝜆1
 (
𝜕𝑤

𝜕𝑟
) +

𝜕

𝜕𝑟

 𝜇(𝜗)

1+𝜆1
 (
𝜕𝑤

𝜕𝑟
) − (𝑀ℴ

2 +
𝜇(𝜗)

𝐷𝑎
)𝑤 + 𝐺𝑟𝜗 + 𝐺𝑐𝜑 − (𝑀1

2 +
𝜇(𝜗)

𝐷𝑎
),                                                                    (39)                                           

6. Solutions of the problem 

The temperature equation (36), can be written as; 

 (
𝜕2𝜗

𝜕𝑟2
+

1

𝑟

𝜕𝜗

𝜕𝑟
) −

𝛺

(
1

𝑅𝑒𝑝𝑟
+

4

3𝑅𝑛
)
𝜗 = 0                                                                                                                                                             (40) 

The equation (40) takes the form: 

𝑟2
𝜕2𝜗

𝜕𝑟2
+ 𝑟

𝜕𝜗

𝜕𝑟
− 𝐴𝑟2𝜗 = 0,                                                                                                                                                                        (41) 

after take  
𝛺

(
1

𝑅𝑒𝑝𝑟
+

4

3𝑅𝑛
)
= 𝐴, which is the modified Bessel equation of order zero.  

The general solution of equation (41) is 

 𝜗 = 𝑑1𝐽0[√𝐴𝑟] + 𝑑2Y0[√𝐴𝑟]                                                                                                                                                                 (42) 

By using the boundary conditions Eq. (32), we have 

𝑑1 =
Y0[ℎ√𝐴]

𝐽0[𝜖√𝐴]Y0[ℎ√𝐴]−𝐽0[ℎ√𝐴]Y0[𝜖√𝐴]
     

and    𝑑2 =
𝐽0[ℎ√𝐴]

𝐽0[ℎ√𝐴]Y0[𝜖√𝐴]−𝐽0[𝜖√𝐴]Y0[ℎ√𝐴]
 

      The concentration equation (37), can be written as;  

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝜑

𝜕𝑟
) = −𝑆𝑐𝑆𝑟

1

𝑟

𝜕

𝜕𝑟
(𝑟

𝜕𝜗

𝜕𝑟
)                                                                                                                                                                (43)             

The general solution of equation (43) is 

𝜑 = −𝑆𝑐𝑆𝑟𝜗 + 𝑑3 𝐿𝑛[𝑟] +   𝑑4                                                                                                                                                              (44) 

By using equation (42) and the boundary conditions given in equation (32), we have 

𝑑3 =
1+(𝑆𝑐𝑆𝑟)

𝐿𝑛(
𝑟1

𝑟2⁄ )
,  and   𝑑4 = −𝑑3𝐿𝑛(𝑟2).  

Equation (34) shows that  𝑝 dependents on z only 

6.1 Reynold's Model of Viscosity: 

The Reynold's model and variation of viscosity with temperature are defined as: 

𝜇(𝜗) = 𝑒−𝛼𝜗                                                                                                                                                                                         (45)                                                                       
By using the Maclaurin series, we get: 

𝜇(𝜗) = 1 − 𝛼𝜗 , 𝛼 << 1                                                                                                                                          (46) 

In this case, the viscosity is fixed at 𝛼 = 0, by substituting Eq. (46) in to (39), we get: 

𝜕𝑝

𝜕𝑧
=

1

𝑟

 1−𝛼𝜗

1+𝜆1
 (
𝜕𝑤

𝜕𝑟
) +

𝜕

𝜕𝑟

 1−𝛼𝜗

1+𝜆1
 (
𝜕𝑤

𝜕𝑟
) − (𝑀ℴ

2 +
1−𝛼𝜗

𝐷𝑎
)𝑤 + 𝐺𝑟𝜗 + 𝐺𝑐𝜑 − (𝑀1

2 +
1−𝛼𝜗

𝐷𝑎
),                                                              (47)           
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Equation (44) is a non-linear differential equation and it is hard to find an exact solution, so will be used the 
perturbation technique to find the problem solution, as follows:  

𝑤 = 𝑤0 + 𝛼𝑤1 + O(𝛼
2),                                                                                                                                                                          (48) 

𝑝 = 𝑝0 + 𝛼𝑝1 + O(𝛼
2),                                                                                                                                                                             (49) 

By substituting equations (48) and (49) into Eq. (47) with boundary conditions (32), we equalize the powers of (𝛼), 
we get: 

𝜕(𝑝0+𝛼𝑝1)

𝜕𝑧
=

1

𝑟

 1−𝛼𝜗

1+𝜆1
 (
𝜕(𝑤0+𝛼𝑤1)

𝜕𝑟
) +

𝜕

𝜕𝑟

 1−𝛼𝜗

1+𝜆1
 (
𝜕(𝑤0+𝛼𝑤1)

𝜕𝑟
) − (𝑀ℴ

2 +
1−𝛼𝜗

𝐷𝑎
) (𝑤0 + 𝛼𝑤1) + 𝐺𝑟𝜗 + 𝐺𝑐𝜑 − (𝑀ℴ

2 +
1−𝛼𝜗

𝐷𝑎
)      (50)     

We Obtain  

i. Zero order system (𝛼0) 
𝜕𝑝0

𝜕𝑧
=

1

𝑟

 1

1+𝜆1

𝜕𝑤0

𝜕𝑟
+

 1

1+𝜆1

𝜕2𝑤0

𝜕2𝑟
+ 𝐺𝑟𝜗 + 𝐺𝑐𝜑 − (𝑀ℴ

2 +
1

𝐷𝑎
)𝑤0 − (𝑀ℴ

2 +
1

𝐷𝑎
),                                                                                 (51)            

ii. First order system (𝛼) 

 
𝜕𝑝1

𝜕𝑧
= −

1

𝑟

 𝜗

1+𝜆1

𝜕𝑤0

𝜕𝑟
+

1

𝑟

 1

1+𝜆1

𝜕𝑤1

𝜕𝑟
−

 𝜗

1+𝜆1

𝜕2𝑤0

𝜕2𝑟
+

 1

1+𝜆1

𝜕2𝑤1

𝜕2𝑟
− (𝑀ℴ

2 +
1

𝐷𝑎
)𝑤1 +

𝜗

𝐷𝑎
(𝑤0 + 1),                                                        (52)   

Finally, the perturbation solutions up for 𝑤 are given by: 
𝑤 = 𝑤0 + 𝛼𝑤1 ,                                                                                                                                                                                           (53)   

The corresponding stream functions 𝑢 = −
1

𝑟

𝜕𝜓

𝜕𝑧
 and 𝑤 =

1

𝑟

𝜕𝜓

𝜕𝑟
 is    𝜓 = ∫ 𝑟𝑤𝑑𝑟                                                                    (54)                                                                                                                               

The pressure rise ∆𝑝 and the friction force (at the wall) on the inner and outer tubes are F (o) and F (i) , respectively, 
in a tube of length L , in their non-dimensional forms, are given by: 

∆𝑝 = ∫ (
𝑑𝑝

𝑑𝑧

1

0
)𝑑𝑧,                                                                                                                                                                                           (55) 

F o=∫ 𝑟2
2(−

𝑑𝑝

𝑑𝑧

1

0
)𝑑𝑧,                                                                                                                                                                                     (56) 

F i =∫ 𝑟1
2(−

𝑑𝑝

𝑑𝑧

1

0
)𝑑𝑧,                                                                                                                                                              (57) 

Substituting from equations (47&48) in equations (55) - (57) with 𝑟1 = 𝜀 , r2=1+∅. sin (2𝜋𝑧), and then evaluating the 
integrations by using the language of series for several values of the parameters included, using the MATHEMATICA 
program, and the obtained results are discussed in the next section. 
    

7. Results and Discussion 
  In this section, the numerical and computational results are discussed for the problem of an incompressible non- 
Newtonian Jeffrey fluid in a tube with heat and mass transfer through the graphical illustrations. Figure (2) shows 
that effects of the parameters 𝜖 and 𝑅𝑛 on the temperature distribution function𝜗 is direct, means 𝜗 increases with 
the increasing of any one of these parameters. Figure (3) shows that effects of the parameters Re and ∅ on the 
temperature, increases with the increasing of any one of these parameters. Figure (4) It appears that the effects of 
𝑆𝑐 and 𝜖 parameters are on The distribution function of the concentration is reversed when r < 1.17622, that is 𝜑 
decreases with the increasing of 𝑆𝑐 while increasing 𝜖 and direct when r > 1.17622. Also 𝜑 < 0 when r < 1.17622, 
and 𝜑 > 0 when r > 1.17622. Figure (5) .The change in concentration decreases by increasing 𝑠𝑟 while increasing 
by ∅, when r <  1.17622 and the direction changes when it is greater than the value. Figure (6) Shows the effects of 
parameters  𝐺𝑟 and 𝑀 on the velocity distribution function w vs. 𝑟.It found that w increases with increase 𝐺𝑟 at r> 
0.18 while decreases with increase 𝑀, and decreasing with the increase of  𝐺𝑟, and w< 0 at r< 0.18 while increases 
with increase of 𝑀.  Figure (7) we see that w is decreasing with the increase of 𝑀, when r< 0.18 then the 𝐷𝑎 
decreases, and w is decreases with increase of 𝑀 when r> 0.18 the 𝐷𝑎 is also in conflict with the 𝑀. Figure (8) w 
increases with increase of 𝑆𝑟 and 𝑆𝑐 when r< 0.18, and w decreases with 𝑆𝑟 and 𝑆𝑐 increase when r> 0.18. Figure (9) 
we see that w is decreasing with the increase of  λ1,when r< 0.18 then the 𝜖 decreases, and w is decreases with 
increase of λ1 when r> 0.18 the 𝜖 is also in conflict with the λ1. Figure (10) shows the effects of parameters λ1and 
𝐺𝑐 on 𝑑𝑝 / 𝑑𝑧 vs. z. It was found that 𝑑𝑝 / 𝑑𝑧 increases with increasing each λ1and 𝐺𝑐. Figure (11) we see that 
𝑑𝑝 / 𝑑𝑧 decreases with an increase of q2 and 𝜖 , while increases with increasing of 𝑀. Figure (12) decreases 𝑑𝑝 / 𝑑𝑧 
with increase for each 𝐷𝑎 and 𝐺𝑟. Figure (13) increases 𝑑𝑝 / 𝑑𝑧 with increase for each 𝜙and 𝜖. Figure (14) 
illustrates the effects of the parameters 𝜖 and 𝐺𝑐 on the pressure rise Δp versus Gr respectively, shows that the 
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variation of Δp vs. 𝐺𝑟 , it is found that Δp decreases with the increasing for each  𝜖and 𝐺𝑐. Figure (15) we see that Δp 
vs. 𝜙.  It is found Δp increases with the increasing of 𝐷𝑎 while decreases with an increase of 𝐺𝑟.  Figure (16) shows 
that the variation of F (i) vs. 𝐺𝑟. It is found that F (i) decreases with the increasing for 𝜖.  Figure (17) shows that the 
variation of F (i) vs. 𝜙 . It is found F (i) decreases with the increasing Da while increases with an increase of 𝐺𝑟,  and it 
changes its direction when it is 𝜙 <  0.07. Figure (18) shows that the variation of F (0) vs. 𝐺𝑟. It is found that F (0) 
decreases with the increasing for 𝜖.  Figure (19) shows that the variation of F (0) vs. 𝜙 . It is found F (0) decreases with 
the increasing Da while increase with an increasing of 𝐺𝑟,  and it changes its direction when it is 𝜙 <  0.07. Figure 
(20) we observe the increase in 𝜙 and the number of valves increases gradually. Figure (21) the bracelets grow 
when the 𝐷𝑎 increases. Figure (22) the number of bracelets is lower M when the value is reduced. Figure (23) By 
increasing the value of 𝜖, the wheels are increasing.  

8. Concluding Remarks 

   We discuss the Influence of varying temperature and concentration on (MHD) peristaltic transport for Jeffrey fluid 

with variable viscosity through porous channel. We found the velocity and temperature are analytical. We used 

different values to find the results of pertinent parameters, namely for the velocity and temperature. The key point 

is listed below: 

i. We show that by increasing 𝑅𝑛, 𝑅𝑒 and 𝜖 the temperature𝜗 increasing and the temperature𝜗 decreases with 

the increasing∅. 

ii. We show that by increasing 𝑆𝑟 and 𝑆𝑐 the concentration 𝜑 increasing when 𝑟 > 1.3 and the concentration 𝜑 

decreases with the increasing 𝑆𝑟 and 𝑆𝑐 when𝑟 < 1.3.  

iii. The velocity profiles were increased by the increasing 𝑆𝑟, 𝑆𝑐, ℴ and 𝑀. when 𝑟 < 0.25, and the velocity 

decreased when 𝑟 > 0.25.  

iv. The velocity profiles were decreased by the increasing 𝐺𝑟, 𝜖, 𝜆1  and 𝐷𝑎 when r<0.25, and the velocity 

increased when r>0.25. 

v. 
𝑑𝑝

𝑑𝑧
 increased by the increasing parameters 𝐺𝑟, 𝜖, 𝜙, 𝜆1 and 𝐺𝑐.  

vi. 
𝑑𝑝

𝑑𝑧
 decreased by the increasing parameters 𝑞2 and 𝐷𝑎.  

vii. Δ𝑝 Increased by the increasing 𝜆1 and decreased by the increasing 𝐺𝑟  and Δ𝑝 increased by the increasing 

𝐺𝑟 and 𝐷𝑎, when 𝜙 < 0.37, and decreased when 𝜙 > 0.37. 

viii. 𝐹𝑖  decreased by the increasing 𝜆1 and increased by the increasing 𝐺𝑟  and 𝐹𝑖  decreased by the increasing 

𝐺𝑟 and 𝐷𝑎, when 𝜙 < 0.37, and increased when 𝜙 > 0.37. 

ix. 𝐹𝑜 decreased by the increasing 𝜆1 and increased by the increasing 𝐺𝑟  and 𝐹𝑜 decreased by the increasing 

𝐺𝑟 and 𝐷𝑎, when 𝜙 < 0.37, and increased when 𝜙 > 0.37. 
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 Fig. (2): The variation of temperature 𝜗  vs. r at 
𝛺 = 1, Re = 0.9, 𝑃𝑟 = 1,∅ = 0.3, 𝑧 = 0.1. 

Fig. (3): The variation of temperature 𝜗  vs. r at 
𝛺 = 1, 𝑃𝑟 = 1, 𝜖 = 0.3, 𝑅𝑛 = 2, 𝑧 = 0.1. 

Fig. (4): The variation of concentration 𝜑vs. r at 
𝛺 = 1, Re = 3, 𝑃𝑟 = 2, Rn = 0.5, 𝑧 = 0.1 ,  ∅ = 0.3 , Sr =
0.3 .           

  Fig. (5): The variation of concentration 𝜑 vs. r 
 𝛺 = 1, Re = 3, 𝑃𝑟 = 2, Rn =  0.5, 𝑧 = 0.1, Sc =
0.3 , 𝜖 = 0.3. 

                                  

Fig. (6):Velocity distribution w at   𝛺 = 0.9,  𝜙 = 0.3, ℴ =
𝜋

4
, 𝑧 = 0.01, 𝜖 = 0.2, Da = 0.9, λ1 = 0.1, 𝑅𝑒 = 1, Rn =

2, 𝑃𝑟 = 2, Gc = 1, q2 = 0.5 , Sr = 0.1 , Sc = 0.5 , 𝜖 = 0.2 .     

                                        

Fig. (7):Velocity distribution w at  𝛺 = 0.9,  𝜙 = 0.3, ℴ =
𝜋

4
, 𝑧 = 0.01, 𝜖 = 0.2, Gr = 2,   λ1 = 0.1, 𝑅𝑒 = 1, Rn =

0.1
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2, 𝑃𝑟 = 2, Gc = 1, q2 = 0.5 , Sr = 0.1 , Sc = 0.5, 𝜖 = 0.2. 

                          

Fig. (8): Velocity distribution w at   𝛺 = 0.9, 𝜙 = 0.3,  ℴ =
𝜋

4
, 𝑧 = 0.01, 𝜖 = 0.2, Da = 0.9, λ1 = 0.1, 𝑅𝑒 = 1, Rn =

2, 𝑃𝑟 = 2, 𝐺𝑟 = 2, Gc = 1,𝑀 = 1.1, q2 = 0.5 , 𝜖 = 0.2. 

 

  

            
       

Fig. (9): Velocity distribution w at   𝛺 = 0.9, 𝜙 = 0.3,  ℴ =
𝜋

4
, 𝑧 = 0.01, 𝑆𝑐 = 0.5, Da = 0.9, Sr = 0.1, 𝑅𝑒 = 1, Rn =

2, 𝑃𝑟 = 2, 𝐺𝑟 = 2, Gc = 1,𝑀 = 1.1, q2 = 0.5 . 
 

                            
Fig. (10): The variation of  

𝑑𝑝

𝑑𝑧
 vs. z at 𝛺 = 0.9, 𝑅𝑒 =  1,                    

𝑃𝑟 = 2, Da = 0.9, ℴ =
𝜋

4
, 𝑧 = 0.01 , Rn = 2, 𝐺𝑟 =  2, 𝜖 =

0.2 , 

Fig. (11): The variation of  
𝑑𝑝

𝑑𝑧
 vs. z at 𝛺 = 0.9, 𝑅𝑒 =

1, 𝑃𝑟 =  2, Da = 0.9, ℴ =
𝜋

4
, 𝑧 = 0.01 , Rn = 2,𝑀 =

 1.1 , Gr = 2. Sc = 0.5, Sr = 0.1.
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Fig. (12): The variation of  

𝑑𝑝

𝑑𝑧
 vs. z at 𝛺 = 0.9, 𝑅𝑒 =  1,

𝑃𝑟 = 2, ℴ =
𝜋

4
, Rn = 2, 𝐺𝑐 = 1, λ1 = 0.1, 𝜖 = 0.2 , Sc =

0.5, Sr = 0.1. 
 

Fig. (13): The variation of  
𝑑𝑝

𝑑𝑧
 vs. z at 𝛺 = 0.9, 𝑅𝑒 =  1, 𝑃𝑟 =

2,   Da = 0.9, ℴ =
𝜋

4
, Rn = 2, 𝐺𝑐 = 1, λ1 = 0.1, Sc = 0.5, Sr =

0.1.                                                           

                                            

Fig. (14): The variation of ∆𝑝vs 𝐺𝑟  , 𝛺 = 0.9, Rn =
2, 𝑃𝑟 = 2,           Sc = 0.5, Sr = 0.1, Da = 0.9,𝑀 = 1.1, ℴ =
𝜋

4
, 𝑧 = 0.01. 

Fig. (15): The variation of ∆𝑝vs  𝜙  , 𝛺 = 0.9, Rn =
2, 𝑃𝑟 = 2,  Sc = 0.5, Sr = 0.1,𝑀 = 1.1, Gc = 1, 𝜖 =

0.2, ℴ =
𝜋

4
, 𝑧 = 0.01.   

                                 
Fig. (16): The variation of 𝐹𝑖 vs. 𝐺𝑟  , 𝛺 = 0.9, Rn = 2, 𝑃𝑟 =

2, Sc = 0.5, Sr = 0.1, Da = 0.9,𝑀 = 1.1, ℴ =
𝜋

4
, 𝑧 = 0.01. 

Fig. (17): The variation of 𝐹𝑖 vs.  𝜙  , 𝛺 = 0.9, Rn = 2, 𝑃𝑟 = 2, 

Sc = 0.5, Sr = 0.1,𝑀 = 1.1, Gc = 1, 𝜖 = 0.2, ℴ =
𝜋

4
, 𝑧 = 0.01. 

                                                     
Fig. (18): The variation of 𝐹0 vs.  𝐺𝑟  , 𝛺 = 0.9, Rn =
2, 𝑃𝑟 =2,  Sc = 0.5, Sr = 0.1, Da = 0.9,𝑀 = 1.1, ℴ =
𝜋

4
, 𝑧 = 0.01. 
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Fig. (19): The variation of 𝐹0 vs.  𝜙  , 𝛺 = 0.9, Rn =

2, 𝑃𝑟 =2,Sc = 0.5, Sr = 0.1, Da = 0.9,𝑀 = 1.1, ℴ =
𝜋

4
, 𝑧 =

0.01. 

    
Fig. (20) Streamlines for 𝜙 when 𝛺 = 0.9, 𝜖 = 0.2, λ1 = 0.1, 𝑅𝑒 = 1, Rn = 2, q2 = 0.5, Sc = 0.5, S1 = 0.1, Gc = 2,𝑀 =

1.1, Da = 0.9, ℴ =
𝜋

4
, 𝑖 =. 

           

 Fig. (21) Streamlines for Da when 𝛺 = 0.9, 𝜖 = 0.2, 𝜙 = 0.2, λ1 = 0.1, 𝑅𝑒 = 1, Rn = 2, q2 = 0.5, Sc = 0.5, S1 =

0.1, Gc = 2,𝑀 = 1.1, Da = 0.9, ℴ =
𝜋

4
. 

   

Fig. (22) Streamlines for 𝑀 when 𝛺 = 0.9, 𝐺𝑟 = 1,𝜙 = 0.2, λ1 = 0.1, 𝑅𝑒 = 1, Rn = 2, q2 = 0.5, Sc = 0.5, S1 = 0.1, Gc = 2,𝑀 =

1.1, Da = 0.9, ℴ =
𝜋

4
. 

 
    Fig. (23) Streamlines for 𝜖 when 𝛺 = 0.9, 𝐺𝑟 = 1, 𝜙 = 0.2, λ1 = 0.1, 𝑅𝑒 = 1, Rn = 2, q2 = 0.5, Sc = 0.5, S1 =

0.1, Gc = 2,𝑀 = 1.1, Da = 0.9, ℴ =
𝜋

4
. 
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