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A B S T R A C T 

The aims of this study are to introduce the acceleration methods which are called inverse 
triangular acceleration methods and inverse hyperbolic triangular acceleration methods, 
which we generally call Al-Tememe's acceleration methods of the second  kind discovered by 
(Ali Hassan Mohammed). It is useful to improve the numerical results of continuous integrals 
in which the error is of the 4th order, and regarding to accuracy, the number of used partial 
intervals and how fast is to get results especially to accelerate the results that can be got by 
using Simpson's method. Also, it is possible to utilize it in improving the numerical results of 
differential equations ,where the main error  is of the forth order.  

 

MSC. 

 

 

1 . Introduction"" 
There are several numerical methods used calculating single integrals that their integrands are bounded in their 
integration intervals ,such as 

1.Trapezoidal Rule 

2.Midpoint Rule 

3.Simpson’s Rule 

Generally, these methods are called Newton–Cotes formulas. 
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This study will introduce Simpson's method to find approximate values of single integrals of continuous integrands 
through using inverse triangular acceleration methods and inverse hyperbolic triangular acceleration methods, 
which come with in Al of Tememe's acceleration series- the second kind. We will compare these methods with 
respect to accuracy and the speed of approaching these values to the real  values (analytical) of those integrals. 

Let the integral J is  defined as follows: 

𝐽 = ∫ 𝑓(𝑥)𝑑𝑥 …                                                                                                   (1)                   
𝑥2𝑛

 𝑥0

 

Where f(x) is a continuous integrand lies above X axis in the interval [𝑥₀, 𝑥2𝑛], and it is required  to find   the 

approximate  value of J 

Generally, Newton–Cotes formula for integration (1) can be written in the following form: 

 𝐽 = ∫ 𝑓(𝑥)𝑑𝑥 = 𝐺(ℎ) + 𝐸𝐺(ℎ) + 𝑅𝐺
𝑥2𝑛

𝑥0
 

Whereas G (h  ( represents (Lagrangian – Approximation) the value of integration  J, and G refers to the type of the 

rule, EG (h) is the correction terms that can be added to G(h) and RG is the remainder .The general formula of 
simpson rule is given by:- 

S(h)=
ℎ

3
[𝑓(𝑎) + 4𝑓(𝑎 + ℎ) + 2𝑓(𝑎 + 2ℎ) + 4𝑓(𝑎 + 3ℎ) + ⋯ + 2𝑓(𝑎 + (2𝑛 − 2)ℎ) + 4𝑓(𝑎 + (2𝑛 − 1)ℎ) + 𝑓(𝑏)] 

and the general formula for EG(h) is as follows:  

ES(h)= 
ℎ4

180
( 𝑓𝑥2𝑛

(3) − 𝑓𝑥0

(3)
)+ 

ℎ6

1512
  (𝑓𝑥2𝑛

(5) − 𝑓𝑥0

(5)
)+...                         (ES(h)=EG(h) )                                                                                                         

 see [1] 

So, when  the integrand of integration is a continuous function also their derivatives are  its derivative is continuous 
at each point of integration intervals[𝑥0, 𝑥2𝑛 ], it is possible to write error formula as: 

J-s(h)=A1h4+A2h6+A3h8+ …. 

where A1 ,A2 ,A3,…… are constants that their values do not depend on h but on the values of the function derivatives in 
the end of the integration interval. 

 

2. Al-Tememe's inverse triangular acceleration of inverse and hyperbolic functions of the second 
kind 

In this section, we will present the acceleration methods that come with Al-Tememe's series of acceleration and we 
call them by the inverse triangular acceleration methods and inverse hyperbolic acceleration methods. 

It is mentioned that the error in Simpson's rule can be written as the following form: 

E= A1h4+ A2h6+…                                                                                             (3)  

=h3(A1h+A2h3+...)      

≅h3sin-1h           since  ( sin-1h=h+
1

6
h3+

3

40
h5+

5

112
h7+

35

1152
h9+….)                                    [2] 

It is assumed that S(h) is the approximate value of integration in Simpson's rule, so: J-S(h)≅ h3 sin h. 

Assuming that we calculate two numerical values for J, based on Simpson's rule as S₁(h₁) when h= h₁, S₂(h₂), when 
h=h₂, so: 
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J-s(h₁) ≅ h1
3sin h₁                                                                                                               (4)                                                    

J-s(h₂) ≅ h2
3sin h₂                                                                                                               (5) 

From the equations (4) and (5), we get: 

AS
Sin

-1
 ≅ (ℎ₁3 sin¯¹ ℎ₁) 𝑆₂(ℎ₂)−(ℎ₂3 sin¯¹ ℎ₂) 𝑆₁(ℎ₁)

ℎ₁3 sin¯¹ ℎ₁−ℎ₂3 sin¯¹ ℎ₂
                                                                                   (6) 

The formula (6) is called Al-Tememe's inverse sine triangular acceleration of the second kind which is referred to by 

 (AS
sin

-1) 

Similarly, the second inverse triangular acceleration rule of cosine can be written ,while ,the error E can be written 
as : 

E=h3(A1h+A2h3+A3h5+…)=h3(
𝜋

2
− 𝑐𝑜𝑠¯¹ℎ); 

 since (cos-1h=
𝜋

2
-

1

6
h3-

3

40
h5-

5

112
h7-...)                                                                                     [2]   

Similar to triangular acceleration inverse sine mentioned above, we get the following: 

AS
cos

-1
  ≅ 

ℎ₁⁴(
𝜋

2
−𝑠𝑖𝑛¯¹ ℎ₁)𝑆₂(ℎ₂)−ℎ₂⁴(

𝜋

2
−sin¯¹ ℎ₂) 𝑆₁(ℎ₁)

ℎ₁⁴(
𝜋

2
−sin¯1 ℎ₁)−ℎ₂⁴(

𝜋

2
−sin ¯¹ℎ₂)

                                                                                                (7) 

If we use the law in formula (7), we will get the true value of seven decimal when n=200 in several examples 

including, 𝐼 = ∫
 ln (𝑥)

𝑥
𝑑𝑥

6

5
  but it is expected that [3] of the inverse cosine will take the following form: 

AS
cos

-1
  ≅ 

ℎ₁⁴(𝑐𝑜𝑠¯¹ ℎ₁)𝑆₂(ℎ₂)−ℎ₂⁴(cos¯¹ ℎ₂) 𝑆₁(ℎ₁)

ℎ₁⁴(cos¯1 ℎ₁)−ℎ₂⁴(cos ¯¹ℎ₂)
                                                                                    (8)  

  We call the formula (7) as Al-Timemi's inverse triangular acceleration cosine of the second class that referred to by 
(AS

COS
-1). 

Similarly, we can find the third triangular acceleration law that we will call inverse triangular acceleration law of 
tangent, which is referred to by (AS

Tan
-1): 

AS
tan

1-
 ≅

(ℎ₁³ tan¯¹ ℎ₁) 𝑆₂(ℎ₂)−(ℎ₂³ tan¯¹ ℎ₂) 𝑆₁(ℎ₁)

ℎ₁³𝑡𝑎𝑛¯¹  ℎ₁−ℎ₂³ tan¯¹ ℎ₂
                                                                                                          (9( 

      Since (tan-1h=h- 
1

3
ℎ3 +

1

5
ℎ5 −

1

7
ℎ7 + ⋯ )                                                                                                                 [2]  

AS
cot

-1
  ≅ 

ℎ₁³(
𝜋

2
−𝑐𝑜𝑡¯¹ ℎ₁)𝑆₂(ℎ₂)−ℎ₂³(

𝜋

2
−cot¯¹ ℎ₂) 𝑆₁(ℎ₁)

ℎ₁³(
𝜋

2
−cot¯1 ℎ₁)−ℎ₂³(

𝜋

2
−cot ¯¹ℎ₂)

                                                                                                               (10) 

Since (cot-1h=
𝜋

2
−h+

1

3
 h3-

1

5
 h5+

1

7
 h7-

1

9
 h9+….)                                                                                                                  [2]  

If we use the law in (10), we will get true value of four decimal when n= 200 in several examples including  𝐼 =

∫
 ln (𝑥)

𝑥
𝑑𝑥

6

5
 ‘ but it is expected that the law of inverse cotangent will take the following formula: 

AS
cot

-1
  ≅ 

ℎ₁⁴(𝑐𝑜𝑡¯¹ ℎ₁)𝑆₂(ℎ₂)−ℎ₂⁴(cot¯¹ ℎ₂) 𝑆₁(ℎ₁)

ℎ₁⁴(cot¯1 ℎ₁)−ℎ₂⁴(cot ¯¹ℎ₂)
(11 )                                                                                 

Based on the same method that is followed in finding inverse triangular acceleration rules, we can also find the 
inverse hyperbolic acceleration rules: 

AS
Sinh

-1
 ≅ (ℎ₁3 sinh¯¹ ℎ₁) 𝑆₂(ℎ₂)−(ℎ₂3 sinh¯¹ ℎ₂) 𝑆₁(ℎ₁)

ℎ₁3 sinh¯¹ ℎ₁−ℎ₂3 sinh¯¹ ℎ₂
                                                                               (12) 



63   Ali Hassan mohammed/shatha hardier Theyab                                                                                                                              JQCM - Vol.11(3) 2019 , pp Math 60–65      

 

AS 
tanh

-1
 ≅

(ℎ₁³ tanh¯¹ ℎ₁) 𝑆₂(ℎ₂)−(ℎ₂³ tanh¯¹ ℎ₂) 𝑆₁(ℎ₁)

ℎ₁³𝑡𝑎𝑛ℎ¯¹  ℎ1−ℎ₂³ tanh¯¹ ℎ₂
                                                                                                 (13) 

Since (sinh-1h= h− 
1

6  
 h3+ 

3

40
 h5- 

5

112
 h7+ 

35

1152
 h9-...)                                                                                        [2]                                            

and ( tanh-1h= h+  
1

3   
h3+

1

5  
 h5+ 

1

7  
  h7+ 

1

9   
  h9+ …..)                                                                                          [2] 

3.Examples: 

The following examples introduce some integrals that have continuous integrals in the  of integration interval and 
we use inverse and hyperbolic triangular acceleration methods to improve the results of integrals: 

𝟑. 𝟏: 𝐼 = ∫
 ln (𝑥)

𝑥
𝑑𝑥

6

5
  and its exact value is 0.310055800794083 and it is rounded to 14 decimal. 

𝟑. 𝟐: 𝐼 =  ∫
1

𝑥
𝑑𝑥

4

3
 and its exact value is 0.28768207245178 and it is rounded to 14 decimal. 

𝟑. 𝟑: 𝐼 = ∫ √x   dx . 3 
2

1.5
 and its exact value is 0.660873211772538 and it is rounded to 14 decimal. 

4. Numerical Results 

Clearly ,the integrals of integration dx l=∫
ln (𝑥)

𝑥

6

5
𝑑𝑥 is continuous in the integration interval [5,6], so, we use the 

formula of correction terms of Simpson's rule as mentioned above (equation3). 

We have EPS=10-12 (that is the absolute error of the subsequent value minus the previous value). The obtained 
results are shown in table (1).  We get correct values through  the accelerations of As

tan¯¹(h) و  AS
sin¯¹(h)  As

sinh¯¹(h) As
tanh¯¹(h)  

and other accelerations are rounded to 9 decimal when n=14. Also, we get the same accuracy AS
cot

-1
(h)  and AS

cos¯¹(h) 
when n=12,14. 

 Clearly, the integrals of integration I=∫
1

𝑥
𝑑𝑥

4

3
 is continuous in the integration interval [3,4], so, we use the formula of 

correction terms of Simpson's rule as mentioned above (equation3). 

The obtained results are shown in table (2). We obtain correct values through accelerating  AS
cos¯¹(h) and other 

accelerations are rounded to 12 decimal when n=20 while the value by Simpson's without acceleration is correct to 
8  decimal when n=20. 

Clearly, the integrals of integration ∫ √𝑥𝑑𝑥
2

1.5
 is continuous in the integration interval [1,,2,5], so, we use the formula 

of correction terms of Simpson's rule as mentioned above (equation 3). 

The obtained results are shown in table (3). We get correct values through accelerating  AS
cos¯¹(h) and other 

accelerations are rounded to 12 decimal when n=14 while the value by Simpson's without acceleration is correct to 
9 decimal when n=14.  

5.Conclusion 

We conclude from the mentioned tables 1,2 and 3 that these acceleration methods have the same efficiency and they 
can give high accurate in limited number of partial intervals. 

 

"" 
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𝑇𝑎𝑏𝑙𝑒𝑛𝑜. (1)𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 ∫
ln(𝑥)

𝑥

6

5

 0.310055800794083 dx by simpson’s rule with the inverse triagular and hyperbolic methods of Al

− Tememe acceleration of second kind  

 

 
  𝑇𝑎𝑏𝑙𝑒(2)𝑐𝑎𝑙𝑐𝑎𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑖𝑛𝑡𝑒𝑔𝑟𝑎𝑙 𝐼 =

∫
1

𝑥
𝑑𝑥  0.28768207245178 by simpson’s rule with the 

4

3
inverse triagular and hyperbolic methods of Al − Tememe acceleration of second kind   

 

n Simpson’s rule AScos-1(h) ASsin-1(h) AStan-1(h) AScot-1(h) ASsinhh-1(h) AStanh-1(h) 
2 0.31005515917445             
4 0.31005575894700 0.31005579905099 0.31005579893143 0.31005579893264 0.31005579905099 0.31005579893224 0.31005579893102 
6 0.31005579246037 0.31005580071936 0.31005580070980 0.31005580070985 0.31005580071936 0.31005580070983 0.31005580070978 
8 0.31005579814966 0.31005580078478 0.31005580078299 0.31005580078299 0.31005580078478 0.31005580078299 0.31005580078298 

10 0.31005579970948 0.31005580079215 0.31005580079164 0.31005580079164 0.31005580079215 0.31005580079164 0.31005580079164 
12 0.31005580027065 0.31005580079354 0.31005580079335 0.31005580079335 0.31005580079354 0.31005580079335 0.31005580079335 

14 0.31005580051142 0.31005580079390 0.31005580079382 0.31005580079382 0.31005580079390 0.31005580079382 0.31005580079382 

n Simpson’s rule AS
cos

-1
(h) AS

sin
-1

(h) AS
tan

-1
(h) AS

cot
-1

(h) AS
sinhh

-1
(h) AS

tanh
-1

(h) 
2 0.28769841269841             
4 0.28768315018315 0.28768212964984 0.28768213269247 0.28768213266147 0.28768212965004 0.28768213267180 0.28768213270280 
6 0.28768228762508 0.28768207505737 0.28768207530356 0.28768207530216 0.28768207505737 0.28768207530263 0.28768207530403 
8 0.28768214079347 0.28768207278529 0.28768207283147 0.28768207283129 0.28768207278529 0.28768207283135 0.28768207283153 

10 0.28768210049420 0.28768207252272 0.28768207253591 0.28768207253586 0.28768207252272 0.28768207253588 0.28768207253592 
12 0.28768208598839 0.28768207247218 0.28768207247703 0.28768207247701 0.28768207247218 0.28768207247702 0.28768207247703 
14 0.28768207976277 0.28768207245895 0.28768207246105 0.28768207246104 0.28768207245895 0.28768207246105 0.28768207246105 

16 0.28768207673897 0.28768207245468 0.28768207245571 0.28768207245571 0.28768207245468 0.28768207245571 0.28768207245571 
18 0.28768207512895 0.28768207245308 0.28768207245364 0.28768207245363 0.28768207245308 0.28768207245363 0.28768207245364 
20 0.28768207420860 0.28768207245242 0.28768207245273 0.28768207245273 0.28768207245242 0.28768207245273 0.28768207245273 

  n   Simpson’s rule   AScos-1(h)   ASsin-1(h)   AStan-1(h)   AScot-1(h)   ASsinhh-1(h) AStanh-1(h)  
2 0.66087175465782             



65   Ali Hassan mohammed/shatha hardier Theyab                                                                                                                              JQCM - Vol.11(3) 2019 , pp Math 60–65      

 

Table (3)  calculating  the integral 

I=∫ √𝑥𝑑𝑥 = 0.660873211772538
2

1.5
by simpson’s rule withthe inverse triagular and hyperbolic methods of Al − Tememe acceleration of second kind  
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. 

 

4 0.66087311806141 0.66087320909002 0.66087320895475 0.66087320895544 0.66087320909002 0.66087320895521 0.66087320895452 

6 0.66087319315843 0.66087321165453 0.66087321164384 0.66087321164387 0.66087321165453 0.66087321164386 0.66087321164383 
8 0.66087320587131 0.66087321175755 0.66087321175555 0.66087321175556 0.66087321175755 0.66087321175555 0.66087321175555 

10 0.66087320935318 0.66087321176936 0.66087321176879 0.66087321176879 0.66087321176936 0.66087321176879 0.66087321176879 
12 0.66087321060521 0.66087321177162 0.66087321177141 0.66087321177141 0.66087321177162 0.66087321177141 0.66087321177141 

14 0.66087321114226 0.66087321177222 0.66087321177213 0.66087321177213 0.66087321177222 0.66087321177213 0.66087321177213 


