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A B S T R A C T 

In this paper, a new class of nonconvex sets and functions called strongly (𝐸, 𝐹)-convex sets 
and strongly (𝐸, 𝐹)-convex functions are introduced. This class is considered as a natural 
extension of strongly 𝐸-convex sets and functions introduced in the literature. Some basic and 
differentiability properties related to strongly (𝐸, 𝐹)-convex functions are discussed. As an 
application to optimization problems, some optimality properties of constrained optimization 
problems are proved. In these optimization problems, either the objective function or the 
inequality constraints functions are strongly (𝐸, 𝐹)-convex.   

MSC : 46N10, 47N10, 90C48, 90C90, 49K27 

 
1.  

1. Introduction and Preliminaries "" 
 

The class of 𝐸-convex sets and 𝐸-convex functions, introduced first by Youness [18], is considered as one of the 

important class of generalized classical convex sets and convex functions in finite dimensional Eucledian space. A 
mapping 𝐸: ℝ𝑛 → ℝ𝑛 make a main contribution in introducing this type of generalized convexity (see Definitions 1.2 

and 1.7). Inspiring by Youness initial results, Youness and many other researchers are studied further, improved, 
generalized, and extended 𝐸-conexity. For instance, related to 𝐸-convex sets, Abou Tair and Sulaiman [2] and Suneja 
et. al [16] applied 𝐸-convex sets in proving some inequalities. Grace and Thangavelu [5] and Majeed and Abd Al-
Majeed [9] defined 𝐸-convex hull, 𝐸-convex cone, 𝐸-affine sets, and studied some of their properties and 
characterizations. As an application of 𝐸-convexity into optimization problems, Youness and his collaborators 
studied optimality conditions for non-linear optimization problems, stability and duality in 𝐸-convex programming 
[19-20,12-13]. 𝐸-convexity results extended to a new class that includes semi 𝐸-convex functions [3-4]. For more 
results on 𝐸-convexity see e.g., [17,15,10,1].  Youness and Emam [21] extended the class of 𝐸-convex sets and 𝐸-
convex functions into strongly 𝐸-convex sets and 𝐸-convex functions (see Definitions 1.3 and 1.8), respectively, and 
studied their properties (for more recent paper on strongly 𝐸-convex sets and strongly 𝐸-convex cone sets, see 
[11]). The class of semi 𝐸-convex functions is extended into the class of strongly semi 𝐸-conex functions by Youness 
and Emam [22].  𝐸-convex sets and functions are also extended to another class called (𝐸, 𝐹)-convex sets and (𝐸, 𝐹)-
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convex functions [6-7]. In this class, the effect of two mappings 𝐸, 𝐹: ℝ𝑛 → ℝ𝑛 are taking into account in defining the 
(𝐸, 𝐹)-convex sets and functions (see Definitions 1.4 and 1.9). The results related to semi 𝐸-conexity mentioned 
earlier are also extended into semi (𝐸, 𝐹)-convexity [8]. Some basic and optimality properties are discussed in [6-7]. 
By combining strongly 𝐸-convexity and (𝐸, 𝐹)-convexity, we introduce in this paper the class of strongly (𝐸, 𝐹)- 
convex sets and strongly  (𝐸, 𝐹)-convex functions and studying some of their properties. In section 2, the definitions 
of strongly (𝐸, 𝐹)-convex sets and functions are introduced. Some examples related to the new sets and functions 
are illustrated. In section 3, some basic properties related to strongly (𝐸, 𝐹)-convex functions are deduced.  Finally, 
section 4 discusses some differentiability properties of strongly (𝐸, 𝐹)-convex functions. In addition, some 
optimality properties of a constrained optimization problems are proved as an application of (𝐸, 𝐹)-convexity to 
optimization problems in this section. 
        Assume that ℝ𝑛 denotes the 𝑛-dimensional Euclidean space. Throughout the paper, the following assumption is 

needed. 

Assumption (A) Let ∅ ≠ 𝑀 ⊆ ℝ𝑛 and 𝑓: ℝ𝑛 → ℝ  be a real valued function. Assume  that 𝐸, 𝐹: ℝ𝑛 → ℝ𝑛 are two 

mappings. 

For the rest of the paper, 𝑀, 𝑓, 𝐸, and 𝐹 are defined as Assumption in (A) unless otherwise stated. Next, we recall 

the necessary definitions and related concepts that is needed in the paper. 

 

Definition 1.1 [14] The set 𝑀 is called convex if, for each 𝑚1, 𝑚2 ∈ 𝑀 and for each 𝜆 ∈ [0,1], we have  𝜆𝑚1 +
(1 − 𝜆)𝑚2 ∈ 𝑀. 

Definition 1.2 [18] The set 𝑀 is called 𝐸-convex if, for each 𝑚1, 𝑚2 ∈ 𝑀 and for each 𝜆 ∈ [0,1], we have  
𝜆𝐸(𝑚1) + (1 − 𝜆)𝐸(𝑚2) ∈ 𝑀.  

Definition 1.3 [21] The set 𝑀 is called strongly 𝐸-convex if, for each 𝑚1, 𝑚2 ∈ 𝑀 and for each 𝜆 ∈ [0,1], we have  
 𝜆(𝛼𝑚1 + 𝐸(𝑚1)) + (1 − 𝜆)(𝛼𝑚2 + 𝐸(𝑚2)) ∈ 𝑀. for all 𝛼 ∈ [0,1] 

Definition 1.4 [6] The set 𝑀 is called (𝐸, 𝐹)-convex if, for each 𝑚1, 𝑚2 ∈ 𝑀 and for each 𝜆 ∈ [0,1], we have 
𝜆𝐸(𝑚1) + (1 − 𝜆)𝐹(𝑚2) ∈ 𝑀. 

Remark 1.5 
i. For the rest of the paper, 𝐸(𝑚1) and𝐹(𝑚2) are written as  𝐸𝑚1 and 𝐹𝑚2.  

ii. In [19], the mappings 𝐸 and 𝐹 are considered as point to set maps. As a result, the set 𝑀 is called (𝐸, 𝐹)-

convex if 𝜆𝐸(𝑚1) + (1 − 𝜆)𝐹(𝑚2) ⊆ 𝑀. In this paper, however, we consider 𝐸 and 𝐹 as point to point 

mappings. 

Definition 1.6 [14] The function 𝑓 is said to be convex if 𝑀 is convex and for each 𝑚1, 𝑚2 ∈ 𝑀, 𝜆 ∈ [0,1],  
𝑓(𝜆𝑚1 + (1 − 𝜆)𝑚2) ≤ 𝜆𝑓(𝑚1) + (1 − 𝜆)𝑓(𝑚2).  

Definition 1.7 [18] The function 𝑓 is said to be 𝐸-convex if 𝑀 is 𝐸-convex and for each 𝑚1, 𝑚2 ∈ 𝑀, 𝜆 ∈ [0,1],  
𝑓(𝜆𝐸𝑚1 + (1 − 𝜆)𝐸𝑚2) ≤ 𝜆𝑓(𝐸𝑚1) + (1 − 𝜆)𝑓(𝐸𝑚2).  
Definition 1.8 [21] The function 𝑓 is called strongly 𝐸-convex if 𝑀 is strongly 𝐸-convex and for each 𝑚1, 𝑚2 ∈ 𝑀, 
𝜆, 𝛼 ∈ [0,1], we have  
𝑓(𝜆(𝛼𝑚1 + 𝐸𝑚1) + (1 − 𝜆)(𝛼𝑚2 + 𝐸𝑚2)) ≤ 𝜆𝑓(𝐸𝑚1) + (1 − 𝜆)𝑓(𝐸𝑚2).  

Definition 1.9 [6] The function 𝑓 is called (𝐸, 𝐹)-convex if 𝑀 is (𝐸, 𝐹)-convex and for each 𝑚1, 𝑚2 ∈ 𝑀, 𝜆, 𝛼 ∈ [0,1], 
we have  𝑓(𝜆𝐸𝑚1 + (1 − 𝜆)𝐹𝑚2) ≤ 𝜆𝑓(𝐸𝑚1) + (1 − 𝜆)𝑓(𝐹𝑚2).  

Definition 1.10 [14] The epigraph of 𝑓 is denoted by 𝑒𝑝𝑖 𝑓 and defined as 𝑒𝑝𝑖𝑓 = {(𝑚, 𝛾) ∈ 𝑀 × ℝ: 𝑓(𝑚) ≤ 𝛾}. 

 

2. Strongly (𝑬, 𝑭)-convex Sets and Functions 
 

         In this section, we define the class of strongly (𝐸, 𝐹)-convex sets and the class of (𝐸, 𝐹)-convex functions and 

we provide some examples related to the new definitions. Some properties of (𝐸, 𝐹)-convex sets are also given.  

Definition 2.1 𝑀 is said to be  strongly (𝐸, 𝐹)-convex set if for each 𝑚1, 𝑚2 ∈ 𝑀 and for each 𝛼, 𝜆 ∈ [0,1] we have 

𝜆(𝛼𝑚1 + 𝐸𝑚1) + (1 − 𝜆)(𝛼𝑚2 + 𝐹𝑚2) ∈ 𝑀. 

 

An example of strongly (𝐸, 𝐹)-convex set that is also (𝐸, 𝐹)-convex set is given next. 
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Example 2.2 Let 𝑀 = {(𝑚1, 𝑚2) ∈ ℝ2: 𝑚1, 𝑚2 ≥ 0} and 𝐸, 𝐹: ℝ2 → ℝ2 such that 𝐸(𝑚1, 𝑚2) = (𝑚1, 0) and 

𝐹(𝑚1, 𝑚2) = (0,
𝑚2

2
). First, we show that 𝑀 is strongly (𝐸, 𝐹)-convex set. Let 𝑚 = (𝑚1, 𝑚2) ∈ 𝑀 and 𝑚∗ = (𝑚1

∗ , 𝑚2
∗ ) ∈

𝑀 and 𝛼, 𝜆 ∈ [0,1] then  

𝜆(𝛼𝑚 + 𝐸𝑚) + (1 − 𝜆)(𝛼𝑚∗ + 𝐹𝑚∗) 

= 𝜆(𝛼(𝑚1, 𝑚2) + (𝑚1, 0)) + (1 − 𝜆) (𝛼(𝑚1
∗, 𝑚2

∗ ) + (0,
𝑚2

∗

2
)) 

                         = 𝜆(𝛼𝑚1 + 𝑚1, 𝛼𝑚2) + (1 − 𝜆) (𝛼𝑚1
∗ , 𝛼𝑚2

∗ +
𝑚2

∗

2
) ∈ 𝑀. 

Next, we prove that 𝑀 is (𝐸, 𝐹)-convex set, i.e., 𝜆𝐸𝑚 + (1 − 𝜆)𝐹𝑚∗ ∈ 𝑀. 

 𝜆𝐸(𝑚1, 𝑚2) + (1 − 𝜆)𝐹(𝑚1
∗ , 𝑚2

∗ ) = 𝜆(𝑚1, 0) + (1 − 𝜆) (0,
𝑚2

∗

2
) = (𝜆𝑚1, (1 − 𝜆)

𝑚2
∗

2
) ∈ 𝑀 as required.   ■ 

Remark 2.3 Every strongly (𝐸, 𝐹)-convex set is (𝐸, 𝐹)-convex set (𝛼 = 0). The converse does not hold as we show 

in the next example. 

Example 2.4 Let 𝑀 = {(𝑚1, 𝑚2) ∈ ℝ2: −1 ≤ 𝑚1 ≤ 1, −1 ≤ 𝑚2 ≤ 1} and 𝐸, 𝐹: ℝ2 → ℝ2 such that 𝐸(𝑚1, 𝑚2) =

(
𝑚1

3
,

𝑚2

2
) and 𝐹(𝑚1, 𝑚2) = (

2

3
𝑚1, 𝑚2). We show that 𝑀 is (𝐸, 𝐹)-convex set but not strongly (𝐸, 𝐹)-convex. Let 

𝑚 = (𝑚1, 𝑚2) ∈ 𝑀 and 𝑚∗ = (𝑚1
∗ , 𝑚2

∗ ) ∈ 𝑀 and 𝛼, 𝜆 ∈ [0,1] 

 

 𝜆𝐸𝑚 + (1 − 𝜆)𝐹𝑚∗ =  𝜆𝐸(𝑚1, 𝑚2) + (1 − 𝜆)𝐹(𝑚1
∗ , 𝑚2

∗ ) 

                                        = 𝜆 (
𝑚1

3
,

𝑚2

2
) + (1 − 𝜆) (

2𝑚1
∗

3
, 𝑚2

∗ ) 

                                        = (
𝜆𝑚1

3
+ (1 − 𝜆)

2𝑚1
∗

3
,

𝜆𝑚1

2
+ (1 − 𝜆)𝑚2

∗ ) ∈ 𝑀. 

This shows 𝑀 is (𝐸, 𝐹)-convex set, but 𝑀 is not strongly (𝐸, 𝐹)-convex set. Indeed, take If  𝜆 = 0, 𝛼 = 1, (𝑚1
∗ , 𝑚2

∗ ) =

(1,1). Then  

 𝜆(𝛼(𝑚1, 𝑚2) + 𝐸(𝑚1, 𝑚2)) + (1 − 𝜆)(𝛼(𝑚1
∗ , 𝑚2

∗ ) + 𝐹(𝑚1
∗ , 𝑚2

∗ )) = (1,1) + (
2

3
, 1) = (

5

3
, 2) ∉ 𝑀. This shows that 𝑀 is 

not strongly (𝐸, 𝐹)-convex set.   ■ 

Proposition 2.5 If a set 𝑀 is strongly (𝐸, 𝐹)-convex set. Then 𝐸(𝑀) ⊆ 𝑀 and 𝐹(𝑀) ⊆ 𝑀. 

Proof. Using the definition of strongly (𝐸, 𝐹)-convex set, we have for any 𝑚1, 𝑚2 ∈ 𝑀, 𝜆, 𝛼 ∈ [0,1],  

𝜆(𝛼𝑚1 + 𝐸𝑚1) + (1 − 𝜆)(𝛼𝑚2 + 𝐹𝑚2) ∈ 𝑀. When 𝛼 = 0 and 𝜆 = 1, we get 𝐸𝑚1 ∈ 𝑀, i.e., 𝐸(𝑀) ⊆ 𝑀. On the other 
hand, when 𝛼 = 𝜆 = 0. Then 𝐹𝑚2 ∈ 𝑀, i.e.,  𝐹(𝑀) ⊆ 𝑀.              ■ 

Definition 2.6 Let 𝑀 × ℝ ⊆ ℝ𝑛 × ℝ, 𝐸, 𝐹: ℝ𝑛 → ℝ𝑛 and �̅�, �̅�: ℝ → ℝ. The set 𝑀 × ℝ  is called strongly (𝐸, 𝐹) ×

(�̅�, �̅�)-convex if for (𝑚1, 𝛾), (𝑚2, 𝛽) ∈ 𝑀 × ℝ and 𝛼, 𝜆 ∈ [0,1],  we get  

(𝜆(𝛼𝑚1 + 𝐸𝑚1) + (1 − 𝜆)(𝛼𝑚2 + 𝐹𝑚2), 𝜆(𝛼𝛾 + �̅�(𝛾)) + (1 − 𝜆)(𝛼𝛽 + �̅�(𝛽)) ∈ 𝑀 × ℝ. 

       A characterization between the strongly (𝐸, 𝐹)convexity of 𝑀 ⊆ ℝ𝑛and 𝑀 × ℝ is given next. 

Proposition 2.7 𝑀 is a strongly (𝐸, 𝐹)-convex if and only if 𝑀 × ℝ is strongly (𝐸, 𝐹) × (�̅�, �̅�)-convex. 

Proof. Assume that 𝑀 is a strongly (𝐸, 𝐹)-convex set, then for 𝑚1, 𝑚2 ∈ 𝑀, 𝛼, 𝜆 ∈ [0,1], and 𝛾, 𝛽 ∈ ℝ we have   

𝜆(𝛼𝑚1 + 𝐸𝑚1) + (1 − 𝜆)(𝛼𝑚2 + 𝐹𝑚2) ∈ 𝑀 and  𝜆(𝛼𝛾 + �̅�𝛾) + (1 − 𝜆)(𝛼𝛽 + �̅�𝛽) ∈ ℝ. Thus, (𝜆(𝛼𝑚1 + 𝐸𝑚1) +

(1 − 𝜆)(𝛼𝑚2 + 𝐹𝑚2), 𝜆(𝛼𝛾 + �̅�𝛾) + (1 − 𝜆)(𝛼𝛽 + �̅�𝛽)) ∈ 𝑀 × ℝ. This shows 𝑀 × ℝ is a strongly (𝐸, 𝐹) × (�̅�, �̅�)-

convex. Similarly, the other direction follows directly.    ■ 

      Next, we introduce strongly (𝐸, 𝐹)-convex function. 

Definition 2.8 Let 𝑀 is strongly (𝐸, 𝐹)-convex set. A function 𝑓  is said to be strongly (𝐸, 𝐹)-convex function on 𝑀, 

if for each 𝑚1, 𝑚2 ∈ 𝑀, 𝜆, 𝛼 ∈ [0,1], 𝑓(𝜆(𝛼𝑚1 + 𝐸𝑚1) + (1 − 𝜆)(𝛼𝑚2 + 𝐹𝑚2)) ≤ 𝜆𝑓(𝐸𝑚1) + (1 − 𝜆)𝑓(𝐹𝑚2). 

Example 2.9 Let 𝑀 = ℝ and 𝑓, 𝐸, 𝐹: ℝ → ℝ such that for each 𝑚 ∈ ℝ 

            𝑓(𝑚) =    {
2                 𝑖𝑓 𝑚 ∈ [0,2] 
1                    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

,         
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𝐸(𝑚) =   0 and   𝐹(𝑚) =    
1

2
 . We show that 𝑓 is a strongly (𝐸, 𝐹)-convex function.  For each 𝑚1, 𝑚2 ∈ ℝ, 𝜆, 𝛼 ∈ [0,1] 

we have 𝑓(𝜆(𝛼𝑚1 + 𝐸𝑚1) + (1 − 𝜆)(𝛼𝑚2 + 𝐹𝑚2)) = 1 or 2. On the other hand, 𝜆𝑓(𝐸𝑚1) + (1 − 𝜆)𝑓(𝐹𝑚2) =

𝜆𝑓(0) + (1 − 𝜆)𝑓 (
1

2
) = 2. Thus, 𝑓(𝜆(𝛼𝑚1 + 𝐸𝑚1) + (1 − 𝜆)(𝛼𝑚2 + 𝐹𝑚2)) ≤ 𝜆𝑓(𝐸𝑚1) + (1 − 𝜆)𝑓(𝐹𝑚2)  as 

required to show.   ■         

Remark 2.10 Every strongly (𝐸, 𝐹)-convex function is (𝐸, 𝐹)-convex (𝛼 = 0). The converse is not necessarly true 

as it illustrated in the next example. 

 

Example 2.11 Let 𝑀 = ℝ, 𝑓: ℝ → ℝ, and 𝐸, 𝐹: ℝ → ℝ such that 

      𝑓(𝑚) =    {
−1                 if   𝑚 = 0 
−2               otherwise

,        𝐸(𝑚) =    {
0                 if   𝑚 = 0 
 2               otherwise

 

and 𝐹(𝑚) =    {
0                 if  𝑚 = 0 
 1               otherwise

. 

Let 𝑚1, 𝑚2 ∈ ℝ and 𝜆 ∈ [0,1]. First, we show that  𝑓(𝜆(𝐸𝑚1) + (1 − 𝜆)(𝐹𝑚2)) ≤ 𝜆𝑓(𝐸𝑚1) + (1 − 𝜆)𝑓(𝐹𝑚2). We 

consider four cases: 

Case 1. If 𝑚1 = 𝑚2 = 0, then 𝑓(𝜆(𝐸𝑚1) + (1 − 𝜆)(𝐹𝑚2)) = 𝑓(𝜆𝐸(0) + (1 − 𝜆)𝐹(0)) = 𝑓(0) = −1 and 

 𝜆𝑓(𝐸𝑚1) + (1 − 𝜆)𝑓(𝐹𝑚2) = 𝜆𝑓(𝐸(0)) + (1 − 𝜆)𝑓(𝐹(0)) = 𝜆𝑓(0) + (1 − 𝜆)𝑓(0) = −𝜆 − (1 − 𝜆) = −1. 

Case 2. If 𝑚1 ≠ 0 and 𝑚2 ≠ 0, then   𝑓(𝜆(𝐸𝑚1) + (1 − 𝜆)(𝐹𝑚2)) = 𝑓(𝜆(2) + (1 − 𝜆)(1)) = −2  and  

𝜆𝑓(𝐸𝑚1) + (1 − 𝜆)𝑓(𝐹𝑚2) = 𝜆𝑓(2) + (1 − 𝜆)𝑓(1) = 𝜆(−2) + (1 − 𝜆)(−2) = −2.                                                          

Case 3: If 𝑚1 = 0 and 𝑚2 ≠ 0, then  𝑓(𝜆(𝐸𝑚1) + (1 − 𝜆)(𝐹𝑚2)) = 𝑓(𝜆(0) + (1 − 𝜆)(1)) 

                                                                                                                            = 𝑓(1 − 𝜆) = {
−2                 𝑖𝑓 𝜆 = 0 
−1                 𝑖𝑓 𝜆 = 1

, 

 On the other hand, 𝜆𝑓(𝐸𝑚1) + (1 − 𝜆)𝑓(𝐹𝑚2) = 𝜆𝑓(0) + (1 − 𝜆)𝑓(1) = 𝜆(−1) + (1 − 𝜆)(−2) = 𝜆 − 2. 

Case 4: If 𝑚1 ≠ 0 and 𝑚2 = 0, then 𝑓(𝜆(𝐸𝑚1) + (1 − 𝜆)(𝐹𝑚2)) = 𝑓(𝜆(2) + (1 − 𝜆)(0)) 

                                                                                                                           = 𝑓(2𝜆) = {
−1                𝑖𝑓 𝜆 = 0 
−2                 𝑖𝑓 𝜆 = 1

, 

 and 𝜆𝑓(𝐸𝑚1) + (1 − 𝜆)𝑓(𝐹𝑚2) = 𝜆𝑓(2) + (1 − 𝜆)𝑓(0) = 𝜆(−2) + (1 − 𝜆)(−1) = −1 − 𝜆.  

From all cases,  𝑓(𝜆(𝐸𝑚1) + (1 − 𝜆)(𝐹𝑚2)) ≤ 𝜆𝑓(𝐸𝑚1) + (1 − 𝜆)𝑓(𝐹𝑚2). Now, we show that 𝑓 is not strongly 

(𝐸, 𝐹)-convex function. Let 𝛼 = 1, 𝑚1 = −2, 𝑚2 = 0, 𝜆 = 1, then 

  𝑓(𝜆(𝛼𝑚1 + 𝐸𝑚1) + (1 − 𝜆)(𝛼𝑚2 + 𝐹𝑚2)) = 𝑓(−2 + 𝐸(−2)) = 𝑓(−2 + 2) = 𝑓(0) = −1, 

On the other hand, 𝜆𝑓(𝐸𝑚1) + (1 − 𝜆)𝑓(𝐹𝑚2) = 𝑓(𝐸(−2)) = 𝑓(2) = −2.  

Thus, 𝑓(𝜆(𝛼𝑚1 + 𝐸𝑚1) + (1 − 𝜆)(𝛼𝑚2 + 𝐹𝑚2)) ≥ 𝜆𝑓(𝐸𝑚1) + (1 − 𝜆)𝑓(𝐹𝑚2). This means 𝑓 is not strongly (𝐸, 𝐹)-

convex function.               ■ 

3. Some Properties of Strongly (𝑬, 𝑭)-convex Functions 

      In this section, we discuss some basic properties of strongly (𝐸, 𝐹 )-convex functions such as closedness, 

supremum and composite properties. But first we start with the following proposition. 
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Proposition 3.1 If 𝑓 strongly (𝐸, 𝐹)-convex function on the strongly (𝐸, 𝐹)-convex set 𝑀, then 𝑓(𝛼𝑚1 + 𝐸𝑚1) ≤

𝑓(𝐸𝑚1) and 𝑓(𝛼𝑚2 + 𝐹𝑚2) ≤ 𝑓(𝐹𝑚2), for each 𝑚1, 𝑚2 ∈ 𝑀 and 𝛼 ∈ [0,1]. 

Proof. From the assumptions on 𝑀 and 𝑓, we have for each 𝑚1, 𝑚2 ∈ 𝑀 and for all 𝜆, 𝛼 ∈ [0,1], we have  

𝜆(𝛼𝑚1 + 𝐸𝑚1) + (1 − 𝜆)(𝛼𝑚2 + 𝐹𝑚2) ∈ 𝑀 and  𝑓(𝜆(𝛼𝑚1 + 𝐸𝑚1) + (1 − 𝜆)(𝛼𝑚2 + 𝐹𝑚2)) ≤ 𝜆𝑓(𝐸𝑚1) +

(1 − 𝜆)𝑓(𝐹𝑚2). Then for 𝜆 = 1, 𝑓(𝛼𝑚1 + 𝐸𝑚1) ≤ 𝑓(𝐸𝑚1) and for 𝜆 = 0, we obtain  𝑓(𝛼𝑚2 + 𝐹𝑚2) ≤ 𝑓(𝐹𝑚2) .         
■ 

Proposition 3.2 If 𝑓𝑖: ℝ𝑛 → ℝ, 𝑖 = 1,2, … , 𝑛 are strongly (𝐸, 𝐹)-convex functions on the strongly (𝐸, 𝐹)-convex set 𝑀 
such that 𝑓(𝑚) = ∑ 𝑎𝑖𝑓𝑖(𝑚)𝑛

𝑖=1 , then 𝑓 is strongly (𝐸, 𝐹)-convex function on 𝑀 for each 𝑎𝑖 ≥ 0, 𝑖 = 1, … , 𝑛. 

Proof. Since 𝑓𝑖 , for all  𝑖 = 1,2, … , 𝑛 are strongly (𝐸, 𝐹)-convex function on a strongly (𝐸, 𝐹)-convex set 𝑀, then for 
each 𝑚1, 𝑚2 ∈ 𝑀 and for all 𝜆, 𝛼 ∈ [0,1] , we have 𝜆(𝛼𝑚1 + 𝐸𝑚1) + (1 − 𝜆)(𝛼𝑚2 + 𝐹𝑚2) ∈ 𝑀 and  

𝑓(𝜆(𝛼𝑚1 + 𝐸𝑚1) + (1 − 𝜆)(𝛼𝑚2 + 𝐹𝑚2)) = ∑ 𝑎𝑖𝑓𝑖(𝜆(𝛼𝑚1 + 𝐸𝑚1) + (1 − 𝜆)(𝛼𝑚2 + 𝐹𝑚2))

𝑛

𝑖=1

 

                                                                                                       ≤ 𝜆 ∑ 𝑎𝑖𝑓𝑖(𝐸𝑚1)𝑛
𝑖=1 + (1 − 𝜆) ∑ 𝑎𝑖𝑓𝑖(𝐹𝑚2)𝑛

𝑖=1  

                                                                                                       = 𝜆𝑓(𝐸𝑚1) + (1 − 𝜆)𝑓(𝐹𝑚2) 

This implies, 𝑓 is strongly (𝐸, 𝐹)-convex function on 𝑀.   ■       

Proposition 3.3 Let 𝐼 be an index set and  𝑓𝑖: ℝ𝑛 → ℝ for each 𝑖 ∈ 𝐼 be a family of bounded above and strongly 
(𝐸, 𝐹)-convex functions on the strongly (𝐸, 𝐹)-convex set 𝑀. Then,  𝑓(𝑚) = sup𝑖∈I 𝑓𝑖 (𝑚) is a strongly (𝐸, 𝐹)-convex 
on 𝑀. 

 Proof. From the assumptions, for each 𝑚1, 𝑚2 ∈ 𝑀 and for each 𝜆, 𝛼 ∈ [0,1], we have   𝜆(𝛼𝑚1 + 𝐸𝑚1) +
(1 − 𝜆)(𝛼𝑚2 + 𝐹𝑚2) ∈ 𝑀 and 

𝑓(𝜆(𝛼𝑚1 + 𝐸𝑚1) + (1 − 𝜆)(𝛼𝑚2 + 𝐹𝑚2)) = sup
𝑖∈I

{𝑓𝑖(𝜆(𝛼𝑚1 + 𝐸𝑚1) + (1 − 𝜆)(𝛼𝑚2 + 𝐹𝑚2))} 

                                                                                  ≤ sup
𝑖∈I

{𝜆𝑓𝑖(𝐸𝑚1) + (1 − 𝜆)𝑓𝑖(𝐹𝑚2)} 

where in the last inequality we used the fact that 𝑓𝑖  is strongly (𝐸, 𝐹)-convex for each 𝑖 ∈ 𝐼 and  𝑓𝑖  is bounded above 
for all 𝑖 ∈ 𝐼. The inequality above yields  

                                                                   = 𝜆sup
𝑖∈I

𝑓𝑖(𝐸𝑚1) + (1 − 𝜆)sup
𝑖∈I

𝑓𝑖(𝐹𝑚2)  = 𝜆𝑓(𝐸𝑚1) + (1 − 𝜆)𝑓(𝐹𝑚2). 

This means  𝑓 is a strongly (𝐸, 𝐹)-convex on 𝑀.        ■ 

Proposition 3.4 Let 𝑓 be a strongly (𝐸, 𝐹)-convex function on the strongly (𝐸, 𝐹)-convex set 𝑀. Let 
𝐺: ℝ → ℝ be a non-decreasing convex function, then 𝐺 ∘ 𝑓 is a strongly (𝐸, 𝐹)-convex function on 𝑀. 

Proof. Let 𝑚1, 𝑚2 ∈ 𝑀 and 𝜆, 𝛼 ∈ [0,1]. From the assumptions on 𝑀 and 𝑓, we get  𝜆(𝛼𝑚1 + 𝐸𝑚1) +
(1 − 𝜆)(𝛼𝑚2 + 𝐹𝑚2) ∈ 𝑀 and 

𝑓( 𝜆(𝛼𝑚1 + 𝐸𝑚1) + (1 − 𝜆)(𝛼𝑚2 + 𝐹𝑚2)) ≤ 𝜆𝑓(𝐸𝑚1) + (1 − 𝜆)𝑓(𝐹𝑚2) 

From the assumptions on 𝐺, the last inequality yields 

(𝐺 ∘ 𝑓)(𝜆(𝛼𝑚1 + 𝐸𝑚1) + (1 − 𝜆)(𝛼𝑚2 + 𝐹𝑚2)) ≤ 𝐺 ∘ ( 𝜆𝑓(𝐸𝑚1) + (1 − 𝜆)𝑓(𝐹𝑚2)) 

                                                                                                               ≤ 𝜆 (𝐺 ∘ 𝑓)(𝐸𝑚1) + (1 − 𝜆)(𝐺 ∘ 𝑓)(𝐹𝑚2) 
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This implies, 𝐺 ∘ 𝑓 is strongly (𝐸, 𝐹)-convex function on 𝑀.     ■ 

       Next, we show that, under mild condition, the epigraph of strongly(𝐸, 𝐹)-convex functions is 
strongly(𝐸, 𝐹)-convex set. 

Proposition 3.5 Let 𝑀 is strongly (𝐸, 𝐹)-convex. Let �̅�, �̅�: ℝ → ℝ be two mappings such that �̅�(𝑓(𝑚1)) = 𝑓(𝐸𝑚1) 

and �̅�(𝑓(𝑚2)) = 𝑓(𝐹𝑚2) for each 𝑚1 , 𝑚2 ∈ 𝑀. If  𝑓 is strongly (𝐸, 𝐹)-convex on 𝑀, then  𝑒𝑝𝑖𝑓 is strongly 

(𝐸, 𝐹) × (�̅�, �̅�)-convex set on 𝑀 × ℝ. 

Proof. Let (𝑚1, 𝛾), (𝑚2, 𝛽) ∈  𝑒𝑝𝑖𝑓. From the assumption on 𝑀, we have for each 𝛼, 𝜆 ∈ [0,1] 

𝜆(𝛼𝑚1 + 𝐸𝑚1) + (1 − 𝜆)(𝛼𝑚2 + 𝐹𝑚2) ∈ 𝑀. Noting that 𝐸𝑚1 ∈ 𝑀 for  𝛼 = 0, 𝜆 = 1 and 𝐹𝑚2 ∈ 𝑀 for 𝛼 = 𝜆 = 0. 

Since 𝑓(𝑚1) ≤ γ, 𝑓(𝑚2) ≤ 𝛽 then 𝑓(𝐸𝑚1) = �̅�(𝑓(𝑚1)) ≤  �̅�(𝛾) and 𝑓(𝐹𝑚2) = �̅�(𝑓(𝑚2)) ≤ �̅�(𝛽) where �̅�(𝛾), 

�̅�(𝛽) ∈ ℝ. Thus, (𝐸𝑚1, �̅�𝛾),(𝐹𝑚2, �̅�𝛽) ∈  𝑒𝑝𝑖𝑓. Since 𝑓 is strongly (𝐸, 𝐹)-convex function on 𝑀. Then  

𝑓(𝜆(𝛼𝑚1 + 𝐸𝑚1) + (1 − 𝜆)(𝛼𝑚2 + 𝐹𝑚2)) ≤ 𝜆𝑓(𝐸𝑚1) + (1 − 𝜆)𝑓(𝐹𝑚2) 

                                                                                                                           ≤ 𝜆�̅�(𝛾) + (1 − 𝜆)�̅�(𝛽). 

Thus, (𝜆(𝛼𝑚1 + 𝐸𝑚1) + (1 − 𝜆)(𝛼𝑚2 + 𝐹𝑚2), 𝜆�̅�(𝛾) + (1 − 𝜆)�̅�(𝛽)) ∈  𝑒𝑝𝑖𝑓. This implies that 𝑒𝑝𝑖𝑓 is strongly 

(𝐸, 𝐹) × (�̅�, �̅�)-convex on 𝑀 × ℝ.       ■ 

4. Differentiability and Optimality Properties of Strongly (𝑬, 𝑭)-convex Functions 

    In this section, we provide some necessary conditions for a differentiable function 𝑓 to be strongly (𝐸, 𝐹)-convex 

function. We also consider some optimality properties of non-linear optimization problems in which the objective 
function or the inequality constraints functions are strongly (𝐸, 𝐹)-convex. Let us start with the following 
differentiability gradient property related to strongly (𝐸, 𝐹)-convex functions.   

Proposition 4.1 Let 𝑓 be a differentiable strongly (𝐸, 𝐹)-convex function on the strongly (𝐸, 𝐹)-convex set 𝑀, then    

𝑓(𝐸𝑚1) ≥ 𝑓(𝐹𝑚2) + 〈∇𝑓(𝐹𝑚2), 𝐸𝑚1 − 𝐹𝑚2〉   for each 𝑚1, 𝑚2 ∈ 𝑀, 

where ∇𝑓(. ) denotes the gradient vector of 𝑓 at a point belongs to 𝑀. 

Proof. Since 𝑀 is strongly (𝐸, 𝐹)-convex and 𝑓 is differentiable on 𝑀, then using Proposition 2.5, 𝑓 is differentiable 
on 𝐸(𝑀) ⊆ 𝑀 and 𝐹(𝑀) ⊆ 𝑀. Consider 𝑚1, 𝑚2 ∈ 𝑀 and arbitrary 𝜆 ∈ [0,1], and 𝛼 ∈ (0,1]. If 𝐸(𝑚1) = 𝐹(𝑚2), then 
the gradient inequality directly satisfied. If 𝐸(𝑚1) ≠ 𝐹(𝑚2), then using the strongly (𝐸, 𝐹)-convexity of 𝑓, we have 

𝑓(𝜆(𝛼𝑚1 + 𝐸𝑚1) + (1 − 𝜆)(𝛼𝑚2 + 𝐹𝑚2)) ≤ 𝜆𝑓(𝐸𝑚1) + (1 − 𝜆)𝑓(𝐹𝑚2). That is, 

 𝑓((𝛼𝑚2 + 𝐹𝑚2) + 𝜆((𝛼𝑚1 + 𝐸𝑚1) − (𝛼𝑚2 + 𝐹𝑚2)) ≤ 𝑓(𝐹𝑚2) + 𝜆(𝑓(𝐸𝑚1) − 𝑓(𝐹𝑚2)) 

By taking 𝛼 → 0+, we get 𝑓(𝐹𝑚2 + 𝜆(𝐸𝑚1 − 𝐹𝑚2)) ≤ 𝑓(𝐹𝑚2) + 𝜆(𝑓(𝐸𝑚1) − 𝑓(𝐹𝑚2)). Re-arranging the last 

inequality yields, 
𝑓(𝐹𝑚2+𝜆(𝐸𝑚1−𝐹𝑚2))−𝑓(𝐹𝑚2)

𝜆
≤ 𝑓(𝐸𝑚1) − 𝑓(𝐹𝑚2). Taking the limit to both sides of the above 

inequality (𝑎𝑠 𝜆 ⟶ 0+) yields, lim𝜆⟶0+
𝑓(𝐹𝑚2+𝜆(𝐸𝑚1−𝐹𝑚2))−𝑓(𝐹𝑚2)

𝜆
 ≤ 𝑓(𝐸𝑚1) − 𝑓(𝐹𝑚2). The left-hand side of the last 

inequality is the directional derivative of 𝑓 at 𝐹𝑚2 in the direction of (𝐸𝑚1 − 𝐹𝑚2). Thus it becomes 
〈∇𝑓(𝐹𝑚2), 𝐸𝑚1 − 𝐹𝑚2〉   ≤ 𝑓(𝐸𝑚1) − 𝑓(𝐹𝑚2). Re-arranging last expression, we get 

𝑓(𝐸𝑚1) ≥ 𝑓(𝐹𝑚2) + 〈∇𝑓(𝐹𝑚2), 𝐸𝑚1 − 𝐹𝑚2〉.     ■ 

Proposition 4.2 Let 𝑓 be a differentiable strongly (𝐸, 𝐹)-convex function on the strongly (𝐸, 𝐹)-convex set 𝑀, then 

〈∇𝑓(𝐹𝑚2) − ∇𝑓(𝐸𝑚1), 𝐹𝑚2 − 𝐸𝑚1 〉 ≥ 0   for each 𝑚1, 𝑚2 ∈ 𝑀 
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Proof. From Proposition 4.1, we have 𝑓(𝐸𝑚1) ≥ 𝑓(𝐹𝑚2) + 〈∇𝑓(𝐹𝑚2), 𝐸𝑚1 − 𝐹𝑚2〉 and 𝑓(𝐹𝑚2) ≥  𝑓(𝐸𝑚1) +
〈∇𝑓(𝐸𝑚1), 𝐹𝑚2 − 𝐸𝑚1〉 for each 𝑚1, 𝑚2 ∈ 𝑀. Adding and re-arranging the above two inequalities implies  
〈−∇𝑓(𝐹𝑚2) + ∇𝑓(𝐸𝑚1), 𝐹𝑚2 − 𝐸𝑚1〉 ≤ 0. i.e.,  〈∇𝑓(𝐹𝑚2) − ∇𝑓(𝐸𝑚1), 𝐹𝑚2 − 𝐸𝑚1〉 ≥ 0 as required. ■ 

        Using the second derivative of 𝑓, another necessary condition for 𝑓 to be strongly (𝐸, 𝐹)-convex is shown below.                     

Proposition 4.3 If 𝑓 be a differentiable strongly (𝐸, 𝐹)-convex function on the strongly (𝐸, 𝐹)-convex set 𝑀. Then 

the Hessian matrices 𝐻(𝐸𝑚1) = ∇2𝑓(𝐸𝑚1) and 𝐻(𝐹𝑚2) = ∇2𝑓(𝐹𝑚2) are positive semi definite for all 𝑚1, 𝑚2 ∈ 𝑀. 

Proof. Suppose 𝐻(𝐸𝑚1) is not positive semi definite for some 𝑚1 ∈ 𝑀. Hence there exists 𝑚2 ∈ 𝑀 such that 

(𝐹𝑚2 − 𝐸𝑚1)〈𝐻(𝐸𝑚1), 𝐹𝑚2 − 𝐸𝑚1〉 < 0           (1) 

Consider some point lies on the line segment joining 𝐸𝑚1 and 𝐹𝑚2, namely, 𝑚∗ =  𝜆𝐸𝑚1 + (1 − 𝜆)𝐹𝑚2,  𝜆 ∈ (0,1). 
Since 𝑀 is strongly (𝐸, 𝐹)-convex set, then 𝑚∗ ∈ 𝑀. Using second order truncated Taylor's series, we have 

𝑓(𝐹𝑚2) = 𝑓(𝐸𝑚1) + 〈∇𝑓(𝐸𝑚1), 𝐹𝑚2 − 𝐸𝑚1〉 +
1

2
 (𝐹𝑚2 − 𝐸𝑚1)〈𝐻(𝑚∗), 𝐹𝑚2 − 𝐸𝑚1〉      (2) 

Choose 𝑚∗ sufficiently close to 𝐸𝑚1, we can use 𝑓 ∈ 𝐶2(continuity of second order patrials) such that 
1

2
(𝐹𝑚2 −

𝐸𝑚1)𝑇𝐻(𝑚∗)(𝐹𝑚2 − 𝐸𝑚1) < 0 where the last inequality follows from (1). Therefore, (2) becomes  𝑓(𝐹𝑚2) <
𝑓(𝐸𝑚1) + 〈∇𝑓(𝐸𝑚1), (𝐹𝑚2 − 𝐸𝑚1)〉. By Proposition 4.1, this contradicts the strongly (𝐸, 𝐹)-convexity of 𝑓 over 𝑀. 
Therefore, 𝐻(𝐸𝑚1) must be positive semi definite. In a similar manner, one can obtain the same conclusion if 
𝐻(𝐹𝑚2) = ∇2𝑓(𝐹𝑚2) is positive semi definite.                   ■ 

      For the rest of this section we apply strongly (𝐸, 𝐹)-convexity into non-linear optimization problems. Thus, let us 
consider the following nonlinear optimization problem which we denoted by (P). 

min 𝑓(𝑚) 

                                                                                  subject to     𝑚 ∈ 𝑀,   

where 𝑀 and 𝑓 are assumed as in the Assumption (A). Let 𝑔𝑖: ℝ𝑛 → ℝ be a real valued function for each 𝑖 = 1, … , 𝑟 
such that 𝑀 = {𝑚 ∈ ℝ𝑛: 𝑔𝑖(𝑚) ≤ 0  for each 𝑖 = 1, … , 𝑟}.  

Definition 4.4 In the Problem (P)  

1. The set of all global minimum (or optimal solutions) is denoted by 𝑎𝑟𝑔𝑚𝑖𝑛𝑀𝑓 and is defined as 

𝑎𝑟𝑔𝑚𝑖𝑛𝑀𝑓 = {𝑚∗ ∈ 𝑀: 𝑓(𝑚∗) ≤ 𝑓(𝑚), 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑚 ∈ 𝑀}. 

2. A point 𝑚∗ ∈ ℝ𝑛 is said to be  local minimium if there exists 𝜀 > 0 such that 𝑓(𝑚∗) ≤ 𝑓(𝑚)  for each 

𝑚 ∈ 𝐵(𝑚∗, 𝜀) ∩ 𝑀, where 𝐵(𝑚∗, 𝜀) = {𝑚 ∈ ℝ𝑛: ||𝑚 − 𝑚∗|| < 𝜀} is the neighborhood of 𝑚∗ with radius 𝜀. 

      Next, we prove that, under simple conditions, the constraint set 𝑀 of Problem (P) is strongly (𝐸, 𝐹)-convex set. 

Proposition 4.5 Let 𝑔𝑖  are strongly (𝐸, 𝐹)-convex functions for each 𝑖 = 1,2, … , 𝑟 such that 𝑀 and 𝑔𝑖  are defined as 

in Problem (P). If 𝐸(𝑀) ⊆ 𝑀 and 𝐹(𝑀) ⊆ 𝑀 then 𝑀 is strongly (𝐸, 𝐹)-convex set. 

Proof. Since 𝑔𝑖(𝑚), 𝑖 = 1,2, … , 𝑟 are strongly (𝐸, 𝐹)-convex function then, for each 𝑚1, 𝑚2 ∈ 𝑀, 𝛼, 𝜆 ∈ [0,1], we have  

𝑔𝑖(𝜆(𝛼𝑚1 + 𝐸𝑚1) + (1 − 𝜆)(𝛼𝑚2 + 𝐹𝑚2)) ≤ 𝜆𝑔𝑖(𝐸𝑚1) + (1 − 𝜆)𝑔𝑖(𝐹𝑚2) ≤ 0  ,  𝑖 = 1,2, … , 𝑟, 

where in the right most inequality we employed the assumptions 𝐸(𝑀) ⊆ 𝑀 and 𝐹(𝑀) ⊆ 𝑀. Hence, 𝜆(𝛼𝑚1 +
𝐸𝑚1) + (1 − 𝜆)(𝛼𝑚2 + 𝐹𝑚2) ∈ 𝑀. Thus, 𝑀 is strongly (𝐸, 𝐹)-convex set.        ■ 

Theorem 4.6 Consider Problem (P) such that 𝑀 be a strongly (𝐸, 𝐹)-convex set and 𝑓(𝛼𝑚 + 𝐹𝑚) ≤ 𝑓(𝑚) for each 

𝑚 ∈ 𝑀, 𝛼 ∈ [0,1]. If 𝑚∗ ∈ 𝑀 is solution of the following problem denoted by (𝑃1) 
                                            min 𝑓(𝛼𝑚1 + 𝐸𝑚1)                             
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                                          subject to  𝑚1 ∈ 𝑀 

Then 𝛼𝑚∗ + 𝐸𝑚∗ is an optimal solution of Problem (𝑃). 

Proof. On Contrary, assume that 𝛼𝑚∗ + 𝐸𝑚∗ is not a solution of problem (𝑃), then there is 𝑚2 ∈ 𝑀 such that 
𝑓(𝑚2) < 𝑓(𝛼𝑚∗ + 𝐸𝑚∗). From the assumption, 𝑓(𝛼𝑚2 + 𝐹𝑚2) ≤ 𝑓(𝑚2) < 𝑓(𝛼𝑚∗ + 𝐸𝑚∗)   for each 𝑚2 ∈ 𝑀, which 
contradicts the optimality of  𝑚∗ for problem (𝑃1). Hence 𝛼𝑚∗ + 𝐸𝑚∗ is an optimal solution of problem (𝑃). ■      

Theorem 4.7 Let 𝑀 be a strongly (𝐸, 𝐹)-convex set and 𝑓 is a strongly (𝐸, 𝐹)-convex function on 𝑀 and 

𝑓(𝐹𝑚2) ≤ 𝑓(𝑚2) and 𝑓(𝐸𝑚1) ≤ 𝑓(𝑚1) for each 𝑚1, 𝑚2 ∈ 𝑀. If 𝑚∗ = 𝐸(𝑧∗) ∈ 𝐸(𝑀) is a local minimum of problem 
(𝑃), then 𝑚∗ is global minimum of problem (𝑃) on 𝑀. 
 
Proof. Let 𝑚∗ = 𝐸(𝑧∗) ∈ 𝐸(𝑀) be a non-global minimum of problem (𝑃) on 𝑀, then, there is 𝑚2 ∈ 𝑀 such that 
𝑓(𝑚2) ≤ 𝑓(𝑚∗) = 𝑓(𝐸𝑧∗). Since 𝑓 is a strongly (𝐸, 𝐹)-convex function and 𝑓(𝐹𝑚2) ≤ 𝑓(𝑚2) for each 𝑚2 ∈ 𝑀, it 

implies that  

𝑓(𝜆(𝛼𝑚2 + 𝐹𝑚2) + (1 − 𝜆)(𝛼𝑧∗ + 𝐸𝑧∗)) ≤ 𝜆𝑓(𝐹𝑚2) + (1 − 𝜆)𝑓(𝐸𝑧∗) 

                                                                                  ≤  𝜆𝑓(𝑚2) + (1 − 𝜆)𝑓(𝑚∗) ≤ 𝑓(𝑚∗) 

By putting 𝛼 = 0, we get 𝑓(𝜆(𝐹𝑚2) + (1 − 𝜆)𝑚∗) ≤ 𝑓(𝑚∗). For any small 𝜆 ∈ (0,1), which contradicts the local 
optimality of 𝑚∗ for problem (𝑃). Hence, 𝑚∗ is a global minimum of problem (𝑃) on 𝑀.   ■    
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التحدب بقوة من النوع     (𝑬, 𝑭)وتطبيقاته على مشاكل الامثلية  

الكاظم عناد   صبا ناصر مجيدعمار عبد 
  

  
قسم الرياضيات، كلية التربية للعلوم الصرفة إبن الهيثم، جامعة بغداد، بغداد، العراق.  

 

 
 المستخلص

,𝐸) في هذا البحث قمنا بتعريف نوع جديد من المجموعات والدوال الغير المحدبة والمسماة بالمجموعات والدوال المحدبة بقوة من نوع  𝐹) توسيع  تعتبروالتي

,𝐸)قمنا بدراسة بعض الخواص الاساسية وخواص بعض الدوال المحدبة بقوة من النوع . 𝐸للمجاميع والدوال المحدبة بقوة من النوع طبيعي  𝐹) . ًدرسنا ايضا

,𝐸) خواص مشاكل الامثلية الغير الخطية والتي تكون دالة الهدف فيها او دوال القيود محدبة بقوة من النوع  𝐹) 

 

,𝐸)بقوة من النوع المجاميع المحدبة  ، Eالدوال المحدبة بقوة من النوع  ،Eبقوة من النوع المجاميع المحدبة الكلمات المفتاحية:  𝐹)،  الدوال المحدبة بقوة من

,𝐸)النوع  𝐹) 

 

 

 

 

 

 

 

 

 

 

 

   
 
 
 

 

 

 


