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1. Introduction and Preliminaries

The class of E-convex sets and E-convex functions, introduced first by Youness [18], is considered as one of the
important class of generalized classical convex sets and convex functions in finite dimensional Eucledian space. A
mapping E: R™ - R™ make a main contribution in introducing this type of generalized convexity (see Definitions 1.2
and 1.7). Inspiring by Youness initial results, Youness and many other researchers are studied further, improved,
generalized, and extended E-conexity. For instance, related to E-convex sets, Abou Tair and Sulaiman [2] and Suneja
et. al [16] applied E-convex sets in proving some inequalities. Grace and Thangavelu [5] and Majeed and Abd Al-
Majeed [9] defined E-convex hull, E-convex cone, E-affine sets, and studied some of their properties and
characterizations. As an application of E-convexity into optimization problems, Youness and his collaborators
studied optimality conditions for non-linear optimization problems, stability and duality in E-convex programming
[19-20,12-13]. E-convexity results extended to a new class that includes semi E-convex functions [3-4]. For more
results on E-convexity see e.g,, [17,15,10,1]. Youness and Emam [21] extended the class of E-convex sets and E-
convex functions into strongly E-convex sets and E-convex functions (see Definitions 1.3 and 1.8), respectively, and
studied their properties (for more recent paper on strongly E-convex sets and strongly E-convex cone sets, see
[11]). The class of semi E-convex functions is extended into the class of strongly semi E-conex functions by Youness
and Emam [22]. E-convex sets and functions are also extended to another class called (E, F)-convex sets and (E, F)-
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convex functions [6-7]. In this class, the effect of two mappings E, F: R™ — R" are taking into account in defining the
(E, F)-convex sets and functions (see Definitions 1.4 and 1.9). The results related to semi E-conexity mentioned
earlier are also extended into semi (E, F)-convexity [8]. Some basic and optimality properties are discussed in [6-7].
By combining strongly E-convexity and (E, F)-convexity, we introduce in this paper the class of strongly (E, F)-
convex sets and strongly (E, F)-convex functions and studying some of their properties. In section 2, the definitions
of strongly (E, F)-convex sets and functions are introduced. Some examples related to the new sets and functions
are illustrated. In section 3, some basic properties related to strongly (E, F)-convex functions are deduced. Finally,
section 4 discusses some differentiability properties of strongly (E,F)-convex functions. In addition, some
optimality properties of a constrained optimization problems are proved as an application of (E, F)-convexity to
optimization problems in this section.

Assume that R™ denotes the n-dimensional Euclidean space. Throughout the paper, the following assumption is
needed.
Assumption (A) Let  # M € R" and f: R" > R be a real valued function. Assume that E, F: R™ - R" are two
mappings.

For the rest of the paper, M, f, E, and F are defined as Assumption in (A) unless otherwise stated. Next, we recall
the necessary definitions and related concepts that is needed in the paper.

Definition 1.1 [14] The set M is called convex if, for each m,,m, € M and for each A € [0,1], we have Am,; +
(1-2)m, e M.

Definition 1.2 [18] The set Mis called E-convex if, for each m;,m, € M and for each A € [0,1], we have
AE(my) + (1 —A)E(m,) € M.

Definition 1.3 [21] The set M is called strongly E-convex if, for each m;,m, € M and for each A € [0,1], we have
Alamy + E(my)) + (1 — A)(am, + E(m,)) € M.forall ¢ € [0,1]

Definition 1.4 [6] The set M is called (E,F)-convex if, for each m;,m, € M and for each 1 € [0,1], we have
AE(my) + (1 — A)F(m,) € M.

Remark 1.5

i. For the rest of the paper, E(m;) andF (m,) are written as Em, and Fm,.

ii. In [19], the mappings E and F are considered as point to set maps. As a result, the set M is called (E, F)-
convex if AE(my) + (1 — A)F(m,) € M. In this paper, however, we consider E and F as point to point
mappings.

Definition 1.6 [14] The function f is said to be convex if M is convex and for each m;,m, € M, 1 € [0,1],
f@my + (1 = my) < Af (my) + (1 = A)f (my).

Definition 1.7 [18] The function f is said to be E-convex if M is E-convex and for each m,,m, € M, A € [0,1],
f(AEmy + (1 = D)Em,) < Af (Emy) + (1 — A)f (Emy).

Definition 1.8 [21] The function f is called strongly E-convex if M is strongly E-convex and for each m;,m, € M,
A, a € [0,1], we have

f(amy + Emy) + (1 — D) (am, + Emy)) < Af(Emy) + (1 — D) f(Em,).

Definition 1.9 [6] The function f is called (E, F)-convex if M is (E, F)-convex and for each m;,m, € M, A, a € [0,1],
we have f(AEm; + (1 — D)Fm,) < Af(Emy) + (1 — 1) f(Fm,).

Definition 1.10 [14] The epigraph of f is denoted by epi f and defined as epif = {(m,y) € M X R: f(m) < y}.

2. Strongly (E, F)-convex Sets and Functions
In this section, we define the class of strongly (E, F)-convex sets and the class of (E, F)-convex functions and
we provide some examples related to the new definitions. Some properties of (E, F)-convex sets are also given.

Definition 2.1 M is said to be strongly (E, F)-convex set if for each m,, m, € M and for each a, A € [0,1] we have
Alamy + Emy) + (1 — ) (am, + Fm,) € M.

An example of strongly (E, F)-convex set that is also (E, F)-convex set is given next.
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Example 2.2 Let M = {(im;,m;) € R%:m;,m, =0} and E,F:R? > R?such that E(m;,m,) = (m;,0) and
F(my,m,) = (0,%). First, we show that M is strongly (E, F)-convex set. Let m = (m,,m,) € M and m* = (mj,mj) €
M and a, A € [0,1] then

Alam + Em) + (1 — A)(am”™ + Fm”*)

= Ay mz) + (my, 00) + (1= 2) (am,m;) + (O’m?))

= AMam; + my,am,) + (1 —2) (am’{, am} + %) E M.
Next, we prove that M is (E, F)-convex set, i.e., AEm + (1 — A)Fm* € M.
AE(mqy,my) + (1 — D)F(mi,m;) = A(my,0) + (1 - 2) (0, m%) = (lml, a-2a %) € M asrequired. m
Remark 2.3 Every strongly (E, F)-convex set is (E, F)-convex set (a = 0). The converse does not hold as we show
in the next example.
Example 2.4 Let M = {(m;,m;) ER%:—1<m; <1,-1<m, <1} and E,F:R? > R?such that E(m;,m,) =
(%,%) and F(my,m,) = (zml,mz). We show that M is (E, F)-convex set but not strongly (E, F)-convex. Let

m = (my,m,) € Mand m* = (m;,m3) € M and a, 2 € [0,1]

AEm+ (1 —A)Fm* = AE(my,my) + (1 — )F(m],m3)
=25, 22) + (1 - ) (22, m3)

372 3’
= (Mt -nEE L (1- 2)m;) € M.
This shows M is (E, F)-convex set, but M is not strongly (E, F)-convex set. Indeed, take If 1 =0, @ = 1, (im],m3}) =
(1,1). Then
Aa(ny, my) + E(my,my)) + (1= D) (alni,my) + F(mi,m3)) = (1,1) + (2,1) = (,2) @ M. This shows that M is
not strongly (E, F)-convex set. m
Proposition 2.5 If a set M is strongly (E, F)-convex set. Then E(M) € M and F(M) € M.

Proof. Using the definition of strongly (E, F)-convex set, we have for any m;,m, € M, 1, € [0,1],

Alamy + Emy) + (1 — A)(am, + Fm,) € M.Whena =0and A = 1, we get Em; € M, i.e, E(M) S M. On the other
hand, when @ = 1 =0.Then Fm, € M, ie, F(M) € M. ]

Definition 2.6 Let M x RS R" X R, E,F: R" > R* and E, F: R —» R. The set M X R is called strongly (E, F) X
(E, F)-convex if for (my,y), (m,, ) € M X Rand a, 1 € [0,1], we get

(Alamy + Emy) + (1 = D) (am, + Fmy), A(ay + E@)) + (1 =D (aB +F(B)) € M X R.
A characterization between the strongly (E, F)convexity of M € R"and M X R is given next.
Proposition 2.7 M is a strongly (E, F)-convex if and only if M X R is strongly (E, F) X (E, F)-convex.

Proof. Assume that M is a strongly (E, F)-convex set, then for my,m, € M, a,1 € [0,1], and y,8 € R we have
Mam; +Em) + (1 —=D(am, + Fmy) €M and  Alay + Ey) + (1 — D) (af + FB) € R. Thus, ()L(afm1 +Emy) +
(1 - D(amy + Fmy), A(ay + Ey) + (1 — D) (af + FB)) € M X R. This shows M X R is a strongly (E,F) x (E, F)-
convex. Similarly, the other direction follows directly. m

Next, we introduce strongly (E, F)-convex function.
Definition 2.8 Let M is strongly (E, F)-convex set. A function f is said to be strongly (E, F)-convex function on M,
if for eachmy,m, € M, A, @ € [0,1], f(/l(ozm1 +Emy) + (1 —)(am, + sz)) < Af(Emy) + (1 — A f(Fmy).

Example 2.9 Let M = Rand f, E, F: R - R such that for eachm € R

2 if me[02]
1 otherwise’

famy = {
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E(m) = O0and F(m) = %.We show that f is a strongly (E, F)-convex function. For eachm;,m, € R, 1, a € [0,1]
we have f()u(zzm1 +Emy)+ @ —-D(am, + sz)) = 1 or 2. On the other hand, Af(Em,) + (1 — A)f(Fm,) =
AF(0) + (1 = Df (%) = 2.Thus, f(A(am, + Emy) + (1 — D) (am, + Fmy)) < Af (Emy) + (1 — A)f(Fm,) as
required to show. m

Remark 2.10 Every strongly (E, F)-convex function is (E, F)-convex (a = 0). The converse is not necessarly true
as it illustrated in the next example.

Example 2.11LetM = R, f: R - R,and E, F: R - R such that

_ (-1 if m=0 _ (0 if m=0
F(m) = {_2 otherwise’ E(m) = { 2 otherwise
(0 ifm=20
and F(m) = { 1 otherwise’

Let m;,m, € Rand A € [0,1]. First, we show that f(/l(Eml) +(1- A)(sz)) S Af(Emy) + (1 — A f(Fmy). We
consider four cases:

Case 1.If my = m, = 0, then f(A(Emy) + (1 — D)(Fm,)) = f(AE(0) + (1 — A)F(0)) = f(0) = —1 and
M (Emy) + (1= Df(Fmy) = Af (E(0) + (1 = DF(F(0) = Af(0) + 1 = Df(0) =-A-(1-2) = -1
Case 2.1f my # 0 and m, # 0,then f(A(Em,) + (1 — D)(Fmy)) = f(A(2) + (1 — )(1)) = —2 and
AMf(Emy) + (A =Df(Fmy) = 2f(2) + 1 = Df Q) = 2(=2) + (1 =) (-2) = -2.

Case 3:1fm; = 0 and m, # 0, then f(A(Emy) + (1 — )(Fmy)) = f(A(0) + (1 — )(1))

_ (-2 if A=0
—f(1—z)—{_1 o1

On the other hand, Af(Em;) + (1 = AD)f(Fmy) =Af(O)+ A -ADf(D)=AFD+ A -D(-2)=21—-2.
Case 4: If m; # 0 and m, = 0, then f(A(Emy) + (1 — D)(Fmy)) = f(A(2) + (1 — 1) (0))

B (-1 if1=0

and Af(Emy) + (1 = DF(Fmy) = Af(2) + (1 = DFO) = A(=2) + (1 = D(-1) = -1 — A

From all cases, f(/’l(Eml) +(1- A)(sz)) < Af(Emy) + (1 — A)f(Fm,). Now, we show that f is not strongly
(E, F)-convex function. Leta = 1,m; = —2,m, = 0,4 = 1, then

f(a(amy + Emy) + (1 = D) (amy + Fmy)) = f(=2+ E(=2)) = f(=2+2) = f(0) = -1,
On the other hand, Af (Em,) + (1 — D)f(Fm,) = f(E(-2)) = f(2) = —2.

Thus, f()L(am1 +Emy)+ (1 —-D(am, + sz)) > Af(Emy) + (1 — A)f(Fm,). This means f is not strongly (E, F)-
convex function. [ ]

3. Some Properties of Strongly (E, F)-convex Functions

In this section, we discuss some basic properties of strongly (E,F )-convex functions such as closedness,
supremum and composite properties. But first we start with the following proposition.
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Proposition 3.1 If f strongly (E, F)-convex function on the strongly (E, F)-convex set M, then f(am, + Em;) <
f(Emy) and f(am, + Fm,) < f(Fm,), for eachm,,m, € M and a € [0,1].

Proof. From the assumptions on M and f, we have for each m,,m, € M and for all 1, @ € [0,1], we have
Alam; + Emy) + (1 — A)(am, + Fm,) € M and f(/l(aml +Emy) + (1 - (am, + sz)) < Af(Emy) +
(1 = A)f(Fm,).Thenfor A =1, f(am,; + Em;) < f(Em,) and for A = 0, we obtain f(am, + Fm,) < f(Fm,).

Proposition 3.2 If f;: R" - R,i = 1,2, ..., n are strongly (E, F)-convex functions on the strongly (E, F)-convex set M
such that f(m) = }1-, a;f;(m), then f is strongly (E, F)-convex function on M foreacha; = 0,i = 1, ..., n.

Proof. Since f;, forall i = 1,2, ...,n are strongly (E, F)-convex function on a strongly (E, F)-convex set M, then for

eachm;,m, € M and for all 4, € [0,1], we have A(am,; + Em;) + (1 — )(am, + Fm,) € M and

f(/l(ocm1 +Emy) + (1 —A)(am, + sz)) = Z a;f;(A(am; + Em,) + (1 — 1) (am, + Fm;))

i=1
SA¥LiaifiEmg) + (1 — ) ¥y aifi(Fmy)
= Af(Emy) + (1 = Df(Fmy)
This implies, f is strongly (E, F)-convex functionon M. =
Proposition 3.3 Let / be an index set and f;: R" — R for eachi € I be a family of bounded above and strongly
(E, F)-convex functions on the strongly (E, F)-convex set M. Then, f(m) = sup;¢; f; (n) is a strongly (E, F)-convex

on M.

Proof. From the assumptions, for each m;, m, € M and for each 4, « € [0,1], we have A(am; + Em,) +
(1-2A(am, + Fm,) € M and

f(A(amy + Emy) + (1 — D) (am, + Fmy)) = sup{f;(A(am; + Emy) + (1 — D(am, + Fm,))}
i€l
< Silé?{lﬁ(Eml) + A = Dfi(Fmy)}

where in the last inequality we used the fact that f; is strongly (E, F)-convex for each i € I and f; is bounded above
forall i € I. The inequality above yields

= ASPPfi(EmJ + (- A)Squi(sz) =Af(Emy) + (1 — Df (Fmy).
A e
This means f is a strongly (E, F)-convex on M. ]

Proposition 3.4 Let f be a strongly (E, F)-convex function on the strongly (E, F)-convex set M. Let
G:R — Rbe a non-decreasing convex function, then G o f is a strongly (E, F)-convex function on M.

Proof. Let m{,m, € M and 4, a € [0,1]. From the assumptions on M and f, we get A(am, + Em,) +
(1 —-A)(am, + Fm,) € M and

f( Alam; + Emy) + (1 — D) (am, + sz)) < Af(Emy)+ (1 —-A)f(Fmy)
From the assumptions on G, the last inequality yields
(G o HHAlamy + Emy) + (1 =D (amy + Fmy)) < G o (Af(Emy) + (1 = Df (Fmy))

SA(Gef)EM) + (1 =D(G e f)(Fmy)
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This implies, G o f is strongly (E, F)-convex functionon M. m

Next, we show that, under mild condition, the epigraph of strongly(E, F)-convex functions is
strongly(E, F)-convex set.

Proposition 3.5 Let M is strongly (E, F)-convex. Let E, F: R - R be two mappings such that E(f(m,)) = f(Em,)
and F(f(m,)) = f(Fm,) for each m; ,m, € M.If f is strongly (E, F)-convex on M, then epif is strongly
(E,F) x (E,F)-convexseton M X R.

Proof. Let (m4,y), (m,, B) € epif.From the assumption on M, we have for each a, A € [0,1]

Alamy + Emy) + (1 — D) (am, + Fm,) € M. Noting that Em; € M for « =0, A =1 and Fm, € M for a =1 = 0.

Since f(my) <v,f(my) <p then f(Em;) =E(f(m) < E(y) and f(Fm,) =F(f(m,)) < F(B) where E(y),
F(B) € R. Thus, (Emy, Ey),(Fm,, FB) € epif.Since f is strongly (E, F)-convex function on M. Then

f(/l(ozm1 +Emy)+ (A —-D(am, + sz)) < Af(Emy) + (1 — A f(Fmy)
<AE() + (1 = DFEPB).

Thus, (/1(051711 +Emy) + ({1 =D (am, + Fm,),AE(y) + (1 — /1)17([3)) € epif. This implies that epif is strongly
(E,F) x (E,F)-convexon M xR. m

4. Differentiability and Optimality Properties of Strongly (E, F)-convex Functions

In this section, we provide some necessary conditions for a differentiable function f to be strongly (E, F)-convex
function. We also consider some optimality properties of non-linear optimization problems in which the objective
function or the inequality constraints functions are strongly (E,F)-convex. Let us start with the following
differentiability gradient property related to strongly (E, F)-convex functions.

Proposition 4.1 Let f be a differentiable strongly (E, F)-convex function on the strongly (E, F)-convex set M, then
f(Emy) = f(Fm,) + (Vf(Fm,), Em; — Fm,) foreachm,,m, € M,

where Vf(.) denotes the gradient vector of f at a point belongs to M.

Proof. Since M is strongly (E, F)-convex and f is differentiable on M, then using Proposition 2.5, f is differentiable
on E(M) € M and F(M) < M. Consider m,,m, € M and arbitrary A € [0,1], and a € (0,1]. If E(m,) = F(m,), then
the gradient inequality directly satisfied. If E(m;) # F(m,), then using the strongly (E, F)-convexity of f, we have
f(/l(aml +Emy) + (1 —A)(am, + sz)) < Af(Emy) + (1 — A)f(Fm,). That s,

f((am, + Fmy) + A((am; + Em,) — (am, + Fm,)) < f(Fmy) + A(f(EmJ - f(sz))

By taking a — 0%, we get f(Fm, +A(Em; — Fmy)) < f(Fmy) + A(f(Em,) — f(Fm,)). Re-arranging the last

[(Fma +A(Ems ~Fmg))=f (Fmz) < f(Em,) — f(Fm,). Taking the limit to both sides of the above

p)
+ f(FmZM(EmI;FmZ))_f(FmZ) < f(Em,) — f(Fm,). The left-hand side of the last

inequality is the directional derivative of f at Fm, in the direction of (Em,; — Fm,). Thus it becomes
(Vf(Fmy),Em; — Fm,) < f(Em,) — f(Fm,). Re-arranging last expression, we get

inequality yields,

inequality (as A — 07%) yields, lim,_,,

f(Emy) = f(Fm,) +(Vf(Fm,),Em; — Fm,). =

Proposition 4.2 Let f be a differentiable strongly (E, F)-convex function on the strongly (E, F)-convex set M, then
(Vf(Fm,) —Vf(Em,),Fm, —Em, ) >0 foreachm;,m, € M
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Proof. From Proposition 4.1, we have f(Emy) = f(Fm,) +(Vf(Fm,),Em; — Fm,) and f(Fm,) > f(Em,) +
(Vf(Em,),Fm, — Em;) for eachm,;,m, € M. Adding and re-arranging the above two inequalities implies
(=Vf(Fm,) + Vf(Em,),Fm, — Em,) < 0.i.e., (Vf(Fm,) — Vf(Em,),Fm, — Em,) = 0 as required. m

Using the second derivative of f, another necessary condition for f to be strongly (E, F)-convex is shown below.

Proposition 4.3 If f be a differentiable strongly (E, F)-convex function on the strongly (E, F)-convex set M. Then
the Hessian matrices H(Em,) = V2f(Em,) and H(Fm,) = V2f(Fm,) are positive semi definite for all m;,m, € M.

Proof. Suppose H(Em,) is not positive semi definite for some m,; € M. Hence there exists m, € M such that
(sz _Eml)(H(Eml),FmZ _Eml) < 0 (1)

Consider some point lies on the line segment joining Em, and Fm,, namely, m* = AEm,; + (1 — A)Fm,, 1 € (0,1).
Since M is strongly (E, F)-convex set, then m* € M. Using second order truncated Taylor's series, we have

f(Fmy) = f(Emy) + (Vf(Em,), Fm, — Em,) +§ (Fmy — Em;)(H(m"),Fm, — Em,)  (2)

Choose m* sulfficiently close to Em,, we can use f € C2(continuity of second order patrials) such that ;(sz -

Em)TH(m*)(Fm, — Em,;) < 0 where the last inequality follows from (1). Therefore, (2) becomes f(Fm;) <
f(Emy) + (Vf(Em,), (Fm, — Em,)). By Proposition 4.1, this contradicts the strongly (E, F)-convexity of f over M.
Therefore, H(Em,) must be positive semi definite. In a similar manner, one can obtain the same conclusion if
H(Fm,) = V2f(Fm,) is positive semi definite. n

For the rest of this section we apply strongly (E, F)-convexity into non-linear optimization problems. Thus, let us
consider the following nonlinear optimization problem which we denoted by (P).

min f(m)
subjectto me M,

where M and f are assumed as in the Assumption (A). Let g;: R™ — R be a real valued function for each i = 1, ...,r
suchthat M = {m € R™: g;(m) <0 foreachi=1,..,r}

Definition 4.4 In the Problem (P)

1. The set of all global minimum (or optimal solutions) is denoted by argminyf and is defined as
argminyf = {m* € M: f(m*) < f(m), for each m € M}.

2. A point m* € R" is said to be local minimium if there exists € > 0 such that f(m*) < f(m) for each
m € B(mm*, &) N M, where B(m*, &) = {m € R™: ||m — m”"|| < €} is the neighborhood of m* with radius «.

Next, we prove that, under simple conditions, the constraint set M of Problem (P) is strongly (E, F)-convex set.

Proposition 4.5 Let g; are strongly (E, F)-convex functions for each i = 1,2, ...,r such that M and g; are defined as
in Problem (P). If E(M) € M and F(M) € M then M is strongly (E, F)-convex set.

Proof. Since g;(m),i = 1,2, ..., r are strongly (E, F)-convex function then, for each m,,m, € M, @, 1 € [0,1], we have
gi(/l(ozm1 +Emy) + (1 —A)(am, + sz)) <Agi(Em)+ (1 -21)g;(Fm,) <0 ,i=12,..,1,

where in the right most inequality we employed the assumptions E(M) € M and F(M) € M. Hence, A(am, +
Emy) + (1 — A)(am, + Fm,) € M. Thus, M is strongly (E, F)-convex set. =

Theorem 4.6 Consider Problem (P) such that M be a strongly (E, F)-convex set and f(am + Fm) < f(m) for each
m € M, a € [0,1]. If m* € M is solution of the following problem denoted by (P;)
min f (am, + Em,)
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subjectto my € M
Then am™ + Em” is an optimal solution of Problem (P).

Proof. On Contrary, assume that am* + Em* is not a solution of problem (P), then there is m, € M such that
f(m,) < f(am”™ + Em”). From the assumption, f(am, + Fm,) < f(m,) < f(am*+ Em*) for each m, € M, which
contradicts the optimality of m* for problem (P;). Hence am® + Em” is an optimal solution of problem (P). m

Theorem 4.7 Let M be a strongly (E,F)-convex set and f is a strongly (E,F)-convex function on M and
f(Fmy) < f(m,) and f(Em,) < f(m,) for each my,m, € M. If m* = E(z*) € E(M) is a local minimum of problem
(P), then m” is global minimum of problem (P) on M.

Proof. Let m* = E(z*) € E(M) be a non-global minimum of problem (P) on M, then, there is m, € M such that
f(m,) < f(m*) = f(Ez"). Since f is a strongly (E, F)-convex function and f(Fm,) < f(m,) for each m, € M, it
implies that

f(/l(ozm2 +Fmy)+ (A —D(az* + Ez*)) SAf(Fmy) + (1 —Df(Ez")

< Af(mx) + A =Df(m*) < f(m?)
By putting a = 0, we get f(A(Fm,) + (1 —A)m") < f(m"). For any small 1 € (0,1), which contradicts the local
optimality of m” for problem (P). Hence, m* is a global minimum of problem (P) on M. =

References

[1] M. I. Abdulmaged, On Some Generalization of Convex Sets, Convex Functions, and Convex Optimization Problems,
MS.c. Thesis, Department of Mathematics, College of Education Ibn AL-Haitham, University of Baghdad, Iraq, (2018).

[2] L. A. Abou-Tair, and W. T. Sulaiman, Inequalities via convex functions, International Journal of Mathematics and
Mathematical Sciences, 22(1999), 543-546.

[3] X. Chen, Some properties of semi E-convex functions, Journal of Mathematical Analysis and Applications,
275(2002), 251-262.

[4] X. Chen, Some properties of semi-E-convex functions and semi-E-convex programming, The Eighth International
Symposium on Operations Research and Its Applications (ISORA'09), (2009), 20-22.

[5] J. S. Grace, and P. Thangavelu, Properties of E-convex sets, Tamsui Oxford Journal of Mathematical Sciences,
25(2009), 1-7.

[6] ]. B. Jian, On (E, F) generalized convexity, International Journal of Mathematical Sciences, India, 2 (1) (2003), 121-
132.

[7]1 J. B. Jian, Incorrect results for E-convex functions and E-convex programming, Mathematical Research and
Exposition, 23 (3) (2003), 461-466.

[8] J.B. Jian, and Q. J. Hu, and C. M. Tang, semi-(E, F)-convex functions and semi-(E, F)-convex programming,
International Journal of Pure and Applied Mathematics, 14 (4) (2004), 437-451.

[9] S. N. Majeed, and M. I. Abd Al-Majeed,Some notions on generalized convex sets and affine sets, 23t Scientific
Specialized Conference, College of Education, University of Al-Mustansiryah, (2017), 30-40.

[10] S. N. Majeed, and M. I. Abd Al-Majeed, On convex functions, E-convex functions and their generalizations:
applications to non-linear optimization problems, International Journal of Pure and Applied Mathematics, 116 (3)
(2017), 655-673.



74  Ammar, A/Saba, N JQCM - Vol.11(3) 2019, pp Math 66-75

[11] S. N. Majeed, On Strongly E-convex Sets and Strongly E-convex Cone Sets, Journal of AL-Qadisiyah for computer
science and mathematics, 11 (1) (2019), 52-59.

[12] A. A. Megahed, H. G. Gomma, and E. A .Youness, and A. H. El-Banna, A study on the duality of E-convex non-
linear programming problem, International Journal of Mathematical Analysis, 7 (4) (2013), 175 -185.

[13] A. E. M. A. Megahed, H. G. Gomma, E. A. Youness, and A. Z. H. El-Banna, Optimality conditions of E-convex
programming for an E-differentiable function, Journal of Inequalities and Applications, 246 (1) (2013), 175-185.

[14] R. T. Rockafellar, Convex Analysis, Princeton University Press, Princeton, (1970).

[15] M. Soleimani-damaneh, E-convexity and its generalizations, International Journal of Computer Mathematics, 88
(16) (2011), 3335-3349.

[16] S. K. Suneja, C. S. Lalitha, and M. G. Govil, E-convex and related functions, International Journal of Management
and Systems, 102(2002), 439-450.

[17] Y-R. Syau, and E. S. Lee, Some properties of E-convex functions, Applied Mathematics Letters, 18(2005), 1074-
1080.

[18] E. A. Youness, E-convex sets, E-convex functions, and E-convex programming, Journal of Optimization Theory
and Applications, 102(1999), 439-450.

[19] E. A. Youness, Optimality criteria in E-convex programming, Chaos, Solitons & Fractals, 12 (9)( 2001), 1737-
1745.

[20] E. A. Youness, Stability in E-convex programming, International Journal of Mathematics and Mathematical
Sciences, 26 (10) (2001), 643-648.

[21] E. A. Youness, and T. Emam, Strongly E-convex sets and strongly E-convex functions, Journal of Interdisciplinary
Mathematics, 8 (1) (2005), 107-117.

[22] E. A. Youness, and T. Emam, Semi Strongly E-convex functions, Journal of Mathematics and Statistics, 1 (1)
(2005), 51-57.



Ammar, A/Saba, N JQCM - Vol.11(3) 2019 « PP .Math 66-75 75

£ 5 Cpa gy aatl) (E, F)4tiaY) JSUia o 4dliydig
Laa palilua ale B e jlee

LA 203k el Aaala caliagd) ol 4 el o glall 4y i) A0S ccilpaly 1) anid

130l
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(E,F) g5 (3858 danae 3 gal) J) g0 gl Lgad o) Al 0 o5 Al g Aadadll pall 4056 JSUIa al g2
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(E,F) g5



