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ARTICLEINFO ABSTRACT

In life, a chaotic system has many applications in different fields, including physics, biology,
communication, and cryptography. In this study, a new hyperchaotic system is introduced.
This hyperchaotic system is a two-dimensional system that is based on three maps-namely,
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proposed system, a new algorithm for image encryption is also introduced. Confusion and
diffusion can be achieved with this algorithm, which are fundamental demands. The
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Chaotic encryption. .
security parameters and common attacks.
MSC.

1. Introduction

A few years ago, the communications industry was established as an integral part of our life because of its
importance in the transmission of information. In the processes of data transmission, the confidentiality of the
information being sent and received is an important issue. However, traditional methods of encryption, such as the
Advanced Encryption Standard, Data Encryption Standard, and Rivest Cipher 4 (RC4), are largely considered unsafe
for securing images; their distinguishing features include bulk data capacity, high redundancy, and strong adjacent
pixel correlation [1]. Many researchers have therefore introduced several image encryption algorithms, such as
compressive sensing [2-4], wavelet transmission [5,6], DNA coding [7], affine transformation [8], neural network
[9], blowfish algorithm [10], RC4 [11], and chaotic mapping [1,12-16]. Virtually, a chaotic map exhibits better
results versus the other methods because of its complexity, mixing, and randomness, which are similar to the
characteristics of the diffusion and confusion principles of cryptography.

Corresponding author Ahmed Sh. Ahmed

Email addresses: ahmedshihabinfo@conursing.uobaghdad.edu.ig

Communicated by Dr. Mustafa Jawad Radif


mailto:ahmedshihabinfo@conursing.uobaghdad.edu.iq
mailto:ahmedshihabinfo@conursing.uobaghdad.edu.iq
mailto:husseinalali6@gmail.com
mailto:jalalalqaisy1@gmail.com

70 Ahmed Sh./ Hussein A./ Jalal Q. JQCM - Vol.11(3) 2019, pp Comp.69-85

Chaotic maps used for the purpose of image encryption are more effective because of their high security as well as
fast speed. There are two main types of chaotic maps: one-dimensional (1D) chaotic maps, which are dependent on
one variable, and high-dimensional (HD) chaotic maps. Image encryption based on 1D chaotic maps is considered
risky [1], whereas algorithms based on HD chaotic maps are considered more safe and suitable for encryption. HD
systems should satisfy two requirements: first, the system must be discrete, or the properties of the dynamical
system must be discretized, and, second, the system must be as simple as possible so as to increase the encryption
speed. Many researchers in recent years have developed algorithms on the basis of chaotic maps. In 2010, Liu et al.
[17] introduced a new algorithm for image encryption on the basis of robust chaotic maps. In 2011, Ye et al. [18]
proposed a new image algorithm based on a chaos system with an efficient permutation-diffusion mechanism. In
2013, Sheng et al. [19] presented a novel bit-level image encryption protocol developed on the basis of hyperchaotic
systems. Separately, Wang et al. [20] developed an algorithm by employing dynamic S-boxes and two 1D chaotic
maps, while Xiaoling et al. [21] showcased a new algorithm for image encryption on the basis of hyperchaos and
deoxyribonucleic acid (DNA) sequences. In 2015, Rasul et al. [22] proposed a novel algorithm for image encryption
on the basis of a hybrid model of DNA and cellular automata. In the same year, Wang et al. [23] introduced an
algorithm for image encryption by utilizing the chaotic shuffling diffusion method. Hua et al. [15] presented a new
algorithm for image encryption on the basis of a two-dimensional (2D) sine logistic modulation map, while Wang et
al. [24] used DNA sequencing operations and chaotic systems for image encryption and Koppu et al. [25] employed
hybrid chaotic magic transformation for image encryption. In addition, Wenhao et al. [13] relied on a new 2D system
based on sine mapping and iterative chaotic map to design a novel bit-level image encryption algorithm.
Furthermore, in 2016, Liu et al. [26] proposed a novel algorithm that used a logistic chaotic map to encrypt images.
Li et al. [27] offered a new algorithm that incorporated pixel-level and bit-level permutations to encrypt images on
the basis of hyperchaotic maps. Hayder et al. [16] suggested a new hyperchaotic map based on three maps called
2D-SHAM and offered a new image encryption algorithm based on the proposed system. Finally, in 2018, Ca et al. [1]
adopted new 2D hyperchaotic maps and used them as a basis for a new algorithm for image encryption called 2D
logistic iterative chaotic map with infinite collapse (ICMIC) cascade mapping (2D-LICM).

To vanquish the weaknesses of the other encryption algorithm, this article proposes a new two-dimensional (2D)
hyperchaotic system which is derived from three maps-namely, logistic, iterative chaotic, and Henon maps.
Performance analysis of this system shows highly complicated dynamics, hyperchaotic properties and better
ergodicity. Used this chaotic system security applications to generate a novel image encryption algorithm. this
algorithm mainly depending on divided the plaintext and generate four different key (multi-key) generated from the
hyperchaotic system to increase complicate and decrease the time. The encryption process mainly depending on
row encryption and column encryption. The plain-image is divided into blocks to generate four different key (multi-
key) based on the proposed hyperchaotic system to increase the complexity and reduce the computation time.
Finally, to show the efficiency of the encryption image, some performance analysis tests are performed such as;
histogram, NPCR, correlation, and entropy. The proposed image encryption algorithm is compared with some other
encryption algorithms. The efficiency and analysis of security of this algorithm showed a reasonable improvement
over them. The present paper is organized as follows: we first introduce a 2D version of the hyperchaotic map in
section 2. Section 3 presents a performance evaluation of the aforementioned novel 2D hyperchaotic map. Section 4
proposes simulation results of the algorithm of image encryption depending on four keys generated from the system
of the new 2D hyperchaotic map, and Section 5 includes the conclusion details of this paper.
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2.2D Novel Hyperchaotic Map
2.1. Definition of Existing Chaotic Maps
Henon map [28] is 2D discrete time system defined as
Xip1 = 1—ax® +y;
Yi+1 = by;
where a € [0,1.4], b = 0.3 are system parameters.
Alogistic map [29] is a 1D discrete time system defined as
Xipp = X (1 = x;)
where 7 is a system parameter, r € (0, +).

An ICMIC [30] is 1D similar to the logistic map, mathematically, and is defined as

Xiva = Sin(/x)

where c is a system parameter, ¢ € (0, +0).

(1)

(2)

(3)

In a dynamical system, the bifurcation diagram refers to a system phenomenon that introduces a new behavior as
variable parameters. The bifurcation of preliminary chaotic maps (i.e., Henon map, logistics map, and ICMIC) is

illustrated in Figure 1.
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Figure 1: Bifurcation of a (a) Henon map, (b) logistics map, and (c) ICMIC.

2.2. Definition of A Novel 2D Hyperchaotic Map

Based on the aforementioned maps, we present a novel 2D hyperchaotic map, mathematically defined as:

Xip1 = 28in(2y; (1 = ;) + sin(21/(2x; + (k/2m)sin(x,)))

Yisr = 21x3 +sin(21/(r + (ky; + 3)y:(1 — ¥:)))

4)

Where k and r are system parameters and k € (0,100) and r € (0,10). From the realized Lyapunov exponents, the

system can be said to be a new 2D hyperchaotic map.
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2.3. Presentation and Performance of The Novel 2D Hyperchaotic Map

In this section, we evaluate the performance of chaotic systems (e.g., phase diagram, Lyapunov exponents, and
permutation entropy). We also compare the novel 2D hyperchaotic map with other chaotic maps, such as a 2D-LICM
and a 2D sine ICMIC modulation map (2D-SIMM).

2.3.1 Phase Diagram

The dynamical system trajectory is a series of values that show the movement track of the output of a system. We
set the parameters k and r to ensure that the maximum range spreads in the phase space. With these settings, we
can safeguard the perfect property of the ergodic dynamical system and conform to the structure of the new
hyperchaotic map. Attractors of 2D-LICM [1], 2D-SIMM [15], and our chaotic maps are shown in Figure 2. The
diagrams show that the distribution of the new hyperchaotic map is greater than those of 2D-LICM and 2D-SIMM.
Hence, the randomness and ergodicity properties of the former are more superior than those of the two latter.
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Figure 2: Attractors of (a) 2D-LICM, where a = 0.6, k = 0.8; (b) 2D-SIMM, where a =1, b = 5; and (c) the new 2D hyperchaotic
map, where (r,k) = (0.8,0.6).
2.3.2 Lyapunov Exponents Spectrum

A Lyapunov exponent (LE) is a measure of the rate between the neighbouring trajectories to where convergence
or divergence occurs and can be defined as [31].

o 1 lsx@l]
A= o (®)
Sx(t
where ” Szgo))“ is the distance between two trajectories, or can be defined as [32]

1
A= llm;Z tili' (6)
On the other hand, the Qs decomposition algorithm [33] calculated LEs and defined them as follows:
LE = ;XX Ry(v,v))| (7)

Where v = 1,2, ... and N is the number of iterations. The LEs A1 and 1,5, which have a distribution in the new
hyperchaotic map with reference to r and k parameters, are illustrated in Figure 3. In Figures 3a and 3b, the system
is hyperchaotic, where r = 0.6, = 2.6, and k = (0,100). In Figures 2c and 2d, the system also is hyperchaotic,
where k = 0.6, k= 2.6,and r = (0,100).
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Figure 3: (a,b) LE spectrum of the new hyperchaotic map, where r = 0.6, r = 2.6, and k = (0,100).

(c,d) LE spectrum of the new hyperchaotic map, where k = 0.6, k = 2.6, and r = (0,100).

2.3.3 Approximate Entropy

Approximate entropy (ApEn) is a type of entropy that explains the quantitative complexity of a signal. ApEn is
used to measure information that is necessary to know in order to predict a dynamical system. ApEn can be
mathematically expressed as follows:

ApEn(m,r,n) = ®™(r) — d™H1(r) (8)
Where m is the embedding dimension and r is the tolerance. Additionally, it can also be expressed as
dM(r) =[n—(m— 1)1t yrom=Dr, B 9)
=1 n—-(m-1t
Where m = 2 and time delay 7 = 1.

Figure 4 shows the ApEn for several different chaotic maps such as 2D-LICM [1], 2D-SIMM [15], and 2D-HGSM
[33]. We show that the new hyperchaotic map and 2D-LICM are close to some of the other maps. Thus, the new
hyperchaotic map can be used to encrypt images that exhibit randomness and large chaotic sequences.
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Figure 4: (ApEn) of several chaotic maps.
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3. Simulation Results of Image Encryption Algorithm Based on the New 2D Hyperchaotic Map

In this section, a new algorithm for image encryption based on the new hyperchaotic map is introduced.
This new algorithm consists of five steps to obtain a cipher image. The first step involves changing the
location of the pixels. The second step includes dividing the image into four parts, with each part having a
different key. The third and fourth steps involve confusion and diffusion operations, respectively.
Confusion involves randomly shuffling the position of the pixels, while diffusion involves altering the
values of the pixels. These operations are repeated twice. Eventually, the various parts of the image are
merged in order to obtain the cipher image. The structure of the algorithm is illustrated in Figure 5.

Bit
manipulation
confusion of |

Chaotic
Matrix

Divide image into 4 parts

Replacement location of pixels

Figure 5: The structure of the algorithm

3.1 Changing the Location of the Pixels

The first step of our algorithm depends on the creation of a matrix of all elements, starting from the integer 1 and
going to the maximum row corresponding to the dimension of the rows of the plain image. However, these rows are
scattered. An example is shown in Table 1.

Table 1: Create a row and change elements’ location of it

0ld row 1 2 3 ... MR

New row 25 10 19 . Ny

The same idea applies to the columns and is shown in Table 2.

Table 2: Create a column and change elements’ location of it

0Old column 1 2 3 .. MC

New column 23 11 15 .. N,
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Where MR and MC are the maximum row and maximum column, respectively. So, we created a matrix N; X N,
based on the new location of new rows and new columns, such that a change in location of the pixels of a plain
image can be based on the new matrix N; X N,. For example, shown in Figure 6.

(22)/32)33) (22)(32) 33)
(23)((21) (13) (23)(21) (L3)
(11)(3.1)(L2) (11)(3.1)(L2)

Figure 6: Changed locations of pixels of a plain image.

21
31

Then, the changed locations of the pixels of the plain image are shown in Figure 7.

Figure 7: (a) Plain image and (b) changes in the pixels' locations of a plain image.

3.2 Dividing the Image into Four Parts

The second step of our algorithm involves dividing the resulting image generated after changing the locations of
the image’s pixels into four parts such that each part passes through the rest of the parts alone and becomes
integrated into those other parts to obtain the cipher image. An example of this concept is shown in Figure 8.
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first part

second part

third part fourth part

Figure 8: An example of dividing an image resulting from changes in the locations of pixels of an image into four parts.

3.3 Generation Keys

The key space should be larger than 2190 so as to avoid any attack on a chaotic encryption system [13]. Our
algorithm has four different keys, such that each 256-bit key K = {x¥, y&, ak, wf, w¥, G¥, G5}, k = 1,2,3,4 ..., where
(xk, vk, ak) are the initial conditions of the new hyperchaotic system and (w},w}, G}, G}) are the involvement
parameters. The algorithm for generating secret keys according to the new hyperchaotic map is shown in Algorithm
1.

Algorithm 1 The generation of initial states for the new hyperchaotic map.
Input: Secret key K with the length of 232 bits.

Output: Initial states (x&, y&, ak) where k = 1,2,3,4.

52-1
G

_(Zlot K[i] x 2104+ z)/
Yo = 252>

(ZISEOSK l] X 2156 l)/
252!

1205, K[i] x 218070,
w, = ( i=157 [] )/224,

204 ; 204-i
w, = Qi=re K[i] > 2 )/224;
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228 ; 228-i
G, = Q=205 K[i] X 2 )/224;

(2?3291([1'] X 2252—1‘) .
G, = 224

Fori=1to 4
x§ = (x9+ wy XG,)mod 1;
y(,)c: (y0+ WZ XGz)mOdl,

if xX& y¥ =0 then

xk =0.7271;
y& =0.7271;
end if

ak = (x0/¥0) + (%o + wy X Gy ) mod 1;

end for

From this algorithm, we generated four secret keys that depended on initial conditions(x{,y&, ak). The four
generated keys are shown below:

K, = DODA73E21A30D089C2A04B06040C545C508800048308428B03260204C0402C2
K, = 097147A4988C4384430040D1522314000E3800C0708055636214415085408C2
K3 = 20501722604AC0AB35B43820B752581E8A0000830203BE08140AC601AC08208
K, = 11924E890E3A0AE2880804B1288302000€308506901019E884AC01589C5C920

where each key has a 256-bit.

So, the initial states of (x},y8ad), (x2,v2,a?), (x3,y3,a3) and  (x3,ys,af) are
(0.9217,0.1395,6.7605) , (0.0442,0.2286,0.3407) , (0.2528, 0.1684,1.9496) , and (0.3764,0.9881,1.2005) ,
respectively. From this collection of initial states, we can create S;,S,, S; and S, matrices by way of the new 2D
hyperchaotic map. Then, we used these matrices to apply the confusion and diffusion operations. We can apply this
algorithm to any digital image of any formula.

3.4 Bit Manipulation Confusion

The output distribution is affected depending on the secret key of the property of confusion [34]. The random
confusion of bit manipulation shuffles the pixel locations within the image, depending on the chaotic matrix
generated by the new 2D hyperchaotic map. We suppose that P;, where i = 1,2,3,4, is some part divided from the
plain image, while S;, where i = 1,2,3,4, is the generated chaotic matrix. All elements of the matrix are represented
by p bits. The definition of bit manipulation is expressed as follows:

T = B(P,S).

We illustrate and describe the detailed process of bit manipulation confusion in Algorithm 2. Figure 9 shows an
example of bit manipulation confusion. The streams of the binary from S are placed in the locations of the most
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significant bits. Thus, S controls the change of the location of the pixels. In the confusion operation, the order or
arrangement of pixels in any location or part of the image can be changed.

Algorithm 2 Bit manipulation confusion T = B (P, S).
Input: Image P and chaotic matrix S. They are of size Q X W and their elements are represented by p bits.

Output: Bit manipulation confusion result T.

Initial a matrix R of size Q X W;
q = [log2(QW)];
fori = 1toQ do

1toW do

forj
t=0—-DW +j;

tb = Bin(t, q); {Bin (x,n) transforms the integer number x into n bits.}

R; = ]oint(Si,]-, th, Pii,j); {Joint (x1, x2, x3) joints the 3 binary sequences x1, x2, x3 into one binary sequence by
order.}

end for

end for

R = Sort (R); {Sort R(X) sorts the matrix X along horizontal direction.}

R = Sort (R); {Sort R(X) sorts the matrix X along vertical direction.}

T = FetEnd(R1:Q,1:W,p); {FetEnd (x,n) fetches the last n bits from the binary sequence x.

3.5 Bit Manipulation Diffusion

The diffusion operation exerts a significant effect on ciphertext change, such that a one-bit change of a plain image
causes each part of the ciphertext to change by 50% [34]. We used the chaotic matrix S to change pixels. This
operation was repeated twice. The change can be posted in single pixels throughout the entire image. The definition
of bit manipulation diffusion is expressed as follows:

Ti,jGBTQ,W@SiJ fOT'i = 1,j =1
=1{Tij@0i-1w® Sy fori#1j=1 (10)
Ti_jGBOi_j_lEBSi_for Jj# 1

Ol]

Where O is the bit manipulation diffusion result and @ is the bitwise XOR operation. This part is an inverse
operation of the decryption process.
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Figure 9: An example of bit manipulation confusion of some parts of a plain image.
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The decryption process of this part is to do the inverse operation, which can be mathematically expressed as
follows:

Ti,jGBOi,j_léBSi,j fOTj *1
Oi,]' = Ti'j@oi_LW@Si'j, fOT'i * 1,] =1 (11)
Ti']’QTQ'Wesi']’ fOTi = 1,] =1

By using two different chaotic matrices and, following two rounds of the bit manipulation confusion and diffusion
operations, we merged the four parts of a plain image to obtain a cipher image that is unrecognizable.

4. Simulation Results and Reliability

Any image encryption system should have the strength to encrypt any image with different formulas into a
random image without clear milestones. In this section, we introduce the simulation results of our image encryption
for different kinds of images, and its reliability is also discussed.

4.1 Simulation Results

In this study, we used the MATLAB language (MathWorks, Natick, MA, USA) to implement our algorithm on
different types of greyscale images and apply it to RGB images. Figure 10 illustrates the simulation results of
greyscale images. In this simulation, we can observe that our system can encrypt images into random cipher images
that do not have clear milestones. By using different keys to encrypt images, we can reconstruct the original image.
Figure 10 also illustrates the histograms of the greyscale images.

Plain image Cipher images Histograms
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Figure 10: Simulation results of our system. (a) Plain images; (b) cipher images; and (c) histograms of the encryption image.
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4.2 Correlation between Adjacent Pixels

Each algorithm of encryption is considered a good algorithm only if it can break the correlations between
adjacent pixels. The correlation can be measured from the adjacent between pixels according to the following
mathematical relationship:

_E[(x-p) (y-y)]
Xy = OxOy

(12)

Where xand y are the data sequences; u, and u,, are the average values of x and y, respectively; and o, and g,, are
the standard deviations of x and y, respectively. Thus, p,, € [0,1] and a high correlation indicate large values,
which are not favourable. Table 3 shows the correlation of several different images of our proposal, while Table 4
presents the comparison correlation of the obtained Lena Séderberg image with the results of the other methods.
The distributions of pixels in the horizontal as well as vertical and diagonal directions are shown in Figure 11. In a
plain image, the majority of points are close to the diagonal line of the axis, while the distribution is random and
takes up more space of the cipher image.

Table 3: Correlation between some different images

Name Original image Encryption image
Horizontal | Vertical | Diagonal | Horizontal | Vertical | Diagonal
Baboon 0.8584 0.7649 0.7321 0.0111 0.0133 0.0030
Boat 0.9397 0.8830 0.8385 0.0538 0.0125 | 0.000845
Fruits 0.9155 0.9011 0.8483 0.0386 0.0385 0.0043
House 0.9753 0.9478 0.9271 0.0436 0.0370 | 0.000053

Table 4: Comparison correlation of the Lena Séderberg image with other methods

Direction Plain image | Wang [35] | Liu[13] | Hua[12] Cao [1] Our proposal

Horizontal 0.965352 0.0331 0.0030 0.0013 0.0019 0.0018
Vertical 0.932559 0.0169 0.0024 | 0.0006 0.0012 0.0012
Diagonal 0.907119 0.0057 0.0034 0.0019 0.0009 0.009
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Figure 11: Pixel distribution. On left, the plain image is shown in the first column and the cipher image is shown in the second
column. On right, data for the horizontal direction, vertical direction, and diagonal direction can be seen.

4.3 Information Entropy

Information entropy is a measure of greyscale randomness and can be expressed as follows:

H(M) = —Xi_; p(m,) log p(m;) (13)

Where L is the total number of symbol m; and p(m;) is the probability of symbol m;. The maximum entropy of
information is approximately 8 and is applied to the grey-level images. Table 5 shows the information entropy of
different images. This table also details the comparison between 2D-LICM [1], 2D-SHAM [16], and our proposed
algorithm. The results reveal that the information entropy of some standard images encrypted by our proposed
algorithm is higher than that obtained by 2D-LICM [1] and SHAM [16]. This finding indicates that the randomness of

image encryption of our algorithm is good.
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Table 5: Information entropy of different images for some different methods such as 2D-LICM, 2D-SHAM, and our proposal.

Name Peppers | Lena Flowers | Boats Man House Baboon Jump
Our proposal 7.9995 | 7.9993 | 7.9980 | 7.9965 7.9993 7.9973 7.9994 7.9990
2D-LICM [1] 7.9974 | 7.9976 | 7.9973 | 7.9972 7.9974 - - -

2D-SHAM [16] | 7.9964 | 7.9965 - - 7.9964 7.9961 - -

4.4 Resisting Differential Attack Analysis

Resistance to differential attacks is determined using two measures: (1) the number of pixel change rates (NPCR)
and the number of changed pixels in the encrypted image and (2) the unified average changing intensity (UACI),
which is the average of the differences between two encrypted images. If we have two original images, O, and 0,
,with a one-bit difference, then C; and C, are the encryption images corresponding to the original images,
respectively. NPCR and UACI can be expressed as follows:

Xijb@.))

NPCR = x 100% (14)
1 11 () ~Ca (i)
UACE = —— (3, 220D 5 100% (15)

1 GG # G
PG ={, GG =)

Where M and N are the width and height of the image, respectively. Additionally, NPCR and UACI are greater than
99% and 31%, respectively. Table 6 shows the results of the NPCR and UACI of several different images. The results
show that our algorithm has a good capability to withstand differential attacks.

Table 6: Some results of NPCR and UACI of some different images

Name Lena Peppers Jump
NPCR 0.996 0.992 0.996
UACI 0.300 0.313 0.334

5. Conclusion

This study proposes a new 2D hyperchaotic map derived from three standard maps, namely, those of the logistic,
circle, and Henon kind, respectively. The properties of the dynamics of this system are investigated using Lyapunov
exponents, trajectories, bifurcation diagrams, and a sensitivity dependence test. The results of all of these tests
indicate that our system is hyperchaotic and highly sensitive to the initial values and control parameters. The
algorithm of sample entropy is also used to investigate the complexity of our system. We additionally propose a new
algorithm of image encryption on the basis of the new 2D hyperchaotic map. Notably, confusion and diffusion can be
achieved with this algorithm, which are fundamental demands. Moreover, the suggested algorithm has high security
in external attack resistance, as well as low time complexity, which enables faster processing and faster data
transmission and prevents attacks like that which require more time to hack data. Therefore, the suggested
algorithm offers a high ability to encrypt images and video.
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