Page 29-35

Alaa.H

Korovkin Type Theorem in Weighted Spaces (Lp,-Space)

Alaa H. Al-Abdulla

Ministry of Education, Baghdad Education Directorate, Al-Karkh the Second, Department of Specialized Supervision

Recived :15\7\2014 Revised : 13\5\2015 Accepted :25\8\2015

Abstract:

In this study, we obtain some Korovkin type approximation theorem by positive linear operators on $L_{p,\alpha}$ -space of unbounded functions by using the test functions ${1, x, x^2}.$

Mathematics Subject Classification: 46S40 .

Introduction:

The approximation problem arises in many contexts of "Numerical Analysis and Computing". The "Quadrature" is one such context, for example. Wierstrass (1885) proved his celebrated approximation theorem: If $f \in C[a,b]$; for $\delta > 0$ there is a polynomial p such that $|f - p| < \delta$. In other words, the result established the existence of an algebraic polynomial in the relevant variable.

The great Russian mathematician S. N. Bernstein proved the Weirstrass theorem in such a manner as was very stimulating and interesting in many ways.

As we know, approximation theory has important applications in various areas of mathematics (see [3,4,7]). Most of the classical operators tend to converge to the value of the function being approximated.

Alaa.H

It is also known J. P. King [6] has presented an unexpected example of operators of Bernstein type which preserve that test function e_0 and e_2 of Bohman-Korovkin theorem.

Now, we constructive approximation of unbounded functions over L_n which is a linear positive operators from $B_{\alpha} = \{f : A \longrightarrow R \text{ such that } |f(x)e^{-\alpha x}| \le M\}$

into itself, we use the special norm:

$$
||f||_{p,\alpha} = \left(\int\limits_A |f(x)e^{-\alpha x}|^p dx\right)^{1/p} < \infty, \alpha > 0
$$

Here, we define the weighting modulus of $f \in B_{\alpha}$ by:

$$
\omega(f,\delta)_{p,\alpha}=\left(\int\limits_A\left|\frac{1}{h}f\left(x\right)e^{-\alpha x}\right|^pdx\right)^{\!\!1/p}
$$

where
$$
\Delta f(x) = |f(x) - f(y)|, |x - y| < h
$$
 for all $h < \delta$.

Main Results:

By using Korovkin theorem in[7],[5],[3], we want to estimate the degree of best approximation of unbounded function in terms of weighted modulus of function.

Theorem:

Let f be unbounded real-valued function on [a,b], let $L_n : B_\alpha \longrightarrow B_\alpha$ be a linear positive operator, such that:

$$
||L_n(g) - g||_{p,\alpha} \longrightarrow 0
$$
, for $n \longrightarrow \infty$ and $g \in \{1, x, x^2\}$

Then:

$$
||L_n(f) - f||_{p,\alpha} \longrightarrow 0
$$
, for $n \longrightarrow \infty$, for each $f \in B_{\alpha}$

Proof:

From [5], $||L_n(g) - g||_{p,\alpha} \longrightarrow 0$ for $n \longrightarrow \infty$, we get:

$$
L_n(g(y))(x)=g(x)+\,\omega\Bigl(\begin{array}{c}(g(y))(x),\delta\end{array}\Bigr)_{p,\alpha}\,,
$$

where $\omega\left((g(y))(x),\delta\right)$ represents the error we make in approximating $g(x)$ with $L_n(g(y))(x)$, and hence it is such that:

 $||\omega((g(y))(x),\delta)||_{p,\alpha} \longrightarrow 0$

Now, we have to prove that:

 $||L_n(f) - f||_{p,\alpha} \longrightarrow 0$, for $n \longrightarrow \infty$, $\forall f \in B_\alpha$

we fixed $f \in B_\alpha$ and $\omega(f,\delta)_{p,\alpha} > 0$, we want to prove that there exist \overline{n} (as a function of f and ω), such that for any $n \geq \overline{n}$ and for every $x \in R$, we have:

$$
|(L_n(f)-f)e^{-\alpha x}|<\!\!\omega(f,\!\delta)_{p,\alpha}.
$$

And we write:

$$
\Delta(f)(x) = |(L_n(f(y))(x) - f(x))e^{-\alpha x}|
$$

= |(L_n(f(y))(x) - 1.f(x))e^{-\alpha x}|
= |(L_n(f(y))(x) - [L_n(1)(x) - \omega(f,\delta)_{p,\alpha}(x)]f(x)e^{-\alpha x}|

since $1 = L_n(1)(x) - \omega(f,\delta)_{p,\alpha}(x)$

$$
\Delta(f)(x) \le |(L_n(f(y))(x) - L_n(1)f(x))e^{-\alpha x}| + |f(x)||\omega(f,\delta)_{p,\alpha}|e^{-\alpha x}
$$
\n
$$
\le |(L_n(f(y))(x) - L_n(1)f(x))e^{-\alpha x}| + |f(x)e^{-\alpha x}||\omega(f,\delta)_{p,\alpha}|
$$
\n
$$
\le |(L_n(f(y))(x) - L_n(1)f(x))e^{-\alpha x}| + ||f(x)||\omega(f,\delta)_{p,\alpha}| \text{ and from [5] and [2]}
$$
\nwe have

31

Alaa.H

Journal of AL-Qadisiyah for computer science and mathematics Vol.7 No.2 Year 2015

$$
\leq (L_n(f(y))(x) \qquad - \qquad L_n(1)f(x))e^{-\alpha x}| + \qquad \qquad \text{Alaa.H}
$$
\n
$$
\left(\iint_A f(x)e^{-\alpha x} \Big|^{p} M \omega(f, \delta)_{\alpha}(x) dx\right)^{1/p}
$$

$$
\hskip-2.5cm = \hskip-2.5cm |(L_n(f(y))(x) - L_n(1)f(x))e^{-\alpha x}| + \|f\|_{p,\alpha} \|w(f,\delta)_\alpha\|_p
$$

we have to find:

$$
\Delta(f)(x) \leq L_n \left(\left| f(y) - f(x) \right| e^{-\alpha x} \right) (x) \left| f(y) - f(x) \right| e^{-\alpha x} (x) + \frac{\omega}{4}, \ \forall \ n \geq \overline{n}
$$

Whenever $||w(f,\delta)_{\alpha}||_p \longrightarrow 0$ for $n \longrightarrow \infty$. Now:

$$
\left(\iint_A f(y)e^{-\alpha y} - f(x)e^{-\alpha x} \right)^p dx \right)^{1/p} = ||\Delta f||_{p,\alpha}
$$

 $=\omega(f,\delta)_{p,\alpha}$, where $\delta=|x-y|$

and $\omega(f,\delta)_{p,\alpha} \longrightarrow 0$. If $|x - y| \longrightarrow 0$, thenfrom [1] we have:

$$
|f(x)e^{-\alpha x}-f(y)e^{-\alpha y}|<\overline{\omega}\,\chi\{z:|z-x|<\!\delta\}(y)+2||f||_{p,\alpha}\chi\{z:|z-x|\ge\!\delta\}(y)\;,
$$

Now, $|z - x| \geq \delta \Leftrightarrow$ $|z - x|$ δ $\geq 1 \Rightarrow$ 2 2 $(z - x)$ δ ≥ 1

In conclusion, in the set the inequality is satisfied, we can write:

$$
\chi\{x:|z-x|\geq \delta\}(y)=1\leq \frac{\left(y-x\right)^2}{\delta^2}
$$

otherwise, we have:

$$
\chi\{x:|z-x|\geq \delta\}(y)=0\leq \frac{(y-x)^2}{\delta^2}
$$

Therefore, uniformly with respect to $x, y \in R$ for any $\overline{\omega} > 0$, we find $\delta = \delta \overline{\omega}$, such that:

$$
|f(x)e^{-\alpha x}-f(y)e^{-\alpha y}| \le \overline{\omega}(1) + 2||f||_{p,\alpha} \frac{(y-x)^2}{\delta^2}
$$

Alaa.H

Choose $\overline{\omega}$ = 4 ω .

By applying the operator $L_n(.)$ for every $n \ge \overline{n}_1$, we find that:

$$
\Delta(f)(x) \leq \frac{\omega}{4} + L_n \left(\overline{\omega} + \frac{2 \parallel f \parallel_{p,\alpha}}{\delta^2} (y - x)^2 \right) (x)
$$

$$
= \frac{\omega}{4} + \overline{\omega} L_n(1) + \frac{2 \parallel f \parallel_{p,\alpha}}{\delta^2} L_n \left(y^2 - 2yx + x^2 \right) (x)
$$

Hence, $L_n(1)(x) =$ $\bigg($ I \setminus $1 + \omega(1,\delta)_{p,\alpha}$ \setminus $\overline{}$ J (x) and the constant 1 is a test function.

Therefore,from[3],[5] we have:

$$
\Delta f(f)(x) \leq \frac{\omega}{4} + \overline{\omega} \left(1 + \omega(1,\delta)_{p,\alpha}(x) \right) + \frac{2 ||f||_{p,\alpha}}{\delta^2} \left\{ x^2 + \omega_{\alpha}(y^2,\delta)(x) - 2x \right[x + \omega_{\alpha}(y,\delta)(x) \right\} + x^2 \left(1 + \omega_{\alpha}(1,\delta)(x) \right) \Big\}
$$

Now, by definition of limit, there exist a functions \overline{n}_2 , \overline{n}_3 such that for $n \ge \overline{n}_2$, we have

 $\omega_{\alpha}(1,\delta) \leq 1$, uniformly with respect to $x \in \mathbb{R}$ and for $n \geq \overline{n}_3$, we have:

$$
||f||_{p,\alpha} ||\omega_\alpha(y^2,\delta)(x)-2x\omega_\alpha(y,\delta)(x)+x^2\omega_\alpha(1,\delta)(x)||_{p,\alpha} \leq \frac{\delta^2 \overline{\omega}}{2}
$$

Now, by taking $n \geq \overline{n}$, with $\overline{n} = \max{\{\overline{n}_1, \overline{n}_2, \overline{n}_3\}}$ (depending on both f and ω), we have:

$$
\Delta(f)(x) \leq \frac{\omega}{4} + 2\overline{\omega} + \frac{2||f||_{p,\alpha}}{\delta^2} \{ \omega_{\alpha}(y^2,\delta)(x) - 2x\omega_{\alpha}(y,\delta)(x) + x^2\omega_{\alpha}(1,\delta)(x) \}
$$

$$
\leq \frac{\omega}{4} + 3\overline{\omega} = 1
$$

Journal of AL-Qadisiyah for computer science and mathematics Vol.7 No.2 Year 2015

Alaa.H

References:

- [1] O. Agratini and O. Do \tilde{g} ru, "Weighted Approximation by q-Szasz-King Type Operators", Vol.14, No.4, pp.1283-1296, August, 2010.
- [2] F. Cao and Y. Lin, "Approximation Theorems by Positive Linear Operators in Weighted Spaces", Positivity, 15: 87-103 (2011).
- [3] F. ltomre, M. Cmpiti, "Korovkin Type Approximation Theory and its Application", Walter de Gryter, Berlin (1994).
- [4] R. A. Devore, The Approximation of Continuous Functions by Positive Linear Operators", Lecture Notes in Mathematics, Vol.293, Springer, Berlin (1972).
- [5] F. Didone, M. Giannuzzi and L. Paulon, "Korovkin Theorems and Applications in Approximation Theory and Numerical Algebra", March 14, 2011.
- [6] J. P. King, "Positive Liner Operators which Preserve x^{2} ", Acta Math. Hungar, 99(3) (2003), 208.
- [7] P. P. Korovkin, "Liner Operators and Approximation Theory", Hindustan Public Corporation, Delhi (1960).
- [8] S. A. Wahid, "Efficient Approximation Using Probabilistically Improved Combination Structure of Bernstein's Polynomial Operators Weights Through the Fusion of Dual-Perspectives", Vol.3, No.3, August (2011).

Journal of AL-Qadisiyah for computer science and mathematics Vol.7 No.2 Year 2015

Alaa.H

نوع معين من نظرية كورفكين في الفضاء الوزني (Space-,Lp(

الآ**ء حميد علون العبد**الله

وزارة التربية العراقية، تربية بغداد الكرخ الثانية، قسم اإلشراف اإلختصاصي

المستخمص:

في هذه الدراسة إستنتجنا نوع من تقريب كورفكين بواسطة المؤثرات الخطية الموجبة لمدوال غير المقيدة في $(L_{p,\alpha}\text{-Space})$.