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A B S T R A C T 

This paper investigates the influence of magnetohydrodynamics oscillatory flow for Carreau fluid 

through regularly channel with varying temperature for two types of geometries "Poiseuille flow 

and Couette flow". The fluid is assumed to be non-Newtonian, namely Carreau fluid. The 

governing equations are solved analytically by the perturbation method. The study is intended to 

calculate the solution for the small number of Weissenberg number (𝑊𝑒 << 1) to get clear forms 

for velocity field by assisting the (MATHEMATICA-11) program to obtain the numerical results 

and illustrations. The physical features of  Darcy number, Reynolds number, Peclet number, 

magnetic parameter, Grashof number and radiation parameter are discussed simultaneously through 

presenting graphical discussion. The velocity and temperature fields are discussed with different 

values of involved parameter with the help of graphs.    

MSC2010: 76A05, 76Wxx.  

DOI : 10.29304/jqcm.2019.11.4.614 

1 . Introduction"" 
The studies of laminar flow of non-Newtonian fluid have received much attention because it has many applications in 

science and engineering technology. Fluids differ in their viscosity, which may depend on deformation rate and some fluids 

have elastic character in nature, which is known as non-Newtonian fluids. Existing literatures indicate that many 

researchers investigated heat and mass transfer characteristics of non-Newtonian fluids  (Nigam and Singh, 1960) [1], 

(Kavita and others, 2012)[8]. 

Flow through a porous medium, under the influence of temperature variations, is one of the most important contemporary 

topics because it finds great applications in geophysics and technology. The study of the flow of sedimentary liquids is of 
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practical importance, especially flow through packed beds, sedimentation, environmental pollution, and central filtering of 

particles. (Frigaard and  Ryan, 2004)[7] studied the flow of blood through the veins and arteries. Recently, the requirements 

of modern technology have stimulated interest in fluid flow studies, involving the interaction of many phenomena ( Hamza 

and others, 2011)[5].  

(Raptis and others, 1982) [3]  studied the effect of heat transfer on magnetohydrodynamics oscillatory flow of Jeffrey fluid 

in a channel, and have investigated when variable viscosity. (Al-Khatib and Wilson, 2001) [6] have study the heat transfer 

to magneto hydro dynamics oscillatory flow during a porous medium in slip form. 

(Khudair and Al-Khafajy, 2018) [9] have investigated the flow for Williamson fluid for two kinds of geometries "Couette 

flow and Poiseuille flow" in an inclined channel. influence of heat transfer on magnetohydrodynamics for the oscillatory 

flow of Williamson fluid with model for two kinds of geometries "Poiseuille flow and Couette flow" through a porous 

medium channel. 

Have made an analytical examination on magnetohydrodynamics boundary layer slip flow in a porous medium over a 

stretching surface with temperature (Attia and Kotb, 1996) [2]. (Mostafa, 2009) [4] have discussed the effect of chemical 

reaction effects on magnetohydrodynamics free convection flow in an irregular channel with porous medium.  

The study considers a mathematical model for the influence of magneto hydrodynamics oscillatory flow for Carreau fluid 

through regularly channel with varying temperature.    

   

2. Mathematical Formulation 

Consider the flow of a Carreau fluid in the channel of breadth 𝑙 qualify the effects of magnetic field and Radioactive heat 

transference as described in (Fig.1). We supposed that the fluid have very small electromagnetic force produced and the 

electrical conductivity is small. Cartesian coordinates system such that, (𝑣(𝑦), 0,0) is the velocity vector in which v is the x-

component of velocity and y is orthogonal to x-axis.   

                                                            y = l                                      T = 1T   

                    y                                                         l                 V         

                                   x                       y = 0                                       T = 0T  

                                                                                      0B    

                                                        Figure.1 Graph of the problem  

The fundamental equation for Carreau fluid is (Nadeem ,2014) [10] :   

𝑺 = −�̅�𝑰 + 𝜏            (1) 

τ̅ = [μ∞ + (μ0 − μ∞)((1 + Γγ̅̇)2)
𝑛−1

2 ]A∗          (2) 

In which �̅� is the pressure, 𝑰 is the unit tensor, 𝜏̅ is the extra stress tensor, Γ is the time constant, 𝜇∞ and 𝜇0 are the infinite 

and zero shear rate viscosity, then  �̇� is defined as :  

γ̇ = √
1

2
∑ ∑ �̇�𝑖𝑗�̇�𝑗𝑖𝑗𝑖 = √

1

2
∏  and ∏ = 𝑡𝑟(A∗)2, A∗ = ∆�̅� + (∆�̅�)𝑇                    (3) 

Here ∏ is the second invariant strain tensor. We consider the fundamental Eq. (2), the case for which Γ�̇� < 1, and 𝜇∞ = 0. 

We can write the component of extra stress tensor according to follows as :  

τ̅ = μ0[1 + (
𝑛−1

2
)Γ2γ̇2]A∗                                                         (4) 

The equations of momentum and energy governing such a flow, subjugate to the Boussinesq approximation, are :   

𝜌
𝜕�̅�

𝜕𝑡̅
= −

𝜕�̅�

𝜕�̅�
+

𝜕�̅�𝑥𝑥̅̅ ̅̅

𝜕�̅�
+

𝜕�̅�𝑥𝑦̅̅ ̅̅

𝜕�̅�
+

𝜕�̅�𝑥𝑧̅̅̅̅

𝜕�̅�
+ 𝜌𝑔𝛽(𝑇 − 𝑇0) − 𝜎𝐵0

2�̅� −
𝜇0

𝑘
�̅�                    (5) 
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𝜌
𝜕𝑇

𝜕𝑡̅
=

𝐾

𝐶𝑝

𝜕2𝑇

𝜕�̅�2 −
1

𝐶𝑝

𝜕𝑞

𝜕𝑦
                    (6) 

The temperatures at the walls of the chan nel are given as: 

𝑇 = 𝑇0  at   �̅� = 0 , and   𝑇 = 𝑇1  at   �̅� = 𝑙.                           (7)    

      In which �̅� is the axial velocity, 𝑇 is a fluid temperature, 𝐵0 is a magnetic field strength, 𝜌 is a fluid density, 𝜎 is a 

conductivity of the fluid, 𝛽 is a coefficient of volume amplification due to temperature, 𝑔 is an hastening due to gravity, k is 

a permeability, 𝑐𝑝 is a specific heat at constant pressure, 𝐾 is a thermal conductivity and 𝑞 is a radioactive heat flux.  

      Following (Vinvent and others, 1968) [11], it is supposed that the fluid is visually thin with a relatively low density and 

the radioactive heat flux is given by: 

𝜕𝑞

𝜕𝑦
= 4𝑏2(𝑇0 − 𝑇)             (8) 

(𝑏) is radiation absorption coefficient. 

Non-dimensional parameters are (Khudair and Al-Khafajy, 2018) [9] :  

𝑣 =
�̅�

𝑉
, 𝑥 =

�̅�

𝑙
  , 𝑦 =

�̅�

𝑙
 , 𝜃 =

𝑇−𝑇0

𝑇1−𝑇0
 , 𝑡 =

𝑡̅𝑉

𝑙
 , 𝑝 =

�̅�ℎ

𝜇𝑉
 , 𝑀2 =

𝜎𝐵0
2ℎ2

𝜇
 , 𝐷𝑎 =

𝑘

𝑙2 , 𝐺𝑟 =
𝜌𝑔𝛽𝑙2(𝑇−𝑇0)

𝜇𝑉
 

 𝑅𝑒 =
𝜌𝑙𝑉

𝜇
 , 𝑃𝑒 =

𝜌𝑙𝑉𝑐𝑝

𝐾
 , 𝑁2 =

4𝑏2𝑙2

𝐾
 , 𝜏𝑥𝑥 =

𝑙

𝜇0𝑉
𝜏�̅�𝑥̅̅̅̅ , 𝜏𝑥𝑦 =

𝑙

𝜇0𝑉
𝜏�̅�𝑦̅̅ ̅̅ , 𝜏𝑥𝑧 =

𝑙

𝜇0𝑉
𝜏�̅�𝑧̅̅̅̅ , γ̇ =

𝑙

𝑉
γ̅̇

}         (9) 

     Where V is the mean flow velocity, Darcy number (𝐷𝑎), Reynolds number (𝑅𝑒), Peclet number (𝑃𝑒 ), magnetic 

parameter (𝑀), Grashof number (𝐺𝑟) and radiation parameter (𝑁) . 

Substituting equations  (8) and (9) into equations (5) - (7), we obtain :  

𝜌
𝑉𝜕𝑣
𝑙

𝑉
𝜕𝑡

= −
𝜇0𝑉

𝑙
𝜕𝑝

𝑙𝜕𝑥
+

𝜇0𝑉

𝑙
𝜕𝜏𝑥𝑥

𝑙𝜕𝑥
+

𝜇0𝑉

𝑙
𝜕𝜏𝑥𝑦

𝑙𝜕𝑦
+

𝜇0𝑉

𝑙
𝜕𝜏𝑥𝑧

𝑙𝜕𝑧
+ 𝜌𝑔𝛽(𝑇1 − 𝑇0)𝜃 − 𝜎𝐵0

2𝑉𝑣 −
𝜇0𝑉

𝑘
𝑣        (10) 

𝜌 
𝜕(𝜃(𝑇1−𝑇0)+𝑇0))

𝑙

𝑉
𝜕𝑡

=
𝑘

𝐶𝑃
[

𝜕2(𝜃(𝑇1−𝑇0)+𝑇0))

𝑙2𝜕𝑦2 −
1

𝑘
4𝑏2(𝑇0 − 𝑇)]              (11) 

where    𝜏𝑥𝑥 = 0 , 𝜏𝑥𝑦 =  μ0 [(1 + (
𝑛−1

2
)(We)2γ̇2)]

𝜕𝑣

𝜕𝑦
 , 𝜏𝑥𝑧 = 0 .   

The following are the non-dimensional boundary conditions corresponding to the temperature equation: 

𝜃(0) = 0  , 𝜃(1) = 1                                               (12) 

Finally, we get the following non-dimensional equations:  

𝑅𝑒
𝜕𝑣

𝜕𝑡
= −

𝑑𝑝

𝜕𝑥
+

𝜕

𝜕𝑦
[(1 + (

𝑛−1

2
)(We)2 (

𝜕𝑣

𝜕𝑦
)

2

)
𝜕𝑣

𝜕𝑦
] + 𝐺𝑟𝜃 − (𝑀2 +

1

𝐷𝑎
) 𝑣           (13) 

𝜌
𝜕𝜃

𝜕𝑡
=

𝜕2𝜃

𝜕𝑦2 + 𝑁2𝜃             (14) 

To solve the temperature equation (14) with boundary conditions (12), let 

𝜃(𝑦, 𝑡) = 𝜃𝑓(𝑦)𝑒𝑖𝜔𝑡              (15) 

where 𝜔 is the frequency of the oscillation. 

Substituting the equation (15) into the equation  (14), we have   

𝜕2𝜃𝑓

𝜕𝑦2 + (𝑁2 − 𝑖𝜔𝑃𝑒)𝜃𝑓 = 0            (16) 

15 
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      The solution of equation (16) with boundary conditions (12) is 𝜃𝑓(𝑦) = csc(𝜑) sin (𝜑) , where 𝜑 = √𝑁2 − 𝑖𝜔𝑃𝑒 . 

Therefore   

𝜃(𝑦, 𝑡) = csc(𝜑) sin (𝜑)𝑒𝑖𝜔𝑡                           (17) 

      The calculated of equation (13) have been solution in the next parts for two kinds of boundary conditions "Poiseuille 

flow and Couette flow".  

III. SOLUTION OF THE PROBLEM 

 (i) Poiseuille flow  

       In this status we suppose that the rigid flakes at 𝑦 = 0 and 𝑦 = 𝑙 are at rest. Therefore  

�̅� = 0  at   �̅� = 0 , and  �̅� = 0  at   �̅� = 𝑙 .       

The non-dimensional boundary conditions are : 

𝑣(0) = 0 , 𝑣(1) = 0 .                       (18)       

To solve the momentum equation  (13) , let 

−
𝑑𝑝

𝜕𝑥
= 𝜆𝑒𝑖𝜔𝑡             (19) 

𝑣(𝑦, 𝑡) = 𝑣𝑓(𝑦)𝑒𝑖𝜔𝑡              (20) 

where 𝜆 is a real constant. 

      Substituting the equations (19) and (20) into the equation  (13), we have :   

𝑅𝑒
𝜕

𝜕𝑡
(𝑣𝑓(𝑦)𝑒𝑖𝜔𝑡) = 𝜆𝑒𝑖𝜔𝑡 +

𝜕

𝜕𝑦
[(1 + (

𝑛−1

2
)(We)2 (

𝜕

𝜕𝑦
(𝑣𝑓(𝑦)𝑒𝑖𝜔𝑡))

2

)
𝜕

𝜕𝑦
(𝑣𝑓(𝑦)𝑒𝑖𝜔𝑡)] (𝑣𝑓(𝑦)𝑒𝑖𝜔𝑡) + 𝐺𝑟𝜃0 −

(𝑀2 +
1

𝐷𝑎
) (𝑣𝑓(𝑦)𝑒𝑖𝜔𝑡)              (21) 

      Equation  (21) is non-linear and it is difficult to get an exact solution. So for waning (𝑊𝑒), the boundary value problem 

is agreeing to an easy analytical solution. In this case the equation can be solved.  Nevertheless, we suggest a small Γ and 

used the perturbation technique to solve the problem. Accordingly, we write :  

 

𝑣𝑓 = 𝑣00 + 𝑊𝑒2𝑣02 + O(𝑊𝑒4)            (22) 

Substituting equation (22) in equation (21) with boundary conditions (18), then we equality the  powers of (𝑊𝑒), we obtain 

: 

A - Zeros-order system (𝑾𝒆𝟎)  

𝜕𝑣00

𝜕𝑦2 − (𝑀2 + 𝑅𝑒𝑖𝜔 +
1

𝐷𝑎
) 𝑣00 = −(𝜆 + 𝐺𝑟𝜃𝑓)         (23) 

The associated boundary conditions are: 

𝑣00(0) = 𝑣00(1) = 0            (24) 

B - Second -order system (𝑾𝒆𝟐) 

𝜕𝑣01

𝜕𝑦2 − (𝑀2 + 𝑅𝑒𝑖𝜔 +
1

𝐷𝑎
) 𝑣01 =

−3(𝑛−1)

2
(

𝜕𝑣00

𝜕𝑦
)2(

𝜕2𝑣00

𝜕𝑦2 )𝑒𝑖𝜔𝑡        (25) 

The associated boundary conditions are: 

𝑣01(0) = 𝑣01(1) = 0           (26) 
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Finally, the perturbation solutions up to second order for 𝑣𝑓 is given by 

𝑣𝑓 = 𝑣00 + 𝑊𝑒2𝑣02 + O(𝑊𝑒4)   

Therefore, the fluid velocity is given as: 

𝑣(𝑦, 𝑡) = 𝑣𝑓(𝑦)𝑒𝑖𝜔𝑡             (31) 

(ii) Couette flow 

       The upper flake is locomotion and the lower flake is fixed with the velocity 𝑉ℎ. The boundary conditions for the 

Couette flow problem defined as: 

𝑣(0) = 0  , 𝑣(1) = 𝑉0             (32) 

      We have same defined as the governing equation in Poiseuille flow equation (21). The solution in this case has been 

calculated by the perturbation technique and the results have been discussed during graphs.  

IV. RESULTS AND DISCUSSION 

We are discussed influence of magnetohydrodynamics oscillatory flow for Carreau fluid through regularly channel with 

varying temperature for Poiseuille flow and Couette flow in some results during the graphical illustrations. Numerical 

assessments of analytical results and some of the graphically significant results are presented in Figure (2-14).  

We used the MATHEMATICA program to find the numerical results and illustrations. The momentum equation is resolved 

by using '' perturbation technique '' and all the results are discussed graphically.  

The velocity profile of Poiseuille flow is shown during Figure (2-6). Figure.2 illustrates the influence 𝐷𝑎 and 𝑀 on the 

velocity profiles function 𝑣  vs. 𝑦 . It is found by the increasing 𝐷𝑎  the velocity profiles function 𝑣  increases, while 𝑣 

decreases with increasing 𝑀 . Figure.3 show that velocity profile 𝑣  rising up by the increasing influence of both the 

parameters 𝐺𝑟 and 𝜆. Figure.4 we observed that 𝑣 increases by the increasing influence of both the parameters 𝑅𝑒 and 𝑃𝑒. 

Figure.5 show the velocity profile 𝑣 increases by the increasing 𝑁, and show that by the increasing 𝜔 the velocity profile 𝑣 

decreases.   

The fluid velocity starts to be constant at the walls and increasing, as fixed by the boundary conditions. Figure.6 show that 

velocity profiles increases with the increasing of the parameters 𝑊𝑒 when 0.45 < y < 1, while 𝑣 decreases by the increasing 

of 𝑊𝑒 when 0 < y < 0.45. The velocity profile of Couette flow is shown during Figure (7–11). It is noted that by the 

increasing Each of parameters 𝑅𝑒, 𝑃𝑒, 𝐺𝑟, 𝐷𝑎, 𝑁 and  𝜆 the velocity profile 𝑣 increases, while 𝑣 decreases by the increasing 

𝑊𝑒, 𝑀 and 𝜔 .  

Based on Eq. (17), figure.12 show that influence of 𝑁 on the temperature function 𝜃. The temperature increases by the 

increase in 𝑁 . Figure.13 we observed that the influence 𝑃𝑒  in temperature 𝜃  by the increasing 𝑃𝑒 then 𝜃  increases. 

Figure.14 show as that by the increasing of 𝜔 the temperature 𝜃 decreases .  

  

Figure. 2 Velocity profile for 𝑫𝒂 and 𝑴 with 

𝝎 = 𝟏, 𝒏 = 𝟏, 𝑵 = 𝟏, 𝐆𝐫 = 𝟏, 𝐑𝐞 = 𝟏, 𝑷𝒆 = 𝟏, 𝝀 = 𝟏, 𝐖𝐞 = 𝟎. 𝟎𝟓, 𝒕 = 𝟎. 𝟓 in Poiseuille flow. 
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Figure. 3 Velocity profile for 𝝀 and 𝑮𝒓 with   

𝝎 = 𝟏, 𝒏 = 𝟏, 𝑵 = 𝟏, 𝑴 = 𝟏, 𝐑𝐞 = 𝟏, 𝑷𝒆 = 𝟏, 𝑫𝒂 = 𝟎. 𝟖, 𝐖𝐞 = 𝟎. 𝟎𝟓, 𝒕 = 𝟎. 𝟓 in Poiseuille flow.  

 
 

  

Figure. 4 Velocity profile for 𝑹𝒆 and 𝑷𝒆 with  

𝝎 = 𝟏, 𝒏 = 𝟏, 𝑵 = 𝟏, 𝑴 = 𝟏, 𝛌 = 𝟏, 𝑮𝒓 = 𝟏, 𝑫𝒂 = 𝟎. 𝟖, 𝐖𝐞 = 𝟎. 𝟎𝟓, 𝒕 = 𝟎. 𝟓 in Poiseuille flow. 

 

  

 Figure. 5 Velocity profile for 𝝎 and 𝑵 with   

𝑹𝒆 = 𝟏, 𝒏 = 𝟏, 𝑷𝒆 = 𝟏, 𝑴 = 𝟏, 𝛌 = 𝟏, 𝑮𝒓 = 𝟏, 𝑫𝒂 = 𝟎. 𝟖, 𝐖𝐞 = 𝟎. 𝟎𝟓, 𝒕 = 𝟎. 𝟓 in Poiseuille flow. 
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 Figure. 6 Velocity profile for 𝑾𝒆 with 

𝝎 = 𝟏, 𝒏 = 𝟏, 𝑵 = 𝟏, 𝑹𝒆 = 𝟏, 𝑷𝒆 = 𝟏, 𝑴 = 𝟏, 𝛌 = 𝟏, 𝑮𝒓 = 𝟏, 𝑫𝒂 = 𝟎. 𝟖, 𝒕 = 𝟎. 𝟓 in Poiseuille flow. 

 

  

Figure. 7 Velocity profile for 𝑴 and 𝑫𝒂 with  

𝝎 = 𝟏, 𝒏 = 𝟏, 𝑵 = 𝟏, 𝐆𝐫 = 𝟏, 𝐑𝐞 = 𝟏, 𝑷𝒆 = 𝟏, 𝝀 = 𝟏, 𝐖𝐞 = 𝟎. 𝟎𝟓, 𝑽𝟎 = 𝟎. 𝟑, 𝒕 = 𝟎. 𝟓 in Couette flow. 

 

  

Figure. 8 Velocity profile for 𝝀 and 𝑮𝒓 with 

𝝎 = 𝟏, 𝒏 = 𝟏, 𝑵 = 𝟏, 𝑴 = 𝟏, 𝐑𝐞 = 𝟏, 𝑷𝒆 = 𝟏, 𝑫𝒂 = 𝟎. 𝟖, 𝐖𝐞 = 𝟎. 𝟎𝟓, 𝑽𝟎 = 𝟎. 𝟑, 𝒕 = 𝟎. 𝟓 in Couette flow. 
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Figure. 9 Velocity profile for 𝑹𝒆 and 𝑷𝒆 with 

𝝎 = 𝟏, 𝒏 = 𝟏, 𝑵 = 𝟏, 𝑴 = 𝟏, 𝛌 = 𝟏, 𝑮𝒓 = 𝟏, 𝑫𝒂 = 𝟎. 𝟖, 𝐖𝐞 = 𝟎. 𝟎𝟓, 𝑽𝟎 = 𝟎. 𝟑, 𝒕 = 𝟎. 𝟓 in Couette flow. 

 

  

 Figure. 10 Velocity profile for 𝝎 and 𝑵 with  

𝑹𝒆 = 𝟏, 𝒏 = 𝟏, 𝑷𝒆 = 𝟏, 𝑴 = 𝟏, 𝛌 = 𝟏, 𝑮𝒓 = 𝟏, 𝑫𝒂 = 𝟎. 𝟖, 𝐖𝐞 = 𝟎. 𝟎𝟓, 𝑽𝟎 = 𝟎. 𝟑, 𝒕 = 𝟎. 𝟓 in Couette flow.  

 

  

 Figure. 11 Velocity profile for 𝑾𝒆 with 

𝝎 = 𝟏, 𝒏 = 𝟏, 𝑵 = 𝟏, 𝑹𝒆 = 𝟏, 𝑷𝒆 = 𝟏, 𝑴 = 𝟏, 𝛌 = 𝟏, 𝑮𝒓 = 𝟏, 𝑫𝒂 = 𝟎. 𝟖, 𝑽𝟎 = 𝟎. 𝟑, 𝒕 = 𝟎. 𝟓 in Couette flow. 
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Figure. 12 Influence of 𝑵 on Temperature 𝜽 for 𝝎 = 𝟏, 𝑷𝒆 = 𝟎. 𝟕, 𝒕 = 𝟎. 𝟓 

 

 

Figure. 13 Influence of 𝑷𝒆 on Temperature 𝜽 for 𝒕 = 𝟎. 𝟓, 𝑵 = 𝟏, 𝝎 = 𝟏. 

 

Figure. 14 Influence of 𝝎 on Temperature 𝜽 for 𝒕 = 𝟎. 𝟓, 𝑵 = 𝟏, 𝑷𝒆 = 𝟎. 𝟕 
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V. CONCLUSION AND REMARKS  

        We discussion the influence of magnetohydrodynamics oscillatory flow for Carreau fluid through regularly channel 

with varying temperature. We found the velocity and temperature are analytically.   

We used different values to finding the results of pertinent parameters namely for the velocity and temperature 

(𝑅𝑒, 𝑃𝑒 , 𝑁, 𝐷𝑎 , 𝐺𝑟, 𝜆, 𝑀, 𝜔, 𝑊𝑒). The key point are: 

 The velocity profiles increases by the increasing , 𝑃𝑒 , 𝑁, 𝐷𝑎 ,𝐺𝑟 and 𝜆  for both the Poiseuille and Couette flow. 

 The velocity profiles decreases by the increasing 𝜔 and 𝑀 for both the Poiseuille and Couette flow. 

 The velocity profiles increases by the increasing of the parameters 𝑊𝑒 when 0.45 < y < 1, while 𝑣 decreases with 

increasing of 𝑊𝑒 when 0 <  𝑦 <  0.45, for Poiseuille flow. The velocity profiles decreases with the increasing 

of the parameters 𝑊𝑒, for Couette flow.   

 We show that by the increases 𝑁 and 𝑃𝑒 the temperature increasing 𝜃 and the temperature 𝜃 decreases by the 

increasing 𝜔.  
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