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A B S T R A C T 

In this paper, we studied the neutral stochastic functional differential equations with infinite 
delay (NSFDEwID for short).The existence and uniqueness of solutions to NSFDEwID at the 
state space 𝐶𝑟 have been addressed under the local Lipschitz condition and Linear growth 
condition . we proved lemma 3.4 because it is presented in many articles without prove.    
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1 . Introduction"" 
        stochastic differential equation play an important role in many branches of the natural sciences and 

engineering. Neutral stochastic functional differential equations (NSFDEs) involve derivatives with delays , also 

depends on past and present values. The (NSFDEs) have been invistigated by many authors, see [2, 5, 7, 8, 9, 13, 14, 

17]. Many articles studied The existence and uniqueness of solutions to NSFDEs by imposing Lipschitz condition, for 

example see [3, 14, 19,20]. Anguraj et al. [1] have established the impulsive NSFDEs under non-Lipschitz condition 

and Lipschitz condition. A. Lin et al. [11] studied the neutral impulsive stochastic integro-differential equations with 

infinite delay via fractional operators. In recent years, there is an increasing interest in the theory of existence and 

uniqueness of solutions of (NSFDEwID). H. Bin Chen[6] and W.Lin et al. [12]have proved the existence and 

uniqueness for the solution of neutral stochastic functional differential equations with infinite delay(NSFDEwID). 

Bao and Hou [4], have investigated the existence and uniqueness of mild solutions to stochastic neutral partial 

functional differential equations under a non-Lipschitz condition and a weakened linear growth condition. 

Mohammed [15] proved that the solution maps of SFDEs with finite delay on appropriate phase spaces have Markov 
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property. Wu et al. [18] investigates existence and uniqueness of solutions, Markov properties, and ergodicity of 

SFDEs with infinite delay by using phase state 𝐶𝑟 . Ren and Xia [16] have studied existence and uniqueness of 

solutions with infinite delay at phase space 𝐵𝐶((−∞; 0]; ℝ𝑑) which denotes the family of bounded continuous ℝ𝑑-

value functions with norm ‖𝜑‖𝑠𝑢𝑝−∞<𝜃≤0|𝜑(𝜃)|   under non-Lipschitz condition.The aim of this paper is to 

investigate the existence and uniqueness of NSFDEwID under local Lipschitz condition and Linear growth condition 

which can be obtained in the state space 𝐶𝑟 .This paper is organized as follows, some useful preliminaries are 

introduced In Section2 .In Section3, we addressed existence and uniqueness of maximal local strong solutions of (2) 

by local Lipschitz condition and Linear growth condition.    

 

2. Preliminaries 
 

Throughout this paper, we adopt the symbols as follows. 𝑅𝑑  denotes the usual d-dimensional Euclidean space, | ⋅ | 

norm in 𝑅𝑑 . If 𝐴 is a vector or a matrix, its transpose is denoted by 𝐴𝑇 ; and, |𝐴| = √𝑡𝑟𝑎𝑐𝑒(𝐴𝑇𝐴) its trace norm. 

Denote by 𝑋𝑇𝑌 the inner product of X, Y ∈ ℝ𝑑  . We choose the state space with the fading memory to be 𝐶𝑟 defined 

as follows: for given positive number 𝑟,  

𝐶𝑟 = {𝜑 ∈ 𝐶((−∞, 0); 𝑅𝑑): ∥ 𝜑 ∥𝑟= sup
−∞<𝜃≤0

𝑒𝑟𝜃|𝜑(𝜃)| < ∞),                                                               (1)            

   where 𝐶((−∞, 0); 𝑅𝑑) denotes the family of all bounded continuous 𝑅𝑑–value functions 𝜑 defined on (−∞, 0) to 𝑅𝑑  

with the norm ∥ 𝜑 ∥𝑟 . 𝑀2([𝑎, 𝑏]; 𝑅𝑑) is a family of process {𝜑(𝑡)}𝑎≤𝑡≤𝑏 in ℒ2([𝑎, 𝑏]; ℝ𝑑) such that 𝔼 ∫  
𝑏

𝑎
|𝜑(𝑡)|2𝑑𝑡 < ∞. 

For 𝜑 ∈ 𝑀2, let ∥ 𝜑 ∥𝑟
2: = (∫  

0

−∞
𝑒2𝑟𝜃|𝜑(𝜃)|2)

1

2. Then 𝑀2 is a Hibert space equppied with the norm ∥⋅∥𝑟 and (𝐶𝑟 , ∥⋅∥𝑟) is 

a Banach space which is introduced in [10], contains the Banach space of bounded and continuous functions and for 

any 0 < 𝑟1 ≤ 𝑟2 < ∞, 𝐶𝑟1
⊂ 𝐶𝑟2

. Let (Ω, ℱ, ℙ) be a complete probability space with a filtration {ℱ𝑡}𝑡∈[0,+∞] satisfying 

the usual conditions (i.e. it is right continuous and ℱ0 contains all P-null sets).  

   Let 𝐼𝐵  denote the indicator function of a set B. Consider a 𝑑-dimensional neutral stochastic functional differential 

equations with infinite delay  

          𝑑{𝑥(𝑡) − 𝐷(𝑥𝑡)} = 𝑏(𝑥𝑡)𝑑𝑡 + 𝜎(𝑥𝑡)𝑑𝑤(𝑡),    𝑜𝑛    𝑡 ≥ 0,                                                                     (2) 

 with the initial data:  

 𝑥0 = 𝜉 = {𝜉(𝜃): −∞ < 𝜃 ≤ 0} ∈ 𝐶𝑟 ,                                                                                      (3)                       

 where  

 𝑥𝑡 = 𝑥(𝑡 + 𝜃): −∞ < 𝜃 ≤ 0 

and 𝑏, 𝐷: 𝐶𝑟 → ℝ𝑑  ; 𝜎: 𝐶𝑟 → ℝ𝑑×𝑚 are Borel measurable, 𝑤(𝑡) is an m-dimensional Brownian motion. It should be 

pointed out that 𝑥(𝑡) ∈ 𝑅𝑑  is a point, while 𝑥𝑡 ∈ 𝐶𝑟 is a continuous function on the interval (−∞, 0] taking values in 

𝑅𝑑 . 

Definition 2.1[14]: ℛ𝑑-value stochastic process 𝑥(𝑡) defined on −∞ < 𝑡 ≤ 𝑇 is called the solution of (2) with 

initial data (3), if 𝑥(𝑡) has the following properties: 

(i) 𝑥(𝑡)is continuous and {𝑥(𝑡)}𝑡0≤𝑡≤𝑇  is ℱ𝑡-adapted; 

(ii) {𝑏(𝑥𝑡)} ∈ ℒ1([0. 𝑇]; ℛ𝑑) and {𝜎(𝑥𝑡)} ∈ ℒ2([0. 𝑇]; ℛ𝑑×𝑚)                             

(iii) 𝑥𝑡0
= 𝜉, for each 𝑡0 ≤ 𝑡 ≤ 𝑇, 
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𝑥(𝑡) = 𝐷(𝑥𝑡) + 𝑥(0) − 𝐷(𝑥0) + ∫ 𝑏(𝑥𝑠)
𝑡

0

𝑑𝑠 + ∫ 𝜎(𝑥𝑠)𝑑𝑠
𝑡

0

 

Asolution 𝑥(𝑡) is called as a unique if any other solution �̅�(𝑡)is indistinguishable with 𝑥(𝑡), that is 

𝑃(𝑥(𝑡) = �̅�(𝑡) , for all −∞ < 𝑡 ≤ 𝑇) = 1 

 

"3. Wellposedness under Local Lipschitz Condition " 

 

         To address existence and uniqueness of maximal local strong solutions of (2), let us first impose the following 

conditions for 𝑏, 𝜎 and the neutral term 𝐷: 

(H1) ( The local Lipschitz condition) For any 𝑛 > 0 , there exists a 𝑘𝑛such that  

 |𝑏(𝜙) − 𝑏(𝜑)| ∨ |𝜎(𝜙) − 𝜎(𝜑)| ≤ 𝑘𝑛 ∥ 𝜙 − 𝜑 ∥𝑟 ,                     (4) 

 where 𝜙, 𝜑 ∈ 𝐶𝑟 with ∥ 𝜑 ∥𝑟∨∥ 𝜙 ∥𝑟≤ 𝑛. 

Remark 3.1: [19] If we define two stopping times: 𝜏𝑛 = 𝑖𝑛𝑓{𝑡 ≥ 0, |𝑥(𝑡)| > 𝑛} , and 𝜌𝑛 = 𝑖𝑛𝑓{𝑡 ≥ 0, ∥ 𝑥𝑡 ∥𝑟> 𝑛}, 

then 𝜏𝑛 = 𝜌𝑛. 

 (H2) There is a 𝑘 ∈ (0,1) such that for all 𝜙, 𝜑 ∈ 𝐶𝑟,  

 |𝐷(𝜙) − 𝐷(𝜑)| ≤ 𝑘 ∥ 𝜙 − 𝜑 ∥𝑟 And and  𝐷(0) = 0                      (5) 

Remark 3.2:  Note that  (H2) implies that for any φ ∈ Cr , |D(φ)| ≤ k ∥ φ ∥r, if we suppose D(0) = 0. 

 (H3) (Linear growth condition) For any 𝜙 ∈ 𝐶𝑟 , there exists a positive number 𝑐 such that:  

 |𝑏(𝜙)| ∨ |𝜎(𝜙)| ≤ 𝑐(1+∥ 𝜙 ∥𝑟).                          (6) 

Keeping in mind the end goal to demonstrate the theorem of existence and uniqueness of the solution to the 

equation (2) under the local Lipschitz condition, we initially set up these two lemmas. 

Lemma 3.3:  Let  (H2) and  (H3) hold. Let x(t) be a solution to equation (2) with initial data (3). Then   

  
𝔼( sup

−∞<𝑡≤𝑇
(𝑒𝑟𝑡|𝑥(𝑡)|)2) ≤ 𝔼 ∥ 𝜉 ∥𝑟

2+ [(
√𝑘+𝑘(𝑒2𝑟𝑡−1)

(1−√𝑘)2 +
3𝑒2𝑟𝑇(1+𝑐𝑇(𝑇+1))

(1−𝑘)(1−√𝑘)
)𝔼 ∥ 𝜉 ∥𝑟

2

                +
3𝑐𝑇𝑒2𝑟𝑇(𝑇+1)

(1−𝑘)(1−√𝑘)
] × exp(

3𝑐𝑒2𝑟𝑇𝑇(𝑇+1)

(1−𝑘)(1−√𝑘)
).

                             (7) 

 Where, particularly, 𝑥(𝑡) ∈ 𝑀2((−∞, 𝑇]; 𝑅𝑑). 

 

Proof: For every integer 𝑛 ≥ 1, define the stopping time  

 𝜏𝑛 = 𝑇 ∧ inf{𝑡 ∈ [0, 𝑇]: ∥ 𝑥𝑡 ∥𝑟≥ 𝑛}, 

it is clear that 𝜏𝑛 ↑ 𝑇 a.s. . Set 𝑥𝑡
0 = 𝜉 and 𝑥𝑛(𝑡) = 𝑥(𝑡 ∧ 𝜏𝑛) for 𝑡 ∈ [0, 𝑇] . Then for 0 ≤ 𝑡 ≤ 𝑇  

 𝑥𝑛(𝑡) = 𝐷(𝑥𝑡
𝑛) − 𝐷(𝜉) + 𝜉(0) + ∫  

𝑡∧𝜏𝑛

0
𝑏(𝑥𝑠

𝑛)𝑑𝑠 + ∫  
𝑡∧𝜏𝑛

0
𝜎(𝑥𝑠

𝑛)𝑑𝑤(𝑠) 

Let  
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 𝐽𝑛(𝑡) = 𝜉(0) + ∫  
𝑡∧𝜏𝑛

0
𝑏(𝑥𝑠

𝑛)𝑑𝑠 + ∫  
𝑡∧𝜏𝑛

0
𝜎(𝑥𝑠

𝑛)𝑑𝑤(𝑠). 

Then, applying (for any 𝑎, 𝑏 and 0 < 𝑘 < 1 we have (𝑎 + 𝑏)2 ≤
𝑎2

𝑘
+

𝑏2

1−𝑘
) twice one derives that:  

 

𝑒2𝑟𝑡|𝑥𝑛(𝑡)|2 ≤
𝑒2𝑟𝑡

𝑘
|𝐷(𝑥𝑡

𝑛) − 𝐷(𝜉)|2 +
𝑒2𝑟𝑡

1−𝑘
|𝐽𝑛(𝑡)|2

≤ 𝑘𝑒2𝑟𝑡 ∥ 𝑥𝑡
𝑛 − 𝜉 ∥𝑟

2+
𝑒2𝑟𝑡

1−𝑘
|𝐽𝑛(𝑡)|2

≤ √𝑘𝑒2𝑟𝑡 ∥ 𝑥𝑡
𝑛 ∥𝑟

2+
𝑘𝑒2𝑟𝑡

1−√𝑘
∥ 𝜉 ∥𝑟

2+
𝑒2𝑟𝑡

1−𝑘
|𝐽𝑛(𝑡)|2.

               (8) 

 Since  

 

𝑒2𝑟𝑡 ∥ 𝑥𝑡
𝑛 ∥𝑟

2 = 𝑒2𝑟𝑡 sup
−∞<𝜃≤0

(𝑒𝑟𝜃|𝑥𝑡
𝑛(𝜃)|)2

= sup
−∞<𝜃≤0

(𝑒𝑟(𝑡+𝜃)|𝑥𝑛(𝑡 + 𝜃)|)2

= sup
−∞<𝑠≤𝑡

(𝑒𝑟𝑠|𝑥𝑛(𝑠)|)2

≤ sup
−∞<𝑠≤0

(𝑒𝑟𝑠|𝑥𝑛(𝑠)|)2 + sup
0≤𝑠≤𝑡

(𝑒𝑟𝑠|𝑥𝑛(𝑠)|)2

=∥ 𝜉 ∥𝑟
2+ sup

0≤𝑠≤𝑡
(𝑒𝑟𝑠|𝑥𝑛(𝑠)|)2.

               (9) 

 So, by substituting (9) into (8) one can get that:  

𝑒2𝑟𝑡|𝑥𝑛(𝑡)|2 ≤ √𝑘 ∥ 𝜉 ∥𝑟
2+ √𝑘 sup

0≤𝑠≤𝑡
(𝑒𝑟𝑠|𝑥𝑛(𝑠)|)2

                    +
𝑘𝑒2𝑟𝑡

1−√𝑘
∥ 𝜉 ∥𝑟

2+
𝑒2𝑟𝑡

1−𝑘
|𝐽𝑛(𝑡)|2

≤
√𝑘+𝑘(𝑒2𝑟𝑡−1)

(1−√𝑘)
(∥ 𝜉 ∥𝑟

2) + √𝑘( sup
0≤𝑠≤𝑡

(𝑒𝑟𝑠|𝑥𝑛(𝑠)|)2

                    +
𝑒2𝑟𝑡

1−𝑘
|𝐽𝑛(𝑡)|2.

                                                                  (10) 

 Hence, by taking the expectation on both sides of (10) with the Holder Inequality, one can get that:  

𝔼( sup
0≤𝑡≤𝑇

𝑒2𝑟𝑡|𝑥𝑛(𝑡)|2) ≤
√𝑘+𝑘(𝑒2𝑟𝑇−1)

(1−√𝑘)2 𝔼 ∥ 𝜉 ∥𝑟
2+

1

(1−𝑘)(1−√𝑘)
𝔼( sup

0≤𝑡≤𝑇
𝑒2𝑟𝑡|𝐽𝑛(𝑡)|2).                 (11) 

 On the other hand, by Holder Inequality, the Burkholder -Davis-Gundy inequality and  (H3) (Linear growth 

condition) we can get that:  

𝔼( sup
0≤𝑡≤𝑇

𝑒2𝑟𝑡|𝐽𝑛(𝑡)|2) ≤ 3𝑒2𝑟𝑇𝔼( sup
0≤𝑡≤𝑇

[|𝜉(0)|2 + | ∫  
𝑡∧𝜏𝑛

0
𝑏(𝑥𝑠

𝑛)𝑑𝑠|2 + | ∫  
𝑡∧𝜏𝑛

0
𝜎(𝑋𝑠

𝑛)𝑑𝑤(𝑠)|2])

≤ 3𝑒2𝑟𝑇𝔼 ∥ 𝜉 ∥𝑟
2+ 3𝑒2𝑟𝑇𝔼( sup

0≤𝑡≤𝑇
(∫  

𝑡∧𝜏𝑛

0
|𝑏(𝑥𝑠

𝑛)|)2𝑑𝑠) + 12𝔼 ∫  
𝑇∧𝜏𝑛

0
|𝜎(𝑥𝑠

𝑛)|2𝑑𝑠

≤ 3𝑒2𝑟𝑇𝔼 ∥ 𝜉 ∥𝑟
2+ 3𝑇𝑒2𝑟𝑇 ∫  

𝑇

0
𝔼|𝑏(𝑥𝑠

𝑛)|2𝑑𝑠 + 12𝑒2𝑟𝑇 ∫  
𝑇

0
𝔼|𝜎(𝑥𝑠

𝑛)|2𝑑𝑠

≤ 3𝑒2𝑟𝑇𝔼 ∥ 𝜉 ∥𝑟
2+ 3𝑐𝑒2𝑟𝑇(𝑇 + 4) ∫  

𝑇

0
𝔼(1+∥ 𝑥𝑠

𝑛 ∥𝑟
2)𝑑𝑠

= 3𝑒2𝑟𝑇𝔼 ∥ 𝜉 ∥𝑟
2+ 3𝑐𝑇𝑒2𝑟𝑇(𝑇 + 4) + 3𝑐𝑒2𝑟𝑇(𝑇 + 4) ∫  

𝑇

0
𝔼 ∥ 𝑥𝑠

𝑛 ∥𝑟
2 𝑑𝑠

≤ 3𝑒2𝑟𝑇𝔼 ∥ 𝜉 ∥𝑟
2+ 3𝑐𝑇𝑒2𝑟𝑇(𝑇 + 4) + 3𝑐𝑒2𝑟𝑇(𝑇 + 4) ∫  

𝑇

0
𝔼( sup

−∞<𝜃≤0
𝑒2𝑟𝜃|𝑥𝑛(𝑠 + 𝜃)|2)𝑑𝑠

≤ 3𝑒2𝑟𝑇𝔼 ∥ 𝜉 ∥𝑟
2+ 3𝑐𝑇𝑒2𝑟𝑇(𝑇 + 4)

                        +3𝑐𝑒2𝑟𝑇𝑒−2𝑟𝑠(𝑇 + 4) ∫  
𝑇

0
𝔼(∥ 𝜉 ∥𝑟

2+ sup
0≤𝑢≤𝑇

𝑒2𝑟𝑢|𝑥𝑛(𝑢)|𝑟
2)𝑑𝑢

≤ 3𝑒2𝑟𝑇(1 + 𝑐𝑇(𝑇 + 4))𝔼 ∥ 𝜉 ∥𝑟
2+ 3𝑐𝑇𝑒2𝑟𝑇(𝑇 + 4)

                        +3𝑐𝑒2𝑟𝑇(𝑇 + 4) ∫  
𝑇

0
𝔼( sup

0≤𝑢≤𝑇
𝑒2𝑟𝑢|𝑥𝑛(𝑢)|2)𝑑𝑢.  

      (12)       
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 Substituting (12) into (11) yields that  

 

𝔼( sup
0≤𝑡≤𝑇

(𝑒𝑟𝑡|𝑥𝑛(𝑡)|)2) ≤ (
√𝑘+𝑘(𝑒2𝑟𝑡−1)

(1−√𝑘)2 +
3𝑒2𝑟𝑇(1+𝑐𝑇(𝑇+4))

(1−𝑘)(1−√𝑘)
)𝔼 ∥ 𝜉 ∥𝑟

2

    +
3𝑐𝑇𝑒2𝑟𝑇(𝑇+4)

(1−𝑘)(1−√𝑘)
+

3𝑐𝑒2𝑟𝑇((𝑇+4)

(1−𝑘)(1−√𝑘)
∫  

𝑇

0
𝔼( sup

0≤𝑢≤𝑇
(𝑒𝑟𝑢|𝑥𝑛(𝑢)|)2)𝑑𝑢.

           (13) 

 Hence, by the Gronwall inequality:  

 𝔼( sup
0≤𝑡≤𝑇

𝑒2𝑟𝑡|𝑥𝑛(𝑡)|2) ≤ [(
√𝑘+𝑘(𝑒2𝑟𝑡−1)

(1−√𝑘)2 +
3𝑒2𝑟𝑇(1+𝑐𝑇(𝑇+4))

(1−𝑘)(1−√𝑘)
)𝔼 ∥ 𝜉 ∥𝑟

2

    +
3𝑐𝑇𝑒2𝑟𝑇(𝑇+4)

(1−𝑘)(1−√𝑘)
] × exp(

3𝑐𝑒2𝑟𝑇𝑇(𝑇+4)

(1−𝑘)(1−√𝑘)
).

                                          (14)          

 Note that:  

 

𝔼( sup
−∞<𝑡≤𝑇

(𝑒𝑟𝑡|𝑥𝑛(𝑡)|)2) ≤ 𝔼( sup
−∞<𝑡≤0

(𝑒𝑟𝑡|𝑥𝑛(𝑡)|)2) + 𝔼( sup
0≤𝑡≤𝑇

(𝑒𝑟𝑡|𝑥𝑛(𝑡)|)2)

≤ 𝔼 ∥ 𝜉 ∥𝑟
2+ [(

√𝑘+𝑘(𝑒2𝑟𝑡−1)

(1−√𝑘)2 +
3𝑒2𝑟𝑇(1+𝑐𝑇(𝑇+1))

(1−𝑘)(1−√𝑘)
)𝔼 ∥ 𝜉 ∥𝑟

2

                +
3𝑐𝑇𝑒2𝑟𝑇(𝑇+1)

(1−𝑘)(1−√𝑘)
] × exp(

3𝑐𝑒2𝑟𝑇𝑇(𝑇+1)

(1−𝑘)(1−√𝑘)
).

   (15) 

 That’s means:  

 
𝔼( sup

−∞<𝑡≤𝑇
(𝑒𝑟𝑡|𝑥(𝑡 ∧ 𝜏𝑛)|)2) ≤ 𝔼 ∥ 𝜉 ∥𝑟

2+ [(
√𝑘+𝑘(𝑒2𝑟𝑡−1)

(1−√𝑘)2 +
3𝑒2𝑟𝑇(1+𝑐𝑇(𝑇+1))

(1−𝑘)(1−√𝑘)
)𝔼 ∥ 𝜉 ∥𝑟

2

                +
3𝑐𝑇𝑒2𝑟𝑇(𝑇+1)

(1−𝑘)(1−√𝑘)
] × exp(

3𝑐𝑒2𝑟𝑇𝑇(𝑇+1)

(1−𝑘)(1−√𝑘)
).

 (16) 

 If 𝑛 → ∞ then (16) implies the following inequality and the proof is complete:  

 
𝔼( sup

−∞<𝑡≤𝑇
(𝑒𝑟𝑡|𝑥(𝑡)|)2) ≤ 𝔼 ∥ 𝜉 ∥𝑟

2+ [(
√𝑘+𝑘(𝑒2𝑟𝑡−1)

(1−√𝑘)2 +
3𝑒2𝑟𝑇(1+𝑐𝑇(𝑇+1))

(1−𝑘)(1−√𝑘)
)𝔼 ∥ 𝜉 ∥𝑟

2

                +
3𝑐𝑇𝑒2𝑟𝑇(𝑇+1)

(1−𝑘)(1−√𝑘)
].

 (17) 

 

          To prove the Theorem 3.5 we utilize the standard argument, for instance, see [14, 3], which is the truncation 

procedure, so we preclude it. For accomplishment, we present the accompanying Lemma.        

Lemma 3.4:  For any n0 sufficiently large and n ≥ n0 define the truncation functions bn and σn as follows:   

𝑏𝑛(𝜙) = {
𝑏(𝜙)    𝑓𝑜𝑟 ∥ 𝜙 ∥𝑟≤ 𝑛,

𝑏(
𝑛𝜙

∥𝜙∥𝑟
) 𝑓𝑜𝑟 ∥ 𝜙 ∥𝑟> 𝑛;

                                                                                   (18)                 

𝜎𝑛(𝜙) = {
𝜎(𝜙)    𝑓𝑜𝑟 ∥ 𝜙 ∥𝑟≤ 𝑛,

𝜎(
𝑛𝜙

∥𝜙∥𝑟
) 𝑓𝑜𝑟 ∥ 𝜙 ∥𝑟> 𝑛.

                                                                                 (19)                   

 Then 𝑏𝑛 and 𝜎𝑛 satisfy the global Lipschitz and the linear growth conditions. 

Proof: By (18) , 𝑏𝑛(𝜙) = 𝑏(
∥𝜙∥𝑟∧𝑛

∥𝜙∥𝑟
𝜙) then by the assumption (𝐻1) for any ∥ 𝜙 ∥𝑟  and ∥ 𝜑 ∥𝑟 belongs to 𝐶𝑟 we have 

four cases: 

Case1:If ∥ 𝜙 ∥𝑟 , ∥ 𝜑 ∥𝑟≤ 𝑛:|𝑏𝑛(𝜙) − 𝑏𝑛(𝜑)| = |𝑏(𝜙) − 𝑏(𝜑)| =∥ 𝜙 − 𝜑 ∥𝑟≤ 𝑘𝑛 ∥ 𝜑 − 𝜙 ∥𝑟 .   
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Case 2: Now let ∥ 𝜙 ∥𝑟 , ∥ 𝜑 ∥𝑟> 𝑛:  

 

|𝑏𝑛(𝜙) − 𝑏𝑛(𝜑)| = |𝑏(
𝑛𝜙

∥𝜙∥𝑟
) − 𝑏(

𝑛𝜑

∥𝜑∥𝑟
)| ≤ 𝑘𝑛 ∥

𝑛𝜙

∥𝜙∥𝑟
−

𝑛𝜑

∥𝜑∥𝑟
∥𝑟= 𝑛𝑘𝑛 ∥

𝜙

∥𝜙∥𝑟
−

𝜑

∥𝜑∥𝑟
∥𝑟

= 𝑛𝑘𝑛 ∥
𝜙∥𝜑∥𝑟−𝜙∥𝜙∥𝑟+𝜙∥𝜙∥𝑟−𝜑∥𝜙∥𝑟

∥𝜙∥𝑟∥𝜑∥𝑟
∥𝑟≤ 𝑘𝑛 ∥

𝜙(∥𝜑∥𝑟−∥𝜙∥𝑟)+∥𝜙∥𝑟(𝜙−𝜑)

∥𝜙∥𝑟
∥𝑟

≤ 2𝑘𝑛
∥𝜙∥𝑟∥∥𝜑∥𝑟−∥𝜙∥𝑟∥𝑟+∥𝜙∥𝑟∥𝜙−𝜑∥𝑟

∥𝜙∥𝑟
≤ 2𝑘𝑛 ∥ 𝜙 − 𝜑 ∥𝑟 .

  

Case 3: Suppose that ∥ 𝜙 ∥𝑟> 𝑛, ∥ 𝜑 ∥𝑟≤ 𝑛:  

 

|𝑏𝑛(𝜙) − 𝑏𝑛(𝜑)| = |𝑏(
𝑛𝜙

∥𝜙∥
) − 𝑏(𝜑)| ≤ 𝑘𝑛 ∥

𝑛𝜙

∥𝜙∥𝑟
− 𝜑 ∥𝑟= 𝑘𝑛

∥𝑛𝜙−𝜙∥𝜙∥𝑟+𝜙∥𝜙∥𝑟−𝜑∥𝜙∥𝑟∥𝑟

∥𝜙∥𝑟

≤ 2𝑘𝑛(∥ 𝑛−∥ 𝜙 ∥𝑟∥𝑟 +∥ 𝜙 − 𝜑 ∥𝑟) ≤ 2𝑘𝑛(∥∥ 𝜑 ∥𝑟 −∥ 𝜙 ∥𝑟∥𝑟 +∥ 𝜙 − 𝜑 ∥𝑟)

≤ 2𝑘𝑛 ∥ 𝜙 − 𝜑 ∥𝑟 .

  

Case 4: Suppose that ∥ 𝜙 ∥𝑟≤ 𝑛, ∥ 𝜑 ∥𝑟> 𝑛:  

 

|𝑏𝑛(𝜙) − 𝑏𝑛(𝜑)| = |𝑏(𝜙) − 𝑏(
𝜑

∥𝜑∥𝑟
)| ≤ 𝑘𝑛 ∥ 𝜙 −

𝑛𝜑

∥𝜑∥𝑟
∥𝑟= 𝑘𝑛

∥𝜙∥𝜑∥𝑟−𝜑∥𝜑∥𝑟+𝜑∥𝜑∥𝑟−𝑛𝜑∥𝑟

∥𝜑∥𝑟

≤ 2𝑘𝑛(∥ 𝜙 − 𝜑 ∥𝑟 +∥∥ 𝜑 ∥ −𝑛 ∥𝑟) ≤ 2𝑘𝑛(∥ 𝜙 − 𝜑 ∥𝑟 +∥∥ 𝜑 ∥ −∥ 𝜙 ∥𝑟∥𝑟)

≤ 2𝑘𝑛 ∥ 𝜙 − 𝜑 ∥𝑟 .

 

Also we note that by the assumption (𝐻3):  

 |𝑏𝑛(𝑥)|2 = |𝑏(
|𝑥|∧𝑛

|𝑥|
𝑥)|2 ≤ 𝑐(1 + |

|𝑥|∧𝑛

|𝑥|
𝑥|2) = 𝑐(1 + (

|𝑥|∧𝑛

|𝑥|
)2|𝑥|2). 

Sense 
|𝑥|∧𝑛

|𝑥|
≤ 1 thus |𝑏𝑛(𝑥)|2 ≤ 𝑐(1 + |𝑥|2). The proof is therefore complete. 

We note that, for any initial data 𝜉 ∈ 𝐶𝑟 , by (𝐻1), coefficients 𝑏𝑛 and 𝜎𝑛 satisfy the uniform Lipschitz 

condition, which reveals the linear growth condition. 

Theorem 3.5: Assume that (H1), (H2) and (H3) hold then there exists a unique Maximal Local Strong solution 

𝑥(𝑡) to equation (2) with the initial data (3) in M2((−∞, T]; Rd). 

Proof: For each 𝑛 ≥ 1 define truncation functions 𝑏𝑛 and 𝜎𝑛 as in the equations (18) and (19), respectively, then by 

the Lemma 3.4 they satisfy the uniform Lipschitz and the linear growth conditions. So that, for any initial data 𝜉 ∈

𝐶𝑟 , 𝑡 ≥ 0 the NSFDEwID equation,  

   𝑥𝑛(𝑡) = 𝐷(𝑥𝑡
𝑛) − 𝐷(𝜉) + 𝜉(0) + ∫  

𝑡

0
𝑏𝑛(𝑥𝑠

𝑛)𝑑𝑠 + ∫  
𝑡

0
𝜎𝑛(𝑥𝑠

𝑛)𝑑𝑤(𝑠),                                   (20)           

 has a unique solution 𝑥𝑛(𝑡) ∈ 𝑀2((−∞, 𝑇]; 𝑅𝑑).  

Define the stopping time 𝜏𝑎 = 𝑇 ∧ 𝑖𝑛𝑓{𝑡 ≥ 0: ∥ 𝑥𝑡
𝑛 ∥𝑟≥ 𝑛}. We can show that 

 𝑥𝑛(𝑡) = 𝑥𝑛+1(𝑡) if 0 ≤ 𝑡 ≤ 𝜏𝑛 . Taking the expectation, and by Holder inequality, it deduces that  

𝔼|𝑥𝑛+1(𝑡) −𝑥𝑛(𝑡)|2 = 𝔼|𝐷(𝑥𝑡
𝑛+1) − 𝐷(𝑥𝑡

𝑛) + ∫  
𝑡

0
[𝑏𝑛+1(𝑥𝑠

𝑛+1) − 𝑏𝑛(𝑥𝑠
𝑛)]𝑑𝑠

+ ∫  
𝑡

0
[𝜎𝑛+1(𝑥𝑠

𝑛+1) − 𝜎𝑛(𝑥𝑠
𝑛)]𝑑𝑤(𝑠)|2

≤ 𝑘𝔼 ∥ 𝑥𝑡
𝑛+1 − 𝑥𝑡

𝑛 ∥𝑟
2+

2

1−𝑘
𝔼| ∫  

𝑡

0
[𝑏𝑛+1(𝑥𝑠

𝑛+1) − 𝑏𝑛(𝑥𝑠
𝑛)]𝑑𝑠|2

+
2

1−𝑘
𝔼| ∫  

𝑡

0
[𝜎𝑛+1(𝑥𝑠

𝑛+1) − 𝜎𝑛(𝑥𝑠
𝑛)]𝑑𝑤(𝑠)|2

≤ 𝑘𝔼 ∥ 𝑥𝑡
𝑛+1 − 𝑥𝑡

𝑛 ∥𝑟
2+

4𝑡

1−𝑘
𝔼 ∫  

𝑡

0
[|𝑏𝑛+1(𝑥𝑠

𝑛+1) − 𝑏𝑛+1(𝑥𝑠
𝑛)|2 + |𝑏𝑛+1(𝑥𝑠

𝑛) − 𝑏𝑛(𝑥𝑠
𝑛)|2]𝑑𝑠

+
4

1−𝑘
𝔼 ∫  

𝑡

0
[|𝜎𝑛+1(𝑥𝑠

𝑛+1) − 𝜎𝑛+1(𝑥𝑠
𝑛)|2 + |𝜎𝑛+1(𝑥𝑠

𝑛) − 𝜎𝑛(𝑥𝑠
𝑛)|2]𝑑𝑠.

 (21) 
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 For 0 ≤ 𝑡 ≤ 𝜏𝑛, we have known that: 𝑏𝑛+1(𝑥𝑠
𝑛) = 𝑏𝑛(𝑥𝑠

𝑛) = 𝑏(𝑥𝑠
𝑛) and 

𝜎𝑛+1(𝑥𝑠
𝑛) = 𝜎𝑛(𝑥𝑠

𝑛) = 𝜎(𝑥𝑠
𝑛) again by 𝑥𝑛+1(𝑠) = 𝑥𝑛(𝑠) = 𝜉(𝑠), 𝑠 ∈ (−∞, 0). We get that:  

 

𝔼( sup
0<𝑠≤𝑡

|𝑥𝑛+1(𝑡) −𝑥𝑛(𝑡)|2) ≤ 𝑘𝑒−2𝑟𝑡𝔼( sup
0<𝑠≤𝑡

|𝑥𝑛+1(𝑠) − 𝑥𝑛(𝑠)|2)

+
4𝑘𝑛(𝑇+1)𝑒−2𝑟𝑡

1−𝑘
∫  

𝑇

0
𝔼( sup

0<𝑠≤𝑡
|𝑥𝑛+1(𝑠) − 𝑥𝑛(𝑠)|2)𝑑𝑠,

            (22) 

 thus,  

 𝔼( sup
0<𝑠≤𝑡

|𝑥𝑛+1(𝑠) − 𝑥𝑛(𝑠)|2) ≤
4𝑘𝑛(𝑇+1)𝑒−2𝑟𝑡

(1−𝑘𝑒−2𝑟𝑡)(1−𝑘)
∫  

𝑇

0
𝔼( sup

0<𝑠≤𝑡
|𝑥𝑛+1(𝑠) − 𝑥𝑛(𝑠)|2)𝑑𝑠. (23) 

 From Grownwall inequality, one can see that  

 𝔼( sup
0<𝑠≤𝑡

|𝑥𝑛+1(𝑠) − 𝑥𝑛(𝑠)|2) = 0,                         (24) 

 this means, for all 0 ≤ 𝑡 ≤ 𝜏𝑛 , we always have  

 𝑥𝑛+1(𝑡) = 𝑥𝑛(𝑡).                                (25) 

 It then deduces 𝜏𝑛 is increasing, that is as 𝑛 → ∞, 𝜏𝑛 → 𝑇 a.s. By (𝐻1), for almost all 𝜔 ∈ Ω, there exists an integer 

𝑛0 = 𝑛0(𝜔) such that 𝜏𝑛 = 𝑇 as 𝑛 ≥ 𝑛0. Now define 𝑥(𝑡) by  

 𝑥(𝑡) = 𝑥𝑛0
(𝑡), 𝑡 ∈ [0, 𝑇].                             (26) 

 By (25), 𝑥(𝑡 ∧ 𝜏𝑛) = 𝑥𝑛(𝑡 ∧ 𝜏𝑛), and it therefore follows from (20) that  

 

𝑥(𝑡 ∧ 𝜏𝑛) = 𝐷(𝑥𝑡∧𝜏𝑛
) − 𝐷(𝜉) + 𝜉(0) + ∫  

𝑡∧𝜏𝑛

0
𝑏𝑛(𝑥𝑠)𝑑𝑠 + ∫  

𝑡∧𝜏𝑛

0
𝜎𝑛(𝑥𝑠)𝑑𝑤(𝑠)

= 𝐷(𝑥𝑡∧𝜏𝑛
) − 𝐷(𝜉) + 𝜉(0) + ∫  

𝑡∧𝜏𝑛

0
𝑏(𝑥𝑠)𝑑𝑠 + ∫  

𝑡∧𝜏𝑛

0
𝜎(𝑥𝑠)𝑑𝑤(𝑠).  (27) 

 Letting 𝑛 → ∞ we see that 𝑥(𝑡) is a solution of equation (2), that is  

 𝑥(𝑡 ∧ 𝑇) = 𝐷(𝑥𝑡∧𝑇) − 𝐷(𝜉) + 𝜉(0) + ∫  
𝑡∧𝑇

0
𝑏(𝑥𝑠)𝑑𝑠 + ∫  

𝑡∧𝑇

0
𝜎(𝑥𝑠)𝑑𝑤(𝑠), (28) 

 consequently,  

 𝑥(𝑡) = 𝐷(𝑥𝑡) − 𝐷(𝜉) + 𝜉(0) + ∫  
𝑡

0
𝑏(𝑥𝑠)𝑑𝑠 + ∫  

𝑡

0
𝜎(𝑥𝑠)𝑑𝑤(𝑠),             (29) 

 which, by Lemma 3.3, belongs to 𝑀2((−∞, 𝑇]; 𝑅𝑑).  

The proof of existence is complete. The uniqueness can be proved via a stopping procedure. This completes the 

proof. 
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