Page 36-45

Abdul Rahman.H \Rajaa .C

Jordan Left Derivation and Jordan Left Centralizer of Skew Matrix Rings

Abdul Rahman.H.Majeed Rajaa .C.Shaheen Department of Mathematics, College of Science, BaghdadUniversity. Department of Mathematics, College of Education, Al-QadisiyahUniversity.

Abstract

In this paper, we determine the form of Jordan left derivation and Jordan Left Centralizers of a Skew matrix ring $M_2(R; \sigma, q)$ over a ring R.

Mathematics Subject Classification:17AXX .

Keywords:Skew matrix ring,Jordan Left Centralizer,Jordan left derivation

1-Introduction

Let R be a ring .An additive mapping $D: R \rightarrow R$ is said to be a derivation (resp.,Jordanderivation)if $D(xy)=D(x)y+xD(y)$ for all $x,y \in R$ (if $D(x^2)$) $xD(x)$ for all $x \in R$. An additive mapping $D: R \rightarrow R$ is said to be a left derivation (resp.,Jordan left derivation)if $D(xy)=xD(y)+yD(x)$ for all $x,y \in R$ (if $D(x^2)$) for all xER.the concept of left derivation and Jordan left derivation were introduced by Bresar and Vukman in [1] .For result concerning Jordan left derivations we refer the readers to [2,3 ,4,5]. An additive mapping $T: R \rightarrow R$ is called left centralizer(resp.,Jordan left centralizer)if $T(xy)=T(x)y$ for all x,y $\in R$ (resp., $T(x^2)$) $T(x)x$. An additive mapping $T: R \rightarrow R$ is called a Jordan centralizer if T satisfies $T(xy+yx)=T(x)y+yT(x)=T(y)x+xT(y)$ for all x,y ER. For result concerning left centralizer we refer the reader to [6,7,8].In [9],Hamaguchi,give a necessary and sufficient condition for a given mapping J of a skew matrix ring $M_2(R; \sigma, q)$ into itself to be a Jordan derivation also show that there are many Jordan derivations of $M_2(R; \sigma, q)$ which are not derivations and refer to the properties of Jordan derivations of $M_2(R)$, and derivations of $M_2(R; \sigma, q)$. Also the author consider invariant ideal with respect to these derivations .In this paper, we determine the form of Jordan left derivation and Jordan Left Centralizers of a Skew matrix ring $M_2(R; \sigma, q)$ over a ring R .Now, we shall recall the definitions of Skew matrix ring which is basic in this paper .

Definition 1.1 :-**[10] Skew Matrix ring**

Let R be a ring, q an element in R and σ an endomorphism of R such that $\sigma(q) = q$ and $\sigma(r)q = qr\forall r \in R$. Let $M_2(R; \sigma, q)$ be the set of 2×2 matrices over R with usual addition and the following multiplication

$$
\begin{bmatrix} x_1 & x_2 \ x_3 & x_4 \end{bmatrix} \begin{bmatrix} y_1 & y_2 \ y_3 & y_4 \end{bmatrix} = \begin{bmatrix} x_1y_1 + x_2y_3q & x_1y_2 + x_2y_4 \ x_3\sigma(y_1) + x_4y_3 & x_3\sigma(y_2)q + x_4y_4 \end{bmatrix}
$$

 $M_2(R; \sigma, q)$ is called a skew matrix ring over R.

We should mentioned the reader that a matrix $\begin{bmatrix} a \\ c \end{bmatrix}$ $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is denoted by $e_{21}c + e_{22}d$.

Abdul Rahman.H \Rajaa .C

2-Jordan Left Derivation of Skew Matrix Rings

In this section ,we shall determined the form of Jordan left derivation of skew matrix ring. Let J be a Jordan left derivation of $M_2(R; \sigma, q)$. First, we set

$$
J(e_{11} a) = \begin{bmatrix} f_1(a) & f_2(a) \\ f_3(a) & f_4(a) \end{bmatrix}, J(e_{12} b) = \begin{bmatrix} h_1(b) & h_2(b) \\ h_3(b) & h_4(b) \end{bmatrix}
$$

$$
J(e_{21} c) = \begin{bmatrix} l_1(c) & l_2(c) \\ l_3(c) & l_4(c) \end{bmatrix}, J(e_{22} d) = \begin{bmatrix} g_1(d) & g_2(d) \\ g_3(d) & g_4(d) \end{bmatrix}
$$

Where f_i , h_i , g_i , l_i : $R \rightarrow$ Rare additive mapping.

Lemma2.1:- For any $a \in R$

- 1. f_1, f_2 are Jordan left derivations of R.
- $2.$ (a^2)
- $3.$ (a^2)

Proof:-Since

$$
J(e_{11}a^2) = 2e_{11}aJ(e_{11}a)
$$

\n
$$
\begin{bmatrix} f_1(a^{2}) & f_2(a^{2}) \\ f_3(a^{2}) & f_4(a^{2}) \end{bmatrix} = 2\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} f_1(a) & f_2(a) \\ f_3(a) & f_4(a) \end{bmatrix}
$$

\n
$$
\begin{bmatrix} f_1(a^{2}) & f_2(a^{2}) \\ f_3(a^{2}) & f_4(a^{2}) \end{bmatrix} = \begin{bmatrix} 2af_1(a) & 2af_2(a) \\ 0 & 0 \end{bmatrix}
$$

Then $f_1(a^2) = 2af_1(a)$, $f_2(a^2) = 2af_2(a)$, $f_3(a^2) = 0$ and $f_4(a^2)$ So,we get the result .

Lemma2.2 :- For any $d \in R$.

- 1. g_3 , g_4 are Jordan left derivations of R.
- 2. $g_1(d^2)$
- 3. $g_2(d^2)$

Proof:-Since

$$
J(e_{22}d^{2}) = 2e_{22}d J(e_{22}d)
$$

\n
$$
\begin{bmatrix} g_{1}(d^{2}) & g_{2}(d^{2}) \ g_{3}(d^{2}) & g_{4}(d^{2}) \end{bmatrix} = 2 \begin{bmatrix} 0 & 0 \ 0 & d \end{bmatrix} \begin{bmatrix} g_{1}(d) & g_{2}(d) \ g_{3}(d) & g_{4}(d) \end{bmatrix}
$$

\n
$$
\begin{bmatrix} g_{1}(d^{2}) & g_{2}(d^{2}) \ g_{3}(d^{2}) & g_{4}(d^{2}) \end{bmatrix} = \begin{bmatrix} 0 & 0 \ 2dg_{3}(d) & 2dg_{4}(d) \end{bmatrix}
$$

\n
$$
Theng_{3}(d^{2}) = 2dg_{3}(d), g_{4}(d^{2}) = 2dg_{4}(d), g_{1}(d^{2}) = 0 \text{ and } g_{2}(d^{2}) = 0..
$$

Lemma 2.3 :- For any a,b∈ R

- 1. $h_1(ab) = 2ah_1(b) + 2bf_3($
- 2. $h_2(ab) = 2ah_2(b) + 2bf_4(c)$
- 3. $h_3($
- 4. $h_4($

Proof:-Since

$$
[(e_{12}ab) = J(e_{11}ae_{12}b + e_{12}be_{11}a)
$$

\n
$$
[h_1(ab) h_2(ab)] = 2e_{11}aJ(e_{12}b) + 2e_{12}b J(e_{11}a)
$$

\n
$$
= 2\begin{bmatrix} a & 0 \ 0 & 0 \end{bmatrix} \begin{bmatrix} h_1(b) & h_2(b) \ h_3(b) & h_4(b) \end{bmatrix} + 2\begin{bmatrix} 0 & b \ 0 & 0 \end{bmatrix} \begin{bmatrix} f_1(a) & f_2(a) \ f_3(a) & f_4(a) \end{bmatrix}
$$

\n
$$
= \begin{bmatrix} 2a h_1(b) & 2a h_2(b) \ h_3(b) & h_4(b) \end{bmatrix} + \begin{bmatrix} 2b f_3(a)q & 2b f_4(a) \ h_3(ab) & h_2(ab) \end{bmatrix}
$$

\n
$$
[h_1(ab) h_2(ab)] = \begin{bmatrix} 2a h_1(b) + 2b f_3(a)q & 2a h_2(b) + 2b f_4(a) \ h_3(ab) & h_4(ab) \end{bmatrix}
$$

\nThen we get the result

Then ,we get the result .

Lemma 2.4 :-for any c,d∈ R 1. l_1 (2.1_{2} (

3. l_3 (dc) = 2dl₃(c) + 2c σ (g₁(4. l_4 (dc) = 2dl₄(c) + 2co(g₂(d))q

Proof:-Since

$$
J(e_{21} dc) = J(e_{22} de_{21} c + e_{21} ce_{22} d)
$$
\n
$$
\begin{bmatrix}\nI_1(dc) & I_2(dc) \\
I_3(dc) & I_4(dc)\n\end{bmatrix} = 2e_{22} dJ(e_{21}c) + 2e_{21}cJ(e_{22}d)
$$
\n
$$
= \begin{bmatrix}\n0 & 0 \\
0 & 2d\n\end{bmatrix} \begin{bmatrix}\nI_1(c) & I_2(c) \\
I_3(c) & I_4(c)\n\end{bmatrix} + \begin{bmatrix}\n0 & 0 \\
2c & 0\n\end{bmatrix} \begin{bmatrix}\ng_1(d) & g_2(d) \\
g_3(d) & g_4(d)\n\end{bmatrix} = \begin{bmatrix}\n0 & 0 \\
2dl_3(c) & 2dl_4(c)\n\end{bmatrix} + \begin{bmatrix}\n0 & 0 \\
2c\sigma(g_1(d)) & 2c\sigma(g_2(d))q\n\end{bmatrix}
$$
\n
$$
\begin{bmatrix}\nI_1(dc) & I_2(dc) \\
I_3(dc) & I_4(dc)\n\end{bmatrix} = \begin{bmatrix}\n0 & 0 & 0 \\
2dl_3(c) + 2c\sigma(g_1(d)) & 2dl_4(c) + 2c\sigma(g_2(d))q\n\end{bmatrix}.
$$
\nWe get the result

Then , we get the result

Theorem 2.5 :-Let R be a ring and J be a Jordan left derivation of $M_2(R; \sigma, q)$. Then \int_{a}^{a} a b] = $\begin{bmatrix} f_1(a) + h_1(b) + l_1(c) + g_1(d) & f_2(a) + h_2(b) + l_2(c) + g_2(c) \\ f_3(a) + h_3(b) + l_3(c) + g_3(d) & f_4(a) + h_4(b) + l_4(c) + g_4(c) \end{bmatrix}$ $f_3(a) + h_3(b) + l_3(c) + g_3(d)$ $f_4(a) + h_4(b) + l_4(c) + g_4(d)$ such that 1. $f_3(a^2) = 0, f_4(a^2) = 0, f_1, f_2$ are Jordan left derivations of R. 2. $g_1(d^2) = 0, g_2(d^2) = 0g_3$ and g_4 are Jordan left derivations of R. 3. $h_1(ab) = 2a h_1(b) + 2b f_3(a) q, h_2(ab) = 2a h_2(b) + 2b f_4(b)$ $h_3(ab) = 0$ and $h_4(a)$ 4. l_1 (dc) = 0, l_2 (dc) = 0, l_3 (dc) = 2dl₃(c) + 2co(g₁(d)) and d_4 (dc) = 2dl₄(c) + 2co(g₂(d))q

Proof:-SinceJ^{[a}] $\begin{bmatrix} a & b \\ c & d \end{bmatrix}$ = $=\begin{bmatrix} f_1(a) & f_2(c) \\ f_1(a) & f_2(c) \end{bmatrix}$ $f_1(a)$ $f_2(a)$ $\left[\begin{array}{cc} h_1(b) & h_2(c) \\ h_3(b) & h_4(c) \end{array}\right]$ $\begin{bmatrix} h_1(b) & h_2(b) \\ h_3(b) & h_4(b) \end{bmatrix} + \begin{bmatrix} l_1(c) & l_2(b) \\ l_3(c) & l_4(c) \end{bmatrix}$ $\begin{bmatrix} 1_1(c) & 1_2(c) \\ 1_3(c) & 1_4(c) \end{bmatrix} + \begin{bmatrix} g_1(d) & g_2(c) \\ g_3(d) & g_4(c) \end{bmatrix}$ $g_3(d)$ $g_4(d)$ $=[f_1(a) + h_1(b) + l_1(c) + g_1(d) \quad f_2(a) + h_2(b) + l_2(c) + g_2(d)$ $f_3(a) + h_3(b) + l_3(c) + g_3(d)$ $f_4(a) + h_4(b) + l_4(c) + g_4(d)$ By[Lemma 2.1], [Lemma 2.2] , [Lemma 2.3]and [Lemma 2.4] we get the result .

3-Jordan Left Centralizer of Skew Matrix Rings

In this section ,we shall determined the form of Jordan left centralizer of skew matrix ring. Let J be a Jordan Left Centralizer of $M_2(R; \sigma, q)$. First ,we set

$$
J(e_{11} a) = \begin{bmatrix} f_1(a) & f_2(a) \\ f_3(a) & f_4(a) \end{bmatrix}, J(e_{12} b) =
$$

\n
$$
\begin{bmatrix} h_1(b) & h_2(b) \\ h_3(b) & h_4(b) \end{bmatrix} J(e_{21}c) = \begin{bmatrix} l_1(c) & l_2(c) \\ l_3(c) & l_4(c) \end{bmatrix}, J(e_{22} d) = \begin{bmatrix} g_1(d) & g_2(d) \\ g_3(d) & g_4(d) \end{bmatrix}
$$

\nh, g, l, R \rightarrow R are additive manning

Where f_i , h_i , g_i , $l_i: R \rightarrow R$ are additive mapping.

Lemma 3.1 :- For any a ER

- 1. f_1 is Jordan left centralizer of R.
- 2. $f_2(a^2)$
- 3. $f_3(a^2) = f_3(a)$
- 4. $f_4(a^2) = 0$.

Proof:-Since
$$
[(e_{11}a^2) = J(e_{11}a)e_{11}a
$$

$$
\begin{bmatrix} f_1(a^2) & f_2(a^2) \\ f_3(a^2) & f_4(a^2) \end{bmatrix} = \begin{bmatrix} f_1(a) & f_2(a) \\ f_3(a) & f_4(a) \end{bmatrix} \begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix}
$$

$$
\begin{bmatrix} f_1(a^2) & f_2(a^2) \\ f_3(a^2) & f_4(a^2) \end{bmatrix} = \begin{bmatrix} f_1(a)a & 0 \\ f_3(a)\sigma(a) & 0 \end{bmatrix}
$$
Then $f_1(a^2) = f_1(a)a, f_2(a^2) = 0, f_3(a^2) = f_3(a)\sigma(a)$ and $f_4(a^2) = 0$.
So, we get the result.

Lemma3.2 :- For any $d \in \mathbb{R}$

- 1. g_2 , g_4 are Jordan left centralizers of R.
- 2. $g_1(d^2)$
- 3. $g_3(d^2)$

Proof:-Since

$$
J(e_{22}d^{2}) = J(e_{22}d) e_{22}d
$$

\n
$$
\begin{bmatrix} g_{1}(d^{2}) & g_{2}(d^{2}) \ g_{3}(d^{2}) & g_{4}(d^{2}) \end{bmatrix} = \begin{bmatrix} g_{1}(d) & g_{2}(d) \ g_{3}(d) & g_{4}(d) \end{bmatrix} \begin{bmatrix} 0 & 0 \ 0 & d \end{bmatrix}
$$

 l $g_1(d^2)$ $g_2(d^2)$ $g_3(d^2)$ $g_4(d^2)$ $\begin{bmatrix} 0 & g_2 \end{bmatrix}$ $\begin{bmatrix} 6 & 62 \ (0 & g_4(d)) \end{bmatrix}$ Then $g_1(d^2) = 0$, $g_3(d^2) = 0$ & g_2 , g_4 are Jordan left centralizers of R.

Lemma3.3 :- For any a,b∈ R

1. $h_1(ab) = h_1(a)$ 2. $h_2(ab) = f_1(a)$ 3. $h_3(ab) = h_3(b)\sigma($

4. $h_4(ab) = f_3(a)\sigma(b)q$

Proof:-Since $J(e_{12}ab) = J(e_{11}ae_{12}b + e_{12}be_{11}a)$ $\begin{bmatrix} h_1(ab) & h_2(b) \\ h_1(ab) & h_2(b) \end{bmatrix}$ $\begin{vmatrix} h_1(ab) & h_2(ab) \\ h_3(ab) & h_4(ab) \end{vmatrix} = J$ $=$ \vert f $\begin{bmatrix} f_1(a) & f_2(a) \\ f_3(a) & f_4(a) \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ h $\begin{bmatrix} h_1(b) & h_2(b) \\ h_3(b) & h_4(b) \end{bmatrix}$ [a $\begin{bmatrix} a & b \\ 0 & 0 \end{bmatrix}$ $=\begin{bmatrix} 0 & f_1 \end{bmatrix}$ $\begin{bmatrix} 0 & f_1(a)b \\ 0 & f_3(a)\sigma(b)q \end{bmatrix} + \begin{bmatrix} h_1(b) \\ h_3(b) \end{bmatrix}$ $\begin{bmatrix} n_1(b)a & b \\ h_3(b)\sigma(a) & 0 \end{bmatrix}$ $\begin{bmatrix} n_1(a) & n_2(a) \\ n_3(a) & n_4(a) \end{bmatrix} = \begin{bmatrix} n_1(b) & n_1(a) \\ n_3(b) & n_2(b) \end{bmatrix}$ $h_1(ab)$ $h_2(ab)$] [$h_1(b)a$ $f_1(b)$] then $h_1(ab) = h_1(b)a$, $h_2(ab) = f_1(a)b$, $h_3(ab) = h_3(a)$ $h_4(ab) = f_3(a)\sigma(b)q$, so, we get the result. **Lemma 3.4 :-**For any c,d∈ R 1. l_1 (dc) = g_2 (2. l_2 (dc) = l_2 (

2.
$$
1_2(ac) = 1_2(c)a
$$

3. $1_3(dc) = g_4(d)c$

4. l_4 (dc) = l_4 (

Proof:-Since

$$
J(e_{21} dc) = J(e_{22} de_{21} c + e_{21} ce_{22} d)
$$

\n
$$
\begin{bmatrix}\nI_1(dc) & I_2(dc) \\
I_3(dc) & I_4(dc)\n\end{bmatrix} = J(e_{22} d)e_{21} c + J(e_{21} c)e_{22} d
$$

\n
$$
= \begin{bmatrix}\ng_1(d) & g_2(d) \\
g_3(d) & g_4(d)\n\end{bmatrix} \begin{bmatrix}\n0 & 0 \\
c & 0\n\end{bmatrix} + \begin{bmatrix}\nI_1(c) & I_2(c) \\
I_3(c) & I_4(c)\n\end{bmatrix} \begin{bmatrix}\n0 & 0 \\
0 & d\n\end{bmatrix}
$$

\n
$$
= \begin{bmatrix}\ng_2(d) cq & 0 \\
g_4(d) c & 0\n\end{bmatrix} + \begin{bmatrix}\n0 & I_2(c)d \\
0 & I_4(c)d\n\end{bmatrix}
$$

\n
$$
= \begin{bmatrix}\ng_2(d) cq & I_2(c)d \\
g_4(d) c & I_4(c)d\n\end{bmatrix}
$$

\n
$$
I_1(dc) = g_2(d) cq, I_2(dc) = I_2(c)d
$$

\n
$$
I_3(dc) = g_4(d) c, I_4(dc) = I_4(c)d
$$

Theorem 3.5:-Let R be a ring and J be a Jordan left centralizer of $M_2(R; \sigma, q)$ Then \int_{a}^{a} a b] = $\begin{bmatrix} f_1(a) + h_1(b) + l_1(c) + g_1(d) & f_2(a) + h_2(b) + l_2(c) + g_2(c) \\ f_3(a) + h_3(b) + l_3(c) + g_3(d) & f_4(a) + h_4(b) + l_4(c) + g_4(c) \end{bmatrix}$ $f_3(a) + h_3(b) + l_3(c) + g_3(d)$ $f_4(a) + h_4(b) + l_4(c) + g_4(d)$ Such that 1. f₁ is Jordan left centralizer of R, $f_2(a^2) = 0$, $f_3(a^2) = f_3(a)\sigma(a)$ and $f_4(a^2) = 0$. 2.g₂, g₄ are Jordan left centralizers of R, $g_1(d^2) = 0$ and $g_3(d^2)$ $3. h_1(ab) = h_1(b)a, h_2(ab) = f_1(a)b, h_3(ab) = h_3(b)\sigma(a)$ and $h_4(ab) = f_3(a)\sigma(a)$ $4. l_1(dc) = g_2(d) cq, l_2(dc) = l_2(c)d, l_3(dc) = g_4(d)c and l_4(dc) = l_4(d)$ **Proof:-**Since \int_0^a $\begin{bmatrix} a & b \\ c & d \end{bmatrix} =$ $=\begin{bmatrix} f_1(a) & f_2(c) \\ f_1(c) & f_2(c) \end{bmatrix}$ $f_1(a)$ $f_2(a)$ $\left[\begin{array}{cc} h_1(b) & h_2(c) \\ h_3(b) & h_4(c) \end{array}\right]$ $\begin{bmatrix} h_1(b) & h_2(b) \\ h_3(b) & h_4(b) \end{bmatrix} + \begin{bmatrix} l_1(c) & l_2(b) \\ l_3(c) & l_4(c) \end{bmatrix}$ $\begin{bmatrix} 1_1(c) & 1_2(c) \\ 1_3(c) & 1_4(c) \end{bmatrix} + \begin{bmatrix} g_1(d) & g_2(c) \\ g_3(d) & g_4(c) \end{bmatrix}$ $\begin{bmatrix} 61(4) & 62(4) \\ g_3(d) & g_4(d) \end{bmatrix}$ $=[f_1(a) + h_1(b) + l_1(c) + g_1(d) \quad f_2(a) + h_2(b) + l_2(c) + g_2(d)$ $f_3(a) + h_3(b) + l_3(c) + g_3(d)$ $f_4(a) + h_4(b) + l_4(c) + g_4(d)$

Also, by [Lemma 3.1],[Lemma 3.2],[Lemma 3.3] and [Lemma 3.4],we get the result .

Theorem 3.6 :-Let R be a ring with identity and J a Jordan Left centralizer of $M_2(R; \sigma, q)$. Then there exist $f_2, f_4, g_1, g_2: R \to R$ and $\alpha, \beta, \alpha, \beta, \lambda, \lambda, \varepsilon, \varepsilon \in$ Such that \overline{a}

$$
J(e_{11}a) = \begin{bmatrix} \varepsilon a & f_2(a) \\ \beta\sigma(a) & f_4(a) \end{bmatrix}, J(e_{12}b) = \begin{bmatrix} \alpha & b & \varepsilon b \\ \beta\sigma(b) & \beta\sigma(b) \end{bmatrix}
$$

$$
J(e_{21}c) = \begin{bmatrix} \alpha & cq & \lambda c \\ \lambda c & \varepsilon' c \end{bmatrix}, J(e_{22}d) = \begin{bmatrix} g_1(d) & \alpha d \\ g_3(d) & \lambda d \end{bmatrix}
$$
and
$$
J\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \varepsilon a + \alpha b + \alpha cq + g_1(d) & f_2(a) + \varepsilon b + \lambda c + \alpha d \\ \beta\sigma(a) + \beta\sigma(b) + \lambda c + g_3(d) & f_4(a) + \beta\sigma(b)q + \varepsilon c + \lambda d \end{bmatrix}
$$
Proof: From [Lemma 3.1,3]

 $f_3(a^2) = f_3(a)$

Replace a by a+b

$$
f_3(a^2 + ab + ba + b^2) = f_3(a + b)\sigma(a + b)
$$

$$
f_3(ab + ba) = f_3(a)\sigma(b) + f_3(b)\sigma(a)
$$

Replace b by 1,since R has identity

$$
f_3(2a)=f_3(a)\sigma(1) + f_3(1)\sigma(a)
$$

$$
f_3(2a)=f_3(a) + f_3(1)\sigma(a)
$$

Then

$$
f_3(a) = f_3(1)\sigma(a)
$$

Now, Let $\beta = f_3(1)$. Then

$$
f_3(a) = \beta \sigma(a)
$$

But $g_2(d^2) = g_2$

 $g_2((d+c)^2) = g_2$

Replace c by 1 ,to get

Now, since
$$
l_4(dc) = l_4(c)d
$$
,
Replace c by 1 , to get
 $l_4(d) = l_4(1)d$,
Let $\varepsilon = l_4(1)$

Then

 l_4 (d) = $\acute{\epsilon}$ d,

and since

$$
J\begin{bmatrix} a & b \\ c & d \end{bmatrix} = J(e_{11} a) + J(e_{12} b) + J(e_{21} c) + J(e_{22} d)
$$

$$
= \begin{bmatrix} f_1(a) & f_2(a) \\ f_3(a) & f_4(a) \end{bmatrix} + \begin{bmatrix} h_1(b) & h_2(b) \\ h_3(b) & h_4(b) \end{bmatrix} + \begin{bmatrix} l_1(c) & l_2(c) \\ l_3(c) & l_4(c) \end{bmatrix} +
$$

\n
$$
\begin{bmatrix} g_1(d) & g_2(d) \\ g_3(d) & g_4(d) \end{bmatrix} = \begin{bmatrix} f_1(a) + h_1(b) + l_1(c) + g_1(d) & f_2(a) + h_2(b) + l_2(c) + g_2(d) \\ f_3(a) + h_3(b) + l_3(c) + g_3(d) & f_4(a) + h_4(b) + l_4(c) + g_4(d) \end{bmatrix}
$$

 \overline{a}

 \overline{a}

 \overline{a}

Then
$$
J\begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} \varepsilon a + \dot{\alpha}b + \alpha c q + g_1(d) & f_2(a) + \varepsilon b + \dot{\lambda}c + \alpha d \\ \beta \sigma(a) + \beta \sigma(b) + \lambda c + g_3(d) & f_4(a) + \beta \sigma(b)q + \dot{\varepsilon}c + \lambda d \end{bmatrix}
$$

Abdul Rahman.H \Rajaa .C

References

[1]M.Bresar and J.Vukman ,OnLeft Derivations and Related Mappings ,*Proc.Amer. Math.Soc*.110(1990),no.1,7-16.

[2]Q.Deng,On Jordan Left Derivations,*Math.J.Okayama univ*.34(1992)145-147.

[3]K.W.Jun and b.D.kim,Anote on Jordan Left Derivations,*Bull.KoreanMath.Soc.* 33(1996),no.2,221-228.

[4]J.Vukman,Jordan Left Derivations on SemiprimeRings,*math.J.Okayama Univ.* 39(1997)1-6.

[5]J.Vukman,OnLeft Jordan Derivations of Rings and BanachAlgebras,*Aequationes math*.75(2008),no.3,260-266.

[6]J.Vukman,An Identity Related to Centralizers in SemiprimeRings, *Comment .Math . Univ. Carolinae* 40(1999),447-456.

[7]J. Vukman, Centralizers of Semi-Prime Rings,*Comment.Math.Univ.Carolinae* 42(2001),237-245.

[8]B.Zalar,OnCentralizers of Semi Prime Rings ,*Comment.Math.Univ.Carolinae* 32(1991),609-614.

[9]N. Hamaguchi ,Jordan Derivations of a Skew Matrix Ring ,*Mathematical Journal of Okayama University* ,V42,(2000)19-27.

[10]K.Oshiro,Theories of Harada in ArtinianRings and Applications to Classical ArtinianRings, *International Symposium on ring theory, Birkhauer* ,to appear .

Abdul Rahman.H \Rajaa .C

اشتماق جورداى اليساري وتطبيك جورداى الوركزي اليساري على حلمات الوصفوفات التخالفية عبذ الرحوي حويذ هجيذ رجاء جفات شاهيي

جاهعة بغذاد / كلية العلوم / لسن الرياضيات جاهعة المادسية / كلية التربية / لسن الرياضيات

المستخلص :

في هذا البحث حددنا شكل اشتقاق جوردان اليساري وتطبيق جوردان المركزي اليساري .R على حلقة المصفوفات M2(R; σ, q) على الحلقة $\mathtt{M}_{2}(\mathtt{R};\mathtt{\sigma},\mathtt{q})$