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A B S T R A C T 

The proposed new technique in this article is based on modification  Homotopy Perturbation 
method (HPM) using Hermite polynomials for approximate solution to  fuzzy integral 
equations of the second kind for both Volterra and Fredholm types. Our method produces 
accurate results which are illustrated throughout some examples. 
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1 . Introduction"" 
 

The concept of fuzzy sets and fuzzy functions were firstly studied by [6,25]. Then the definition of fuzzy numbers 

and its applications in approximate problems and control theory were presented in [26,5]. One of the most 

important applications of fuzzy seta is fuzzy integral equations which play roles in variant areas [3,4,17]. In recent 

years, numerical and approximate  methods have been suggested for solving fuzzy integral equations . For examples, 

In [11], an analytical and numerical methods are used to solve fuzzy Volterra integral equations while the  Taylor 

expansion and the variational iteration methods were applied to  second kind fuzzy linear  Volterra integral 

equation[12]. In [1], the fuzzy Gauss quadrature formula was utilized to  solve  fuzzy integral equation 

approximately. Furthermore, a new method was proposed by [10] which is based on artificial neural networks for 

approximate results to  Fredholm fuzzy integral equations of the second kind. In [7] , hybrid of block-pulse functions 
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and Taylor series were employed to solve linear Fredholm fuzzy integral equations of the second kind. Other works 

for approximate solutions to  fuzzy integral equations can be found in [16,19,22] .This research is an attempt to 

propose the developments of  the homotopy perturbation method [13,18,21,23,27] with Hermite polynomials by the 

use of an accelerating parameter for the approximate solution to both second kind fuzzy Fredholm and Volterra 

integral equation  . 

The structure of this paper is organized as follows: in section 2, basic definitions  and notions of fuzzy numbers and 

fuzzy continuous function are listed. Section 3 gives the definition of Hermite polynomials and some of their 

important properties while fuzzy integral equation is introduced in section 4. Section 5 provides an approximate 

solution with Homotopy perturbation  technique for fuzzy integral equation. The description of the proposed new 

method for solving both Fredholm and Volterra fuzzy integral equation are described in section 6. Illustrated results 

with some examples and the conclusion are introduced in section 7 and 8 respectively." 

 

2. Preliminaries and notations 

Some necessary definitions and mathematical preliminaries are given in the present section which are farther used in 

the next sections. 

  

Definition2.1[15] :A fuzzy number 𝑢 ̃is a fuzzy interval with the following properties: 

1-�̃� is normal, i.e.,∃ x° ∈ R such that U(x°) = 1. 

2- �̃� is convex, i.e, ∀ a, b ∈ R and δ ∈[0,1],   �̃�(δa + (1 − δ)b) ≥ min {�̃�(a), �̃�(b)}.    

    3- �̃� is upper semi-continuous on R. 

4- supp �̃�  =  {U(y)  >  0 | y ∈ R} is the support of the �̃�. 

 

The set of all fuzzy numbers is denoted by 𝐸1 . The  r-cut of a fuzzy interval �̃� ∈ E1  with 𝑟 ∈ (0,1]  is : 

 

[�̃�]r={
{�̃�(y)  ≥  0| y ∈ R}  if 𝑟 ∈ (0,1]

cl(supp�̃�)            if  r = 1
 

 

Definition 2.2 [2]: A  is a pair ( 𝑢 , 𝑢 ) of  functions   𝑢 (r),  𝑢 (r)  represent  fuzzy number  �̃� where 𝑟 ∈ [0,1]  and the 

following points are satisfied    

a)  𝑢 (r), is increasing left continuous and bounded monotonic function, 

b) 𝑢 (r)  is decreasing left continuous bounded monotonic function, 

c) 𝑟 ∈ [0,1]  ,  𝑢 (𝑟)  ≥ 𝑢 (𝑟)   . 

we define  addition, subtraction, scalar product by  k  respectively for fuzzy number  �̃� = (𝑢 (𝑟), 𝑢 (𝑟))  and �̃� =

(𝑣 (𝑟), 𝑣 (𝑟))   , 𝑟 ∈ [0,1]  , and scalar k as follow: 

• addition:         (𝑢 + 𝑣) (𝑟) = 𝑢(𝑟) + 𝑣(𝑟)    ,      (𝑢 + 𝑣) (𝑟) = 𝑢(𝑟) + 𝑣 (𝑟)   .    

• subtraction:   (𝑢 − 𝑣) (𝑟) = 𝑢(𝑟) − 𝑣(𝑟)    ,      (𝑢 − 𝑣)(𝑟) = 𝑢(𝑟) − 𝑣 (𝑟)  

   

• scalar product: ku(r) = {
(ku(r), ku(r))          k ≥ o             

(ku(r), ku(r))         k <  𝑜              
   

 

Definition 2.3 [20]: let  �̃� = (𝑢 (𝑟), 𝑢 (𝑟)) and �̃� = (𝑣 (𝑟), 𝑣 (𝑟))  be  a fuzzy number .The distance between �̃� and �̃� 

is 

𝐷(�̃�, �̃�) = max {sup0≤𝑟≤1|𝑢(𝑟) − 𝑣(𝑟)| , sup0≤𝑟≤1|𝑢 (𝑟) − 𝑣 (𝑟)|  } . 

and satisfy  following properties  

 

(𝑖)   𝐷(�̌�  + �̌�, �̌�  + �̌�)  = 𝐷(�̌�, �̌�), ∀�̌�, �̌�, �̃�  ∈  E1, 

(𝑖𝑖)  𝐷(𝑘�̃�, 𝑘�̃�)  =  |𝑘|𝐷(�̃�, �̃�), ∀𝑘 ∈  𝑅, �̃�, �̃�  ∈  E1, 

(𝑖𝑖𝑖) 𝐷(�̃�  + �̃�, �̃�  +  �̃�) ≤  𝐷(�̃�, �̃�) + 𝐷(�̃�, �̃�), ∀�̃�, �̃�, �̃�, �̃�  ∈  E1 
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(𝑖𝑣) (𝐷, E1) 𝑖𝑠 𝑎 𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 𝑚𝑒𝑡𝑟𝑖𝑐 𝑠𝑝𝑎𝑐𝑒. 

 

 

Definition2.4 [24]: Let 𝑓  ∶ [𝑎, 𝑏] ⊆ 𝑅 → E1 be a fuzzy valued function. 𝑓 is called  fuzzy continuous in 𝑡° ∈ [𝑎, 𝑏]  if 

there is  𝜎 > 0 for each 𝜇 > 0  such that 𝐷(𝑓(𝑡) , 𝑓(𝑡°)) < 𝜇 whenever |𝑡 ∈ [a, b] and |𝑡 − 𝑡°| < σ. 

 

3.Hermite Polynomials [14] 
Let = (−∞,+∞) , then Hermite polynomials 𝐻𝑛(𝑥) have the explicit form given by : 

𝐻𝑛(𝑥) = 𝑛! ∑
(−1)𝑖   (2𝑥)𝑛−2𝑖

𝑖!   (𝑛 − 2𝑖)

[𝑛 2⁄ ]

𝑖=0

 

and they are satisfied the three terms recurrence formula 

 

𝐻𝑛+1(𝑥) = 2𝑥𝐻𝑛(𝑥) − 2𝑛 𝐻𝑛−1(𝑥) , for n=2,3,… 

 

where 𝐻0(𝑥) = 1 , 𝐻1(𝑥) = 2𝑥 

 

Some of  Hermite polynomials are  

      𝐻0(𝑥) = 1 

   𝐻1(𝑥) = 2𝑥 

   𝐻2(𝑥) = 4𝑥2 − 2  

  𝐻3(𝑥) = 8𝑥
3 − 12𝑥 

 𝐻4(𝑥) = 16 𝑥
4 − 48𝑥2 + 12  

 𝐻5(𝑥) = 32 𝑥
5 − 160𝑥3 + 120 𝑥 

 

4.Fuzzy Integral Equations 

There are three main types of fuzzy integral equations. In this section, the integral equations which are discussed  are 

 Fredholm and Volterra integral  equations .Second kind Fredholm integral equation is given by [8] 

 

𝛾(x) = g(x) + λ∫ 𝑘(𝑥, 𝑡) 𝛾(𝑡)𝑑𝑡
𝑏

𝑎
     (1) 

Where  λ is a positive parameter and  𝑘(𝑥, 𝑡) is represent kernel function for  𝑎 ≤ 𝑥 , 𝑡 ≤ 𝑏 and 𝑔(𝑥) is a function of  

𝑥 ∶ 𝑎 ≤ 𝑥 ≤ 𝑏.  

  

Now with respect to definition (2.2) , we introduce parametric form of a Fuzzy  Fredholm Integral Equation of the 

second kind (FFIE-2). Let (𝑔(𝑥, 𝑟), 𝑔 (𝑥, 𝑟))and (𝛾(𝑥, 𝑟), 𝛾 (𝑥, 𝑟)) , 𝑟 ∈ [0,1]    and 𝑥 ∈ [𝑎, 𝑏] are parametric form of  

 g (x) and 𝛾(x) then, parametric form of  second kind fuzzy  Fredholm integral equation is  

𝛾(𝑥, 𝑟) = 𝑔(𝑥, 𝑟) + λ ∫ 𝑈(𝑡, 𝑟)𝑑𝑡
𝑏

𝑎
                                                                                                                  

                                                        (2)                                                                   

𝛾 (𝑥, 𝑟) =  𝑔 (𝑥, 𝑟) + λ ∫  𝑈 (𝑡, 𝑟)𝑑𝑡
𝑏

𝑎
                                                          

 

 

 

 

𝑈(𝑡, 𝑟) = {
𝑘(𝑥, 𝑡) 𝛾(𝑡, 𝑟), 𝑘(𝑥, 𝑡) ≥ 0

𝑘(𝑥, 𝑡) 𝛾 (𝑡, 𝑟),   𝑘(𝑥, 𝑡) < 0
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and 

 

𝑈 (𝑡, 𝑟) = {
𝑘(𝑥, 𝑡) 𝛾 (𝑡, 𝑟) , 𝑘(𝑥, 𝑡) ≥ 0

𝑘(𝑥, 𝑡) 𝛾(𝑡, 𝑟),   𝑘(𝑥, 𝑡) < 0  

 

for each 𝑡 ≥ 0 , 𝑏 ≥ 𝑥   and 𝑟 ∈ [0,1]. 

 

5.Homotopy Perturbation Method for Solving Fuzzy Integral Equations 

 

Consider the nonlinear Volterra fuzzy integral equation as follows 

𝛾(𝑥, 𝑟) = 𝑔(𝑥, 𝑟) + ∫ 𝑘(𝑥, 𝑡)[𝛾(𝑡, 𝑟)]𝑞𝑑𝑡
𝑥

𝑎

 

                                                                                                                                                                      (3) 

𝛾 (𝑥, 𝑟) =  𝑔 (𝑥, 𝑟) + ∫  𝑘(𝑥, 𝑡)[ 𝛾 (𝑡, 𝑟)]𝑞𝑑𝑡
𝑥

𝑎

 

 

Rewrite eq.(3) as : 

 

L(𝑢) =  𝑢(𝑥, 𝑟)  − 𝑔(𝑥, 𝑟) − ∫ 𝑘(𝑥, 𝑡)[ 𝑢(𝑡, 𝑟)]𝑞𝑑𝑡 = 0
𝑥

𝑎
 . 

                                                                                                                                 (4) 

L(𝑢) =  𝑢 (𝑥, 𝑟)  − 𝑔 (𝑥, 𝑟) − ∫ 𝑘(𝑥, 𝑡)[ 𝑢 (𝑡, 𝑟)]𝑞𝑑𝑡 = 0
𝑥

𝑎

 

 

with solution  𝑢(𝑥, 𝑟) = 𝛾(𝑥, 𝑟)  ,  𝑢 (𝑥, 𝑟) = 𝛾 (𝑥, 𝑟) 

Homotopy 𝐻(𝑢, 𝑝), 𝐻(𝑢, 𝑝) define as follows: 

{
𝐻(𝑢, 0) = 𝐹(𝑢),       𝐻(𝑢, 1) = L(𝑢)  

𝐻(𝑢, 0) = 𝐹(𝑢), 𝐻(𝑢, 1) = L(𝑢)
                     (5) 

 

Where  𝐹(𝑢), 𝐹(𝑢) are functional operators with solutions, say  𝑢0 ,, 𝑢0 . We choose a convex  homotopy 

{
𝐻(𝑢, 𝑝) = (1 − 𝑝)𝐹(𝑢) + 𝑝 L(𝑢) = 0

𝐻(𝑢, 𝑝) = (1 − 𝑝)𝐹(𝑢) + 𝑝 L(𝑢) = 0 
                    (6) 

 

where 𝑝 ∈ (0,1]   

𝑢 = ∑ 𝑝𝑛𝑢𝑛
∞
𝑛=0    

                                                                                              (7) 

𝑢 = ∑𝑝𝑛𝑢𝑛

∞

𝑛=0

 

  

One can get the approximate solution  when 𝑝 → 1 , 

 

 

 

𝛾(𝑥, 𝑟) = lim𝑝→1 𝑢 =∑ 𝑢𝑛
∞
𝑛=0   

                                                                                                     (8) 

𝛾 (𝑥, 𝑟) = lim
𝑝→1

 𝑢 =∑  𝑢𝑛

∞

𝑛=0
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Taking  𝐹(𝑢) = 𝑢(𝑥, 𝑟) − 𝑔(𝑥. 𝑟)  and  𝐹(𝑢) = 𝑢(𝑥, 𝑟) − 𝑔 (𝑥, 𝑟)  ,with the aid of  eqns.(6-7) and after equating powers 

of p , yields 

{
𝑢0 (𝑥, 𝑟) = 𝑔(𝑥, 𝑟)

𝑢0(𝑥, 𝑟) = 𝑔 (𝑥, 𝑟) 
 

 

𝑢𝑛+1(𝑥, 𝑟) = ∫ 𝑘(𝑥, 𝑡)𝐻𝑛1(𝑡, 𝑟)𝑑𝑡
𝑥

𝑎

 

                                                                                                

 𝑢𝑛+1(𝑥, 𝑟) = ∫ 𝑘(𝑥, 𝑡)𝐻𝑛2(𝑡, 𝑟)𝑑𝑡
𝑥

𝑎

 

where the Hn’s are the so-called He’s polynomials [9] which can be calculated by using the formula 

𝐻𝑛1(𝑡. 𝑟) = 𝐻𝑛(𝑢0 , 𝑢1 , 𝑢2 , … ) =
1

𝑛!

𝜕𝑛

𝜕𝑝𝑛
((∑𝑝𝑘𝑢𝑘)

𝑞

𝑛

𝑘=0

)𝑝=0 

𝐻𝑛2(𝑡. 𝑟) = 𝐻𝑛(𝑢0, 𝑢1 , 𝑢2, … ) =
1

𝑛!

𝜕𝑛

𝜕𝑝𝑛
((∑𝑝𝑘  𝑢𝑘)

𝑞

𝑛

𝑘=0

)𝑝=0 

In the same way the homotopy method can be explained for the fuzzy Fredholm integral equation. 

 

6. Description of the New Method  
The main goal of this section is to present a modification of  MHPM  based on Hermit polynomial and a parameter 

depended on the HPM.  To realize our goal, we first reconfigure Eq. (3) as follows: 

 

𝛾(𝑥, 𝑟) = ∑ 𝛽𝑚𝜔𝑚(𝑥, 𝑟) −
𝑁
𝑚=0 ∑ 𝛽𝑚𝜔𝑚(𝑥, 𝑟)

𝑁
𝑚=0 + 𝑔(𝑥, 𝑟) + ∫ 𝑘(𝑥, 𝑡)[ 𝛾(𝑡, 𝑟)]𝑞𝑑𝑡

𝑏

𝑎
       

                                                                                                                                                                                  (9) 

𝛾 (𝑥, 𝑟) =  ∑ 𝛽𝑚𝜔𝑚(𝑥, 𝑟) −

𝑁

𝑚=0

∑𝛽𝑚𝜔𝑚(𝑥, 𝑟)

𝑁

𝑚=0

+ 𝑔(𝑥, 𝑟) + ∫  𝑘(𝑥, 𝑡)[ 𝛾 (𝑡, 𝑟)]𝑞𝑑𝑡
𝑏

𝑎

 

By using the HPM, we let 

{
 
 

 
  𝐹(𝑢) = 𝑢(𝑥, 𝑟) − ∑ 𝛽𝑚𝜔𝑚(𝑥, 𝑟)

𝑁

𝑚=0

𝐹( 𝑢) = 𝑢(𝑥, 𝑟) − ∑ 𝛽𝑚𝜔𝑚(𝑥, 𝑟)

𝑁

𝑚=0

 

  

So a new convex homotopy perturbation can be define as follow: 

𝐻𝛽(𝑢, 𝑝) = 𝑢(𝑥, 𝑟) − 𝑝𝑔(𝑥, 𝑟) + (𝑝 − 1) [∑ 𝛽𝑚𝜔𝑚(𝑥, 𝑟)

𝑁

𝑚=0

] − 𝑝∫ 𝑘(𝑥, 𝑡)[𝑢(𝑡. 𝑟)]𝑞𝑑𝑡
𝑏

𝑎

= 0   (10)

𝐻𝛽(𝑢, 𝑝) = 𝑢(𝑥, 𝑟) − 𝑝𝑔(𝑥, 𝑟) + (𝑝 − 1) [∑ 𝛽𝑚𝜔𝑚(𝑥, 𝑟)

𝑁

𝑚=0

] − 𝑝∫ 𝑘(𝑥, 𝑡)[𝑢(𝑡. 𝑟)]𝑞𝑑𝑡
𝑏

𝑎

= 0   (11)

 

where 𝛽 = [𝛽𝑚] and 𝛽𝑚 . 𝑚 = 0,1,2, …𝑁 are said to be accelerating components of the parameter, and 

{
𝜔(𝑥, 𝑟) = [𝜔𝑚(𝑥, 𝑟)]

𝜔(𝑥, 𝑟) = [𝜔𝑚(𝑥, 𝑟)]
      𝑚 = 0,1,2, …𝑁 

are selective functions taken from Hermite polynomials . 

 

7. Numerical Examples 

In this section,  three examples were considered to explain the new method of solving fuzzy integral equations. 
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Example 1: Consider Fredholm  fuzzy integral equation with 

g(x, r) = 3(r2 − 2))(9𝑥2 − 10) + 𝑥3(𝑟5 + 2𝑟) − 𝑟(𝑟4 + 2)(3𝑥2 + 2) 

𝑔(𝑥, 𝑟) = 3(r2 − 2)(3𝑥2 + 2) − 𝑥3(3r2 − 6) − 𝑟(𝑟4 + 2)(9𝑥2 − 10)  

and kernel  𝑘(𝑥, 𝑡) = 3(2 − 𝑡2 + 𝑥2)    0 ≤ 𝑡   , 𝑥 ≤ 2  and 𝑎 = 0   , 𝑏 = 2 . 

 The exact solution in this case is given by 

                                                         𝛾(𝑥, 𝑟) = 𝑥3(𝑟5 + 2𝑟)    

                                                         𝛾 (𝑥, 𝑟) = 𝑥3(6 − 3r2) 

We apply 𝐻𝛽(𝑢, 𝑝) method  for upper and lower case respectively to approximate the solutions. We will choose in 

this example,  𝜔1(𝑥, 𝑟) = 𝑟𝐻1(𝑥) = 2𝑟𝑥  and  𝜔2(𝑥, 𝑟) = 𝑟𝐻3(𝑥) = 𝑟(8𝑥
3 − 12𝑥) for lower case. 

The homotopy equation, Eq. (10), becomes 

𝐻𝛽(𝑢, 𝑝) = 𝑢(𝑥, 𝑟) − 𝑝 r g(x, r) + (𝑝 − 1) (2𝛽°𝑟𝑥 + 𝛽1𝑟 (8𝑥
3 − 12𝑥) ) − 𝑝 ∫ 3(2 − 𝑡2 + 𝑥2)[𝑢(𝑡, 𝑟)]𝑑𝑡

2

0
= 0  (12)              

                                                    

with the aid of  eqns.(7-12) and after equating powers of p , yields 

𝑝°: 𝑢°(𝑥, 𝑟) − (2𝛽°𝑟𝑥 + 𝛽1𝑟 (8𝑥
3 − 12𝑥)) = 0 ⟹ 𝑢°(𝑥, 𝑟) =  2𝛽°𝑟𝑥 + 8𝛽1𝑟𝑥

3 − 12𝛽1𝑟𝑥 

𝑝1: 𝑢1(𝑥, 𝑟) − g(x, r) + (2𝛽°𝑟𝑥 + 𝛽1𝑟 (8𝑥
3 − 12𝑥)) − ∫ 3(2 − 𝑡2 + 𝑥2)𝑢°(𝑡, 𝑟)𝑑𝑡

2

0

= 0 

⟹ 𝑢1(𝑥, 𝑟) = (60 − 30𝑟2 − 2𝑟5 − 4r − 64r𝛽1) + (12𝛽1𝑟 − 2𝛽°𝑟)𝑥 + (27𝑟
2 − 54 − 3𝑟5 − 6r + 12𝛽°𝑟 + 24 𝑟𝛽1)𝑥

2 

                        +(𝑟5 + 2r − 8𝛽1𝑟)𝑥
3 

𝑝2: 𝑢2(𝑥, 𝑟) − ∫ 3(2 − 𝑡2 + 𝑥2)   𝑢1(𝑡, 𝑟)𝑑𝑡
2

0

= 0   

⟹ u2(x, r) = ∫ 3(2 − 𝑡2 + 𝑥2)    𝑢1(𝑡, 𝑟)𝑑𝑡
2

0

 

 

and in general  

𝑢𝑛+1(x, r) = ∫ 𝐻𝑛1(𝑡, 𝑟)𝑑𝑡
𝑏

𝑎

 

So, to find 𝛽° and 𝛽1 such that 𝑢1 = 0 , we should have 

 

{
 

 
60 − 30𝑟2 − 2𝑟5 − 4r − 64r𝛽1 = 0                 
12𝛽1𝑟 − 2𝛽°𝑟 = 0                                                    

27𝑟2 − 54 − 3𝑟5 − 6r + 12𝛽°𝑟 + 24 𝑟𝛽1 = 0 

𝑟5 + 2r − 8𝛽1𝑟 = 0                                               

 

 

thus   𝛽° = 6𝛽1   and     𝛽1 =
𝑟5+2𝑟

8𝑟
. 

Therefore, we obtain 

𝛾(𝑥, 𝑟)= 𝑢°(𝑥, 𝑟) =  2𝛽°𝑟𝑥 + 8𝛽1𝑟𝑥
3 − 12𝛽1𝑟𝑥 = (𝑟5 + 2𝑟)𝑥3   

which is the same as the exact solutions for lower case. 

 

Now , we choose 𝜔1(𝑥, 𝑟) = 𝑟2𝐻1(𝑥) = 2𝑟2𝑥   and   𝜔2(𝑥, 𝑟) = 𝑟3𝐻2(𝑥) = 𝑟3(8𝑥3 − 12𝑥)  for upper case.  

Therefore, Eq. (11) can be written: 

𝐻𝛽(𝑢, 𝑝) = 𝑢(𝑥, 𝑟) − 𝑝𝑔(𝑥, 𝑟) + (𝑝 − 1)(2𝛽°𝑟
2𝑥   + 𝛽1𝑟

3(8𝑥3 − 12𝑥)) − 𝑝 ∫ 3(2 − 𝑡2 + 𝑥2)[𝑢(𝑡, 𝑟)]𝑑𝑡
2

0
= 0  

 

rearrange the above equation to obtain  

𝑝°:  𝑢°(𝑥, 𝑟) −  (2𝛽°𝑟
2𝑥   + 𝛽1𝑟

3(8𝑥3 − 12𝑥)) = 0  

⟹  𝑢°(𝑥, 𝑟) =  (2𝛽°𝑟
2𝑥   + 𝛽1𝑟

3(8𝑥3 − 12𝑥))  

𝑝1:  𝑢1(𝑥, 𝑟) − 𝑔(𝑥, 𝑟) + (2𝛽°𝑟
2𝑥   + 𝛽1𝑟

3(8𝑥3 − 12𝑥))  − ∫ 3(2 − 𝑡2 + 𝑥2)  𝑢°(𝑡, 𝑟)𝑑𝑡
2

0

= 0 
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 𝑢1(𝑥, 𝑟) = (6𝑟2 − 12 + 10𝑟5 + 20r + 64𝛽1𝑟
3) + (12𝛽1𝑟

3 − 2𝛽°𝑟
2)𝑥 + (9𝑟2 − 18 − 9𝑟5 − 18r + 12𝛽°𝑟

2 + 24𝛽1𝑟
3)𝑥2 

                       +(6 − 3𝑟2 − 8𝛽1𝑟
3)x3 

 

𝑝2:  𝑢2(𝑥, 𝑟) − ∫ 3(2 − 𝑡2 + 𝑥2)   𝑢1(𝑡, 𝑟)𝑑𝑡
2

0

= 0 

 𝑢2 = ∫ 3(2 − 𝑡2 + 𝑥2)   𝑢1(𝑡, 𝑟)𝑑𝑡
2

0

 

and in general 

 𝑢𝑛+1(x, r) = ∫ 𝐻𝑛2(𝑡, 𝑟)𝑑𝑡
𝑏

𝑎

 

Now we find 𝛽° and 𝛽1  in such a way that  𝑢1 = 0, if  𝑢1 = 0 then  𝑢2 = 𝑢3 = · · · = 0, and the exact solution obtained by  

𝛾 (𝑥, 𝑟)= 𝑢°(𝑥, 𝑟); therefore for each values of x we have 

{
 
 

 
 

 

6𝑟2 − 12 + 10𝑟5 + 20r + 64𝛽1𝑟
3 = 0                              

12𝛽1𝑟
3 − 2𝛽°𝑟

2 = 0                                                               

9𝑟2 − 18 − 9𝑟5 − 18r + 12𝛽°𝑟
2 + 24𝛽1𝑟

3 = 0            

 6 − 3𝑟2 − 8𝛽1𝑟
3 = 0                                                            

 

then   𝛽° = 6𝑟𝛽1   and     𝛽1 =
6−3𝑟2

8𝑟3
. 

Thus, the solution would be as follows: 

𝛾 (𝑥, 𝑟)=  𝑢°(𝑥, 𝑟) =  (2𝛽°𝑟
2𝑥   + 𝛽1𝑟

3(8𝑥3 − 12𝑥))  = (6 − 3𝑟2)𝑥3. 

 

Example 2: Consider Fredholm fuzzy integral equation with 

g(x. r) = r(
1

2
 x −

1

3
)  

𝑔(𝑥, 𝑟) = (2 − 𝑟)( 
1

2
 x −

1

3
) 

and kernel 𝑘(𝑥, 𝑡) = 𝑥 + 𝑡    0 ≤ 𝑥   , 𝑡 ≤ 1 and 𝑎 = 0   , 𝑏 = 1 . The exact solution in this case is given by 

 

𝛾(𝑥, 𝑟) = 𝑟𝑥 

𝛾 (𝑥, 𝑟) = (2 − 𝑟)𝑥 

The approximate  solution can be obtained by the method  𝐻𝛽(𝑢, 𝑝) method with  𝜔(𝑥, 𝑟) = 𝑟𝐻1(𝑥) =2𝑟𝑥   for lower 

case.                                   

Therefore, Eq. (10) can be written in the following form:                                                                                                              

𝐻𝛽(𝑢, 𝑝) = 𝑢(𝑥, 𝑟) − 𝑝rg(x, r) + (𝑝 − 1)(2𝛽𝑟𝑥) − 𝑝 ∫ (𝑥 + 𝑡)[𝑢(𝑡, 𝑟)]𝑑𝑡
1

0
= 0            (13)           

By the same steps as listed in example 1, one can get 

 

𝑝°: 𝑢°(𝑥, 𝑟) −  2𝛽𝑟𝑥 = 0 ⟹ 𝑢°(𝑥, 𝑟) =  2𝛽𝑟𝑥 

𝑝1: 𝑢1(𝑥, 𝑟) − r (
1

2
 x −

1

3
) + 2𝛽𝑟𝑥 − ∫ (𝑥 + 𝑡)𝑢°(𝑡, 𝑟)𝑑𝑡

1

0

= 0 

 

⟹ 𝑢1(𝑥, 𝑟) = (
2

3
𝛽𝑟 −

1

3
𝑟) + (

1

2
𝑟 − 𝛽𝑟) x 

 

𝑝2: 𝑢2(𝑥, 𝑟) − ∫ (𝑥 + 𝑡)𝑢1(𝑡, 𝑟)𝑑𝑡
1

0

= 0     ⟹ u2(x, r) = ∫ (𝑥 + 𝑡)𝑢1(𝑡, 𝑟)𝑑𝑡
1

0

 

and in general 

𝑢𝑛+1(x, r) = ∫ 𝐻𝑛1(𝑡, 𝑟)𝑑𝑡
𝑏

𝑎

 

Now we find 𝛽  in such a way that 𝑢1 = 0, if 𝑢1 = 0 then u2 = u3 = · · · = 0. Thus  for each values of x we should have 
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{

2

3
𝛽𝑟 −

1

3
𝑟 = 0              

1

2
𝑟 − 𝛽𝑟 = 0                 

 

 

thus 𝛽 =
1

2
  

So we have 

𝛾(𝑥, 𝑟)= 𝑢°(𝑥, 𝑟) =  2𝛽𝑟𝑥 = 𝑟𝑥  , which is the same as the exact solutions for lower case. 

 

Now , we choose  𝜔(𝑥, 𝑟) = 𝑟2𝐻1(𝑥) = 2𝑟2𝑥  for upper case.                                                                                                                  

Therefore, Eq. (11) can be written as follows:                                                                                                                                    

𝐻𝛽(𝑢, 𝑝) = 𝑢(𝑥, 𝑟) − 𝑝𝑔(𝑥, 𝑟) + (𝑝 − 1)2𝛽𝑟
2𝑥 − 𝑝 ∫ (𝑥 + 𝑡)[𝑢(𝑡, 𝑟)]𝑑𝑡

1

0
= 0     (14) 

with the aid of  eqns.(7-14) and after equating powers of p , yields                                                                                           

𝑝°:  𝑢°(𝑥, 𝑟) − 2𝛽𝑟
2𝑥 = 0 ⟹  𝑢°(𝑥, 𝑟) =  2𝛽𝑟

2                                                                                                                                           

𝑝1:  𝑢1(𝑥, 𝑟) − (2 − 𝑟) ( 
1

2
 x −

1

3
) + 2𝛽𝑟2𝑥 − ∫ (𝑥 + 𝑡) 𝑢°(𝑡, 𝑟)𝑑𝑡

1

0

= 0 

⟹  𝑢1(𝑥, 𝑟) = (
1

3
r −

2

3
+
2

3
𝛽𝑟2) + (1 −

1

2
 𝑟 − 𝛽𝑟2) x 

𝑝2:  𝑢2(𝑥, 𝑟) − ∫ (𝑥 + 𝑡) 𝑢1(𝑡, 𝑟)𝑑𝑡
1

0

= 0 

⟹  𝑢2(x, r) = ∫ (𝑥 + 𝑡) 𝑢1(𝑡, 𝑟)𝑑𝑡
1

0

 

and in general  

 𝑢𝑛+1(x, r) = ∫ 𝐻𝑛2(𝑡, 𝑟)𝑑𝑡
𝑏

𝑎

 

Now we  find 𝛽 in such a way that  𝑢1 = 0, if  𝑢1 = 0 then  𝑢2 = 𝑢3 = · · · = 0. Thus  for each values of x we should have 

{ 

1

3
r −

2

3
+
2

3
𝛽𝑟2 = 0             

1 −
1

2
 𝑟 − 𝛽𝑟2 = 0               

 

 

thus  𝛽 =
1

𝑟2
−

1

2𝑟
  and the solution is : 

𝛾 (𝑥, 𝑟)=  𝑢°(𝑥, 𝑟) =  2𝛽𝑟
2𝑥 = 2 (

1

𝑟2
−

1

2𝑟
) 𝑟2𝑥 = (2 − 𝑟)𝑥  , which is the same as the exact solutions for upper case. 

 

Example 3: Consider Volterra  fuzzy integral equation with 

g(x. r) = rx − 𝑥2(
2

3
 rx3 −

4

3
x3 −

1

2
 𝑟𝑥2 + 𝑥2 +

1

12
r −

1

12
)  

𝑔(𝑥, 𝑟) = (2 − 𝑟)𝑥 − 𝑥2(
2

3
 rx3 −

1

2
 𝑟𝑥2 +

1

12
r −

1

12
) 

and kernel 𝑘(𝑥, 𝑡) = 𝑥2(1 − 2𝑡)    0 ≤ 𝑥   , 𝑡 ≤ 𝑥 and 𝑎 = 0   , 𝑏 = 1 . The exact solution in this case is given by 

 

𝛾(𝑥, 𝑟) = 𝑟𝑥 

𝛾 (𝑥, 𝑟) = (2 − 𝑟)𝑥 

 

 

 

we choose, 𝜔1(𝑥, 𝑟) = 𝑟𝐻0(𝑥) = 𝑟  and  𝜔2(𝑥, 𝑟) = 𝑟𝐻1(𝑥) = 2𝑟𝑥 for lower case. 

The homotopy equation, Eq. (10), becomes 
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𝐻𝛽(𝑢, 𝑝) = 𝑢(𝑥, 𝑟) − 𝑝 r g(x, r) + (𝑝 − 1) (𝛽°𝑟 + 2𝛽1𝑟𝑥  ) − 𝑝∫ 𝑥2(1 − 2𝑡)[𝑢(𝑡, 𝑟)]𝑑𝑡
𝑥

0

= 0     (15) 

now we substitute (7) into (15) , we get 

𝑝°: 𝑢°(𝑥, 𝑟) − (𝛽°𝑟 + 2𝛽1𝑟𝑥  ) = 0 ⟹ 𝑢°(𝑥, 𝑟) =  𝛽°𝑟 + 2𝛽1𝑟𝑥   

𝑝1: 𝑢1(𝑥, 𝑟) − g(x, r) + (𝛽°𝑟 + 2𝛽1𝑟𝑥  ) − ∫ 𝑥2(1 − 2𝑡)𝑢°(𝑡, 𝑟)𝑑𝑡
𝑥

0

= 0 

⟹ 𝑢1(𝑥, 𝑟) = (−𝛽°𝑟) + (𝑟 − 2𝛽1𝑟)𝑥 + (
1

12
−
1

12
r) 𝑥2 + (𝛽°𝑟)𝑥

3 + (
1

2
𝑟 − 1 + 𝛽1𝑟 − 𝛽°𝑟) 𝑥

4 + (
4

3
−
2

3
𝑟 −

4

3
𝛽1𝑟)𝑥

5 

𝑝2: 𝑢2(𝑥, 𝑟) − ∫ 𝑥2(1 − 2𝑡)   𝑢1(𝑡, 𝑟)𝑑𝑡
𝑥

0

= 0   

⟹ u2(x, r) = ∫ 𝑥2(1 − 2𝑡)   𝑢1(𝑡, 𝑟)𝑑𝑡
𝑥

0

 

 

and in general  

𝑢𝑛+1(x, r) = ∫ 𝐻𝑛1(𝑡, 𝑟)𝑑𝑡
𝑏

𝑎

 

So, to find 𝛽° and 𝛽1 such that 𝑢1 = 0 , we should have 

 

{
 
 
 
 

 
 
 
 
−𝛽°𝑟 = 0                                                                
𝑟 − 2𝛽1𝑟 = 0                                                        
1

12
−
1

12
r = 0                                                    

𝛽°𝑟 = 0                                                              
1

2
𝑟 − 1 + 𝛽1𝑟 − 𝛽°𝑟 = 0                               

4

3
−
2

3
𝑟 −

4

3
𝛽1𝑟 = 0                                       
                    

 

 

thus   𝛽° = 0   and     𝛽1 =
1

2
. 

Therefore, we obtain 

𝛾(𝑥, 𝑟)= 𝑢°(𝑥, 𝑟) =  𝛽°𝑟 + 2𝛽1𝑟𝑥 = 𝑟𝑥  

which is the  same as the exact solutions for lower case. 

 

Now , we choose 𝜔1(𝑥, 𝑟) = 𝑟2𝐻0(𝑥) = 𝑟2   and   𝜔2(𝑥, 𝑟) = 𝑟2𝐻1(𝑥) = 2𝑟2𝑥  for upper case.  

Therefore, Eq. (11) can be written in the following  form: 

                                  𝐻𝛽(𝑢, 𝑝) = 𝑢(𝑥, 𝑟) − 𝑝𝑔(𝑥, 𝑟) + (𝑝 − 1)(𝛽°𝑟
2 + 2𝛽1𝑟

2𝑥) − 𝑝 ∫ 𝑥2(1 − 2𝑡)[𝑢(𝑡, 𝑟)]𝑑𝑡
𝑥

0
= 0  

 

we have 

𝑝°:  𝑢°(𝑥, 𝑟) −  (𝛽°𝑟
2 + 2𝛽1𝑟

2𝑥) = 0  

⟹  𝑢°(𝑥, 𝑟) = 𝛽° 𝑟
2 + 2𝛽1𝑟

2𝑥 . 

𝑝1:  𝑢1(𝑥, 𝑟) − 𝑔(𝑥, 𝑟) + (𝛽°𝑟
2 + 2𝛽1𝑟

2𝑥) − ∫ 𝑥2(1 − 2𝑡)  𝑢°(𝑡, 𝑟)𝑑𝑡
𝑥

0

= 0 

 𝑢1(𝑥, 𝑟) = (−𝛽°𝑟
2) + (2 − r − 2𝛽1𝑟

2)𝑥 + (
1

12
−
1

12
r) 𝑥2 + (𝛽°𝑟

2)𝑥3 + (
1

2
𝑟 + 𝛽1𝑟

2 − 𝛽°𝑟
2) 𝑥4 + (−

2

3
𝑟 −

4

3
𝛽1𝑟

2)𝑥5 

 

𝑝2:  𝑢2(𝑥, 𝑟) − ∫ 𝑥2(1 − 2𝑡)   𝑢1(𝑡, 𝑟)𝑑𝑡
𝑥

0

= 0 
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 𝑢2 = ∫ 𝑥2(1 − 2𝑡)   𝑢1(𝑡, 𝑟)𝑑𝑡
𝑥

0

 

and in general 

 𝑢𝑛+1(x, r) = ∫ 𝐻𝑛2(𝑡, 𝑟)𝑑𝑡
𝑏

𝑎

 

Now we find 𝛽° and 𝛽1  in such a way that  𝑢1 = 0, if  𝑢1 = 0 then  𝑢2 = 𝑢3 = · · · = 0,  we should have 

{
 
 
 
 

 
 
 
 

 

−𝛽°𝑟 = 0                                                                         

2 − r − 2𝛽1𝑟
2 = 0                                                        

1

12
−
1

12
r = 0                                                               

𝛽°𝑟 = 0                                                                              
1

2
𝑟 + 𝛽1𝑟

2 − 𝛽°𝑟
2 = 0                                                   

−
2

3
𝑟 −

4

3
𝛽1𝑟

2 = 0                                                            
                    

 

 

then   𝛽° = 0   and     𝛽1 =
2−𝑟

2𝑟2
. 

Hence 𝛾 (𝑥, 𝑟)=  𝑢°(𝑥, 𝑟) = (𝛽° 𝑟
2 + 2𝛽1𝑟

2𝑥) = 0 + 2𝑟2 (
2−𝑟

2𝑟2
) 𝑥 = (2 − 𝑟)𝑥  , which is the same as the exact solutions 

for upper case. 

 

8. Conclusions 
New perturbation algorithm was proposed coupled with the homotopy approach with the aid of Hermite polynomials 

for solving  both Volterra and Fredholm fuzzy integral equations. In this method, a new homotopy 𝐻𝛽(𝑢, 𝑝)  was 

erect where 𝛽 = [𝛽𝑚]  represent a parameter depended on HMP. This parameter accorded fast convergent rate 

where only one iteration leads to exact solutions. This method realizes accurate results which are illustrated 

throughout some examples.                                                                                                                                                                            
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