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A B S T R A C T 

The aim of this paper is to introduce new forms of the supra regular spaces by using new 
supra sets which are supra �̂�-open and supra ŋ̂-open sets, and to introduce new types of 
supra 𝑇3-spaces by using these supra open sets, we support our work by examples and some 
facts. 
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1. Introduction"" 
 

      The concept of supra spaces was introduced at the first time by Mashhour in 1983[3] where he defined it as (Let 

X be a set, the sub collection 𝜇 of 𝒫(𝑋) is called a supra topology on 𝑋 if 𝑋 ∈ 𝜇, and it is closed under the arbitrary 

union. The pair (𝑋, 𝜇) is called a supra space. Any set 𝒲 ∈ 𝜇 is called supra open set and its complement is supra 

closed). Also he submitted the definition of supra closure and supra interior for a subset of a supra space. After that 

many researchers dealt with this space and submitted new concepts in it, in [5] the researcher provided the supra 

regular spaces and the supra 𝑇3-spaces. And we provided in this research new supra sets which are supra �̂�-open 

and supra ŋ̂-open sets, also we introduced supra  �̂�-regular space, supra �̂�∗-regular space, supra �̂�∗∗-regular space, 

supra ŋ̂-regular space, supra ŋ̂∗-regular space and supra ŋ̂∗∗-regular space, also we illustrate the relationships 

between these types. 
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2- Types of supra �̂�-regular and supra ŋ̂-regular spaces. 
   In this part we will provide the definitions of supra �̂�-open and supra ŋ̂-open sets, and the definition of the new 

types of supra regular spaces by using these sets and give the relation between them. Through this paper we will 

use the abbreviation "su." to express the "supra." 

Definition (2.1): 1- A subset 𝒲 of a su. space (𝑋, 𝜇)  is called su. �̂�-open (resp. su. ŋ̂-open) set, if for any point 𝑥 in 

𝒲 there is 𝐺 ∈ 𝜇 with 𝑥 ∈ 𝐺 and 𝐺 - 𝒲 is countable (resp. finite). The complement of 𝒲 is called su. �̂�-closed (resp. 

su. ŋ̂-closed) set. 

2- The su. �̂�-closure for a subset 𝒲 of a su. space (𝑋, 𝜇) is the intersection of all su. �̂�-closed subsets of 𝑋 which 

contain 𝒲, and we denote it 𝑏𝑦 𝑐𝑙�̂�
𝜇 (𝒲). While the su. �̂�-interior for 𝒲 is the union of all su. �̂�-open subsets of 𝑋 

which contained in 𝒲, and we denote it by 𝐼𝑛𝑡�̂�
𝜇 (𝒲). 

3- The su. ŋ̂-closure for a subset 𝒲 of a su. space (𝑋, 𝜇) is the intersection of all su. ŋ̂-closed subsets of 𝑋 which 

contain 𝒲, and we denote it by 𝑐𝑙�̂�
𝜇 (𝒲). While the su. ŋ̂-interior for 𝒲 is the union of all su. ŋ̂-open subsets of 𝑋 

which contained in 𝒲, and we denote it by 𝐼𝑛𝑡ŋ̂
𝜇

(𝒲). 

Definition (2.2):  A space (𝑋, 𝜇) is called :-  

1- Su. regular space if for each point 𝑥 ∈ 𝑋 and each su. closed subset ℳ of 𝑋 such that 𝑥 ∉ ℳ, there are two disjoint 

sets 𝒲1, 𝒲2 ∈ 𝜇 in which 𝑥 ∈ 𝒲1  and ℳ ⊆ 𝒲2 [5]. 

2- Su. �̂�-regular (resp. su. ŋ̂-regular) space if for each point 𝑥 ∈ 𝑋 and each su. closed subset ℳ of 𝑋 such that 𝑥 ∉

ℳ, there are two disjoint su. �̂�-open (resp. su. ŋ̂-open) sets 𝒲1, 𝒲2 in 𝑋 in which 𝑥 ∈ 𝒲1and ℳ ⊆ 𝒲2. 

3- Su. �̂�∗-regular (resp. su. ŋ̂∗-regular) space if for each point 𝑥 ∈ 𝑋 and each su. �̂�-closed (resp. su. ŋ̂-closed) subset 

ℳ of 𝑋 such that 𝑥 ∉ ℳ, there are two disjoint sets 𝒲1 , 𝒲2 ∈ 𝜇 in which 𝑥 ∈ 𝒲1 and ℳ ⊆ 𝒲2. 

4- Su. �̂�∗∗-regular (resp. su. ŋ̂∗∗-regular) space if for each point 𝑥 ∈ 𝑋 and each su. �̂�-closed (resp. su. ŋ̂-closed) 

subset ℳ of 𝑋 such that 𝑥 ∉ ℳ there are two disjoint su. �̂�-open (resp. su. ŋ̂-open) sets 𝒲1 , 𝒲2 in which 𝑥 ∈ 𝒲1  

and ℳ ⊆ 𝒲2. 

5- Su. 𝑇1-space if for any two distinct points 𝑥, 𝑦 in 𝑋 there are su. open subsets 𝒲, ℬ of 𝑋 in which 𝑥 ∈ 𝒲, 𝑦 ∉ 𝒲 

and 𝑦 ∈ ℬ, 𝑥 ∉ ℬ [3].  

6- A su. 𝑇2-space if for each non-equal points 𝑥, 𝑦 in 𝑋, there are disjoint su. open subsets 𝒲1, 𝒲2 of 𝑋 in which 

𝑥 ∈ 𝒲1 and 𝑦 ∈ 𝒲2 [3].  

7- A su. �̂�𝑇2-space if for each non-equal elements 𝑥, 𝑦 in 𝑋, there are disjoint su. �̂�-open subsets 𝒲1, 𝒲2 of 𝑋 of 

which 𝑥 ∈ 𝒲1 and 𝑦 ∈ 𝒲2. 

8- A su. ŋ̂T2-space if for each non-equal elements 𝑥, y in 𝑋, there are disjoint su. ŋ̂-open subsets 𝒲1, 𝒲2  of 𝑋 in 

which 𝑥 ∈ 𝒲1 and y ∈ 𝒲2  .  

Example (2.3): 1- Let 𝑋= {1, 2, 3}, 𝜇𝑋= {∅, 𝑋, {1}, {2}, {1, 2}, {1, 3}, {2, 3}}, so (𝑋, 𝜇𝑋 ) is su. regular, su. ω̂∗∗-regular, 

su. ŋ̂∗∗-regular, su. ŋ̂-regular, su. ω̂-regular, su. T2-space, su. T1-space, su. ω̂T2-space and su. ŋ̂T2-space, but neither su. 

ω̂∗ -regular nor su.  ŋ̂∗-regular space. 

2- (ℛ, μD) is su.  �̂�∗-regular and su.  ŋ̂∗-regular space. 

Remark (2.4): 1- Every su. �̂�∗-regular space is su. ŋ̂∗-regular. 

 2- There is no relation between su. �̂�∗∗-regular space and su. ŋ̂∗∗-regular.  

 3- Every su. ŋ̂-regular space is su. �̂�-regular. 

 4- If ℳ is su. closed set in a su. space 𝑋, then it is su. �̂�-closed (resp. su. ŋ̂-closed) set. 

 5- If 𝒲 is su. open set in a su. space 𝑋, then it is su. �̂�-open (resp. su. ŋ̂-open) set. 

 6- Every topology is su. topology[1]. 

The converse of each of the above statement is not true. 

The next diagram is useful. 
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                                      Su. regular space                                                          Su. �̂�-regular (resp. su.  ŋ̂-regular) space             

                                                                                                                                                         

 

 

 

 

 

 

    Su. �̂�∗-regular (resp.su. ŋ̂∗-regular space)                                                   Su. �̂�∗∗-regular (resp. su. ŋ̂∗∗-regular) space       

                        

 

 

Example (2.5): 1- (ℛ, μ𝓊  ) is su. ŋ̂∗-regular and ŋ̂∗∗-regular space but neither su. ω̂∗-regular, nor ω̂∗∗-regular space. 

 

 2- Suppose 𝑋= {1, 2, 3} and 𝜇 = {∅, X, {1}, {2}, {1, 2}}, so (𝑋, 𝜇) is su. �̂�-regular, su. ŋ̂-regular, su. ŋ̂∗∗-regular and su. 

�̂�∗∗-regular but not su. regular, not su. ŋ̂∗-regular and not su. �̂�∗-regular. 

 

 3- (𝒵, 𝜇𝑖𝑛𝑑) is su. �̂�∗∗-regular, su. ŋ̂-regular, su. �̂�-regular and su. regular space, while it is not su. ŋ̂∗∗-regular, not su. 

ŋ̂∗-regular, and not su. �̂�∗-regular space. 

 

 4- (ℛ, 𝜇𝑖𝑛𝑑) is su. regular, su. �̂�-regular and su. ŋ̂-regular space but not su. �̂�∗∗-regular and not su. ŋ̂∗∗-regular space. 

 

 5- (𝒵, 𝜇𝑐𝑜𝑓) is su. �̂�-regular, su. �̂�∗∗-regular space while it is not su. �̂�∗-regular, not su. regular and not su. ŋ̂-regular. 

 

Theorem (2.6): The space (𝑋, 𝜇) is su. �̂�∗-regular (resp. su. ŋ̂∗-regular) space iff for any element 𝑥 in 𝑋 and any su. 

�̂�-neighborhood (resp. su. ŋ̂-neighborhood) 𝒦 to 𝑥, there is a su. neighborhood 𝒲 in 𝑋 for 𝑥 with 𝑐𝑙𝜇(𝒲) ⊆ 𝒦. 

Proof: Let 𝑥 ∈ 𝑋 and 𝒦 be a su. �̂�-neighborhood (resp. su. ŋ̂-neighborhood) to 𝑥. So, there exists a su. �̂�-open (resp. 

su. ŋ̂-open) set 𝐸 in 𝑋 with 𝑥 ∈ 𝐸 ⊆ 𝒦, set ℳ = 𝐸𝑐 , hence ℳ is su. �̂�-closed (resp. su. ŋ̂-closed) set in 𝑋 and 𝑥 ∉ ℳ. 

But  𝑋 is su. �̂�∗-regular (resp. su. ŋ̂∗-regular) space, thus there are two disjoint su. open sets 𝒲, ℬ in 𝑋 such that 

𝑥 ∈ 𝒲, ℳ ⊆ ℬ, then 𝒲 is a su. neighborhood to 𝑥 and 𝒲 ⊆  ℬ𝑐 , where ℬ𝑐  is su. closed set in 𝑋. Therefore 

𝑐𝑙𝜇  (𝒲)⊆𝑐𝑙𝜇(ℬ𝑐)=ℬ𝑐  ⇒𝑐𝑙𝜇  (𝒲) ⊆ ℬ𝑐…. (1), and since ℳ ⊆ ℬ then ℬ𝑐 ⊆ ℳ𝑐 = 𝐸 ⊆ 𝒦…..(2). From (1) & (2) we 

have, 𝑐𝑙𝜇(𝒲) ⊆ ℬ𝑐 ⊆ ℳ𝑐 ⊆ 𝒦 ⇒ 𝑐𝑙𝜇  (𝒲) ⊆ 𝒦. Conversely, suppose 𝑥 ∈ 𝑋 and ℳ is su. �̂�-closed (resp. su. ŋ̂-

closed) set in 𝑋 with 𝑥 ∉ ℳ, so 𝑥 ∈ ℳ𝑐  which is a su. �̂�-open (resp. su. ŋ̂-open) set in 𝑋, then ℳ𝑐  is su. �̂�-

neighborhood (resp. su. ŋ̂-neighborhood) to 𝑥, hence there is su. neighbourhood 𝒲 in 𝑋 to 𝑥 with 𝑐𝑙𝜇(𝒲) ⊆

ℳ𝑐(from hypothesis). Since 𝒲 is su. neighborhood for 𝑥, so there is a su. open set 𝒲1 in 𝑋 with 𝑥 ∈ 𝒲1 ⊆ 𝒲, from 

𝑐𝑙𝜇(𝒲) ⊆ ℳ𝑐  we get ℳ ⊆ (𝑐𝑙𝜇(𝒲))
𝑐
, put ℬ = (𝑐𝑙𝜇(𝒲))

𝑐
⇒ℬ is su. open set of 𝑋 and ℳ ⊆ ℬ and since 𝒲⋂𝒲𝑐=∅, 

then 𝒲1⋂(𝑐𝑙𝜇(𝒲))
𝑐
=∅ (because 𝒲1 ⊆ 𝒲 and because 𝒲 ⊆ 𝑐𝑙𝜇(𝒲), so (𝑐𝑙𝜇(𝒲))

𝑐
= ℬ ⊆ 𝒲𝑐).  So for any point 𝑥 

in 𝑋 and any su. �̂�-closed (resp. su. ŋ̂-closed) set ℳ in 𝑋 where 𝑥 ∉ ℳ there are disjoint su. open sets 

𝒲1, (𝑐𝑙𝜇(𝒲))
𝑐
 such that 𝑥 ∈ 𝒲1 and ℳ ⊆ (𝑐𝑙𝜇(𝒲))𝑐  Which implies 𝑋 is su. �̂�∗-regular (resp. ŋ̂∗-regular) space. 

  The following proposition can be proved by the same manner. 

Proposition (2.7): 1- The su. space (𝑋, 𝜇) is su. regular space iff for any element 𝑥 in 𝑋 and any su. neighborhood 𝒦 

to 𝑥, there is a su. neighborhood 𝒲 to 𝑥 with 𝑐𝑙𝜇(𝒲) ⊆ 𝒦 . 

2- The su. space (𝑋, 𝜇) is su. �̂�-regular (resp. su. ŋ̂-regular) space iff for any element 𝑥 in 𝑋 and any su. neighborhood 

𝒦 to 𝑥, there is a su. �̂�-neighborhood (resp. su. ŋ̂-neighborhood) 𝒲 to 𝑥 with 𝑐𝑙�̂�
𝜇

 (𝒲) ⊆ 𝒦 (resp.  𝑐𝑙ŋ̂
𝜇

(𝒲) ⊆ 𝒦). 
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3- The su. space (𝑋, 𝜇) is su. �̂�∗∗-regular (resp. su. ŋ̂∗∗-regular) space iff for any element 𝑥 in 𝑋 and any su. �̂�-

neighborhood (resp. su. ŋ̂-neighborhood) 𝒦 to 𝑥, there is a su. �̂�-neighborhood (resp. su. ŋ̂-neighborhood) 𝒲 to 𝑥 

with 𝑐𝑙�̂�
𝜇

(𝒲) ⊆ 𝒦 (resp.  𝑐𝑙ŋ̂
𝜇

 (𝒲) ⊆ 𝒦). 

Proposition (2.8): If 𝒲 is a su. �̂�-open set in a su. space 𝑋, and 𝑌 is a su. sub space of 𝑋, then 𝒲⋂𝑌 is a su. �̂�-open 

set in 𝑌. 

Proof: Consider 𝑥 ∈ 𝒲⋂𝑌, so 𝑥 ∈ 𝒲 and 𝑥 ∈ 𝑌, hence there is a su. open set 𝐺 in 𝑋 with 𝑥 ∈ 𝐺 and 𝐺-𝒲 is 

countable set. Since [(𝐺-𝒲) ⋂𝑌] ⊆ (𝐺-𝒲), so (𝐺-𝒲) ⋂𝑌 is also countable, but (𝐺-𝒲) ⋂𝑌= (𝐺⋂𝑌)-(𝒲⋂𝑌), hence 

(𝐺⋂𝑌) - (𝒲⋂𝑌) is countable, therefore 𝒲⋂𝑌 is su. �̂�-open set in the su. sub space 𝑌. 

Corollary (2.9): If 𝒲 is a su. �̂�-closed set in a su. space 𝑋, and 𝑌 is a su. sub space of 𝑋, then 𝒲⋂𝑌 is a su. �̂�-closed 

set in 𝑌. 

Theorem (2.10): A su. space (𝑋, 𝜇) is su. �̂�∗-regular (resp. su. ŋ̂∗-regular) space, if any element 𝑥 in 𝑋 has a su. 

closed neighborhood which is a su. �̂�∗-regular (resp. su. ŋ̂∗-regular) sub space of 𝑋. 

Proof: Take 𝒦 as a su. �̂�-neighborhood (resp. su. ŋ̂-neighborhood) for an element 𝑥 in 𝑋, by hypothesis there is a su. 

closed neighborhood ℋ to 𝑥 which is a su. �̂�∗-regular (resp. ŋ̂∗-regular) sub space of 𝑋. Suppose 𝜇ℋ  denote the 

relative su. topology on ℋ, so 𝒦⋂ℋ is a su. �̂�-neighborhood (resp. su. ŋ̂-neighborhood) of 𝑥 in ℋ, but ℋ is su. �̂�∗-

regular (resp. su. ŋ̂∗-regular) space, hence from theorem (2.6) there is su. closed neighborhood 𝒲 to 𝑥 in ℋ with 𝒲 

⊆ 𝒦⋂ℋ ⊆ 𝒦, also, since 𝒲 is su. closed set in ℋ, so there is a su. closed set 𝒱 in 𝑋 such that 𝒲 = 𝒱⋂ℋ. But 𝒱, ℋ 

are su. closed sets in 𝑋, so 𝒲 is su. closed neighbourhood to 𝑥 in 𝑋 in which 𝒲 ⊆ 𝒦, therefore (𝑋, 𝜇) is a su. �̂�∗-

regular (resp. su. ŋ̂∗-regular) space. 

Proposition (2.11): 1- A su. space (𝑋, 𝜇) is su. regular space, if any element 𝑥 in 𝑋 has a su. closed neighborhood 

which is a su. regular sub space of the su. space 𝑋. 

2- A su. space (𝑋, 𝜇) is su. �̂�-regular (resp. su. ŋ̂-regular) space, if any element 𝑥 in 𝑋 has a su. closed neighborhood 

which is a su. �̂�-regular (resp. su. ŋ̂-regular) sub space of the su. space 𝑋. 

3- A su. space (𝑋, 𝜇) is su. �̂�∗∗-regular (resp. su. ŋ̂∗∗-regular) space, if any element 𝑥 in 𝑋 has a su. closed 

neighborhood which is a su. �̂�∗∗-regular (resp. su. ŋ̂∗∗-regular) sub space of the su. space 𝑋. 

Remark (2.12): 1- Every su. open set is su. �̂�-open (resp. su. ŋ̂-open) set. 

2- Every su. closed set is su. �̂�-closed (resp. su. ŋ̂-closed) set. 

Theorem (2.13):  The property of being su. �̂�∗-regular (resp. su. ŋ̂∗- regular) space is a su. hereditary property. 

Proof: Let 𝑌 be a su. sub space of a su. �̂�∗-regular (resp. su. ŋ̂∗-regular) space 𝑋, take ℳ as a su. �̂�-closed (resp. su. 

ŋ̂-closed) set in 𝑌 and 𝓆 as any element in 𝑌 such that 𝓆 ∉ ℳ, so there is a su. �̂�-closed (resp. su. ŋ̂-closed) set ℳ  ́ in 

𝑋 in which ℳ=ℳ  ́⋂𝑌 (corollary (2.9)), it is clear that 𝓆 ∉ ℳ ,́ since if not, then 𝓆 ∈ ℳ ́⋂𝑌 = ℳ C!, so 𝓆 ∈ ℳ ́. But 𝑋 

is su. �̂�∗-regular (resp. su. ŋ̂∗-regular), hence there are two su. open sets 𝒲, ℬ in 𝑋 with 𝓆 ∈ 𝒲, ℳ ́ ⊆ ℬ, and 

𝒲⋂ℬ=∅, thus 𝒲⋂𝑌, ℬ⋂𝑌 are su. open sets in 𝑌, in which 𝓆 ∈ 𝒲⋂𝑌 and ℳ ́⋂𝑌 = ℳ ⊆ ℬ⋂𝑌 and 

(𝒲⋂𝑌)⋂(ℬ⋂𝑌) = (𝒲⋂ℬ)⋂𝑌 = ∅⋂𝑌 = ∅, therefore 𝑌 is su. �̂�∗-regular (resp. su. ŋ̂∗-regular) space. 

Proposition (2.14): 1- The property of being su. �̂�-regular (resp. su. ŋ̂-regular) space is a su. hereditary property. 

2- The property of being su. regular space is a su. hereditary property [5]. 

3- The property of being su. �̂�∗∗-regular (resp. su. ŋ̂∗∗-regular) space is a su. hereditary property. 

Definition (2.15): The function 𝑓 ∶ (𝑋, 𝜇𝑋) ⟶ (𝑌, 𝜇𝑌) is called :-   

 1- Su*. continuous function if 𝑓−1 (𝒲) is su. open (resp. su. closed) set in 𝑋 for each su. open (resp. su. closed) set 𝒲 

in 𝑌 [3].  

 2- Su*. �̂�-continuous function if 𝑓−1 (𝒲) is su. �̂�-open (resp. su. �̂�-closed) set in 𝑋 for each su. open (resp. su. 

closed) set 𝒲 in 𝑌  

 3- Su*. ŋ̂-continuous function if 𝑓−1 (𝒲) is su. ŋ̂-open (resp. su. ŋ̂-closed) set in 𝑋 for each su. open (resp. su. closed) 

set 𝒲 in 𝑌. 

 4- Strongly su*. �̂�-continuous function if 𝑓−1 (𝒲) is su. open (resp. su. closed) set in 𝑋 for each su. �̂�-open (resp. su. 

�̂�-closed) set 𝒲 in 𝑌. 

 5- Strongly su*. ŋ̂-continuous function if 𝑓−1(𝒲) is su. open (resp. su. closed) set in 𝑋 for each su. ŋ̂-open (resp. ŋ̂-

closed) set 𝒲 in 𝑌. 

 6- Su*. �̂�-irresolute function if 𝑓−1(𝒲) is su. �̂�-open (resp. su. �̂�-closed) set in 𝑋 for each su. �̂�-open (resp. su. �̂�-

closed) set 𝑌. 
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 7- Su*. ŋ̂-irresolute function if 𝑓−1 (𝒲) is su. ŋ̂-open (resp. su. ŋ̂-closed) set in 𝑋 for each su. ŋ̂-open (resp. su. ŋ̂-

closed) set 𝒲 in 𝑌. 

 

 8- Su*. closed (resp. su*. open) function, if 𝑓(ℬ) is su. closed (resp. su. open) set in 𝑌, for any su. closed (resp. su. 

open) set ℬ in X [6].  

 9-Su*. �̂�-closed (resp. su*. �̂�-open) function, if 𝑓(ℬ) is su. �̂�-closed (resp. su. �̂�-open) set in 𝑌, for any su. closed 

(resp. su. open) set ℬ in 𝑋.                    

 10- Totally su*. �̂�-closed (resp. totally su*. �̂�-open) function, if 𝑓(ℬ) is su. closed (resp. su. open) set in 𝑌, for any su. 

�̂�-closed (resp. su. �̂�-open) set ℬ in 𝑋.  

 11- Strongly su*. �̂�-closed (resp. strongly su*. �̂�-open) function, if 𝑓(ℬ) is su. �̂�-closed (resp. su. �̂�-open) set in 𝑌, 

for any su. �̂�-closed (resp. su. �̂�-open) set ℬ in 𝑋.  

 12- Su*. ŋ̂-closed (resp. su*. ŋ̂-open) function, if 𝑓(ℬ) is su. ŋ̂-closed (resp. su. ŋ̂-open) set in 𝑌, for any su. closed 

(resp. su. open) set ℬ in 𝑋.  

 13- Totally su*. ŋ̂-closed (resp. totally su*. ŋ̂-open) function, if 𝑓(ℬ) is su. closed (resp. su. open) set in 𝑌, for any su. 

ŋ̂-closed (resp. su. ŋ̂-open) set ℬ in 𝑋.                                                       . 

 14- Strongly su*. ŋ̂-closed (resp. strongly su*. ŋ̂-open) function, if 𝑓(ℬ) is su. ŋ̂-closed (resp. su. ŋ̂-open) set in 𝑌, for 

any su. ŋ̂-closed (resp. su. ŋ̂-open) set ℬ in 𝑋. 

                                                       

Example (2.16): 1- Let 𝑋=𝑌={1, 2, 3}, 𝜇𝑋= {∅, 𝑋, {1}, {3}, {1, 3}, {2, 3}, {1, 2}} and 𝜇𝑌={∅, 𝑌, {3}, {1, 2}}, so 𝑓: 𝑋 ⟶ 𝑌 

defined as 𝑓(1)=2, 𝑓(2)=1, 𝑓(3)=3 is su*. continuous, su*. �̂�-continuous, su*. ŋ̂-continuous, su*. �̂�-irresolute, su*. ŋ̂-

irresolute function, but not strongly su*. �̂�-continuous and not strongly su*. ŋ̂-continuous function, since {1} is su.  

�̂�-open and su. ŋ̂-open set in 𝑌 but 𝑓−1({1}) = {2} is not su. open set in 𝑋. 

2-  𝑓: (ℛ, 𝜇𝑖𝑛𝑑) ⟶ (ℛ, 𝜇𝐷) is strongly su*. �̂�-continuous function, where 𝑓 is a constant function. 

3- 𝑓: (𝑋, 𝜇𝐷) ⟶  (𝑌, 𝜇𝑌) is strongly su*. ŋ̂-continuous function. 

4- A function 𝑓: (𝑋, 𝜇𝑋 ) ⟶ (𝑌, 𝜇𝑌 ), where 𝑋= {1, 2}, 𝜇𝑋= {∅, 𝑋,{1}}, 𝑌= {1, 2, 3, 4} and 𝜇𝑌={∅, 𝑌, {1}, {2}, {3}, {1, 2}, {2, 

3}, {1, 3}, {1, 4}, {2, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {3, 4}}such that 𝑓(1)=1 and 𝑓(2)=2, then 𝑓 is su*. closed, 

su*. open, su*. �̂�-closed, su*. �̂�-open, totally su*. �̂�-closed, totally su*. �̂�-open, strongly su*. �̂�-closed, strongly su*. 

�̂�-open, su*. ŋ̂-closed, su*. ŋ̂-open, totally su*. ŋ̂-closed, totally su*. ŋ̂-open, strongly su*. ŋ̂-closed, strongly su*. ŋ̂-

open function. 

Definition (2.17): If 𝑓: (𝑋, 𝜇𝑋 ) ⟶ (𝑌, 𝜇𝑌) is bijective and each of 𝑓 and 𝑓−1are :-  

  

1- Su*. continuous, then 𝑓 is called su*. homeomorphism function. 

2- Su*. �̂�-continuous, then 𝑓 is called su*. �̂�-homeomorphism function.  

3- Su*. ŋ̂-continuous, then 𝑓 is called su*. ŋ̂-homeomorphism function. 

4- Su*. �̂�-irresolute, then 𝑓 is called su*. �̂�∗-homeomorphism function. 

5- Su*. ŋ̂-irresolute, then 𝑓 is called su*. ŋ̂∗-homeomorphism function. 

6- Strongly su*. �̂�-continuous, then 𝑓 is called su*. �̂�∗∗-homeomorphism function. 

7- Strongly su*. ŋ̂-continuous, then f is called su*. ŋ̂∗∗-homeomorphism function. 

 

Definition (2.18):  If 𝑓: (𝑋, 𝜇𝑋) ⟶ (𝑌, 𝜇𝑌) is bijective and if 𝑓 is :-  

 1- Su*. continuous and su*. open (or su*. closed) function, then it is su*. homeomorphism function. 

 2- Su*. �̂�-continuous and su*. �̂�-open (or su*. �̂�-closed) function, then it is su*. �̂�-homeomorphism function [7]. 

 3- Su*. ŋ̂-continuous and su*. ŋ̂-open (or su*. ŋ̂-closed) function, then it is su*. ŋ̂-homeomorphism function. 

 4- Su*. �̂�-irresolute and strongly su*. �̂�-open (or strongly su*. �̂�-closed) function, then it is su*. �̂�∗-homeomorphism 

function. 

 5- Su*. ŋ̂-irresolute and strongly su*. ŋ̂-open (or strongly su*. ŋ̂-closed) function, then it is su*. ŋ̂∗-homeomorphism 

function. 

 6- Strongly su*. �̂�-continuous and totally su*. �̂�-open (or totally su*. �̂�-closed) function, then it is su*. �̂�∗∗-

homeomorphism function. 
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 7- Strongly su*. ŋ̂-continuous and totally su*. ŋ̂-open (or totally su*. ŋ̂-closed) function, then it is su*. ŋ̂∗∗-

homeomorphism function. 

 

 

Lemma (2.19) [2]: Consider 𝑓: 𝑋 ⟶ 𝑌 is a surjective function, then :-  

1- The image of any finite set is finite. 

2- The image of any countable set is countable. 

Lemma (2.20): Suppose 𝑓: (𝑋, 𝜇𝑋) ⟶ (𝑌, 𝜇𝑋) is su*. homeomorphism function, then the image of any su.  �̂�-open 

(resp. su. ŋ̂-open) set in 𝑋 is su. �̂�-open (resp. su. ŋ̂-open) set in 𝑌. 

Proof: Let ℋ be a su. �̂�-open (resp. su. ŋ̂-open) set in 𝑋, and 𝑦 ∈ 𝑓(ℋ), so there is 𝑥 ∈ 𝑋 such that 𝑓(𝑥) = 𝑦 (because 

𝑓 is onto), since 𝑦 ∈ 𝑓(ℋ), then 𝑥 = 𝑓−1(𝑦) ∈ 𝑓−1(𝑓(ℋ)) = ℋ (𝑓 is one to one), hence 𝑥 ∈ ℋ which is su. �̂�-open 

(resp. su. ŋ̂-open) set, thus there is a su. open set 𝒲 in 𝑋 in which 𝑥 ∈ 𝒲 and 𝒲-ℋ is countable (resp. finite), so 

𝑓(𝒲-ℋ) is countable set in 𝑌 (by lemma (2.19)), but 𝑓(𝒲-ℋ) = 𝑓(𝒲)-𝑓(ℋ), and since 𝑓(𝒲) is su. open set in 𝑌 

(because 𝑓 is su*. open function), and 𝑥 ∈ 𝒲, then 𝑓(𝑥) = 𝑦 ∈ 𝑓(𝒲), therefore 𝑓(ℋ) is su. �̂�-open (resp. su. ŋ̂-open) 

set in 𝑌. 

Theorem (2.21): The property of a su. space being su. �̂�-regular (resp. su. ŋ̂-regular) space is a su. topological 

property. 

Proof: Suppose 𝑋 is a su. �̂�-regular (resp. su. ŋ̂-regular) space, and 𝑓 is a su*. homeomorphism function from 𝑋 into 

a su. space 𝑌, let ℳ be a su. closed set in 𝑌 and 𝓆 be any point in 𝑌 in which 𝓆 ∉ ℳ, so there is a point 𝓅 ∈ 𝑋 such 

that 𝑓(𝓅) = 𝓆. We have 𝑓−1 (ℳ) is su. closed set in 𝑋 (because 𝑓 is su*. continuous function) and 𝑓−1(𝓆) = 𝓅 ∉

𝑓−1(ℳ), but 𝑋 is su. �̂�-regular (resp. su. ŋ̂-regular) space, so there are su. �̂�-open (resp. su. ŋ̂-open) sets 𝒲, ℬ in 𝑋 

where 𝓅 ∈ 𝒲, ℳ ⊆ ℬ, and 𝒲⋂ℬ=∅. So 𝑓(𝓅) = 𝓆 ∈ 𝑓(𝒲) and 𝑓(ℳ) ⊆ 𝑓(ℬ) where 𝑓(𝒲), 𝑓(ℬ) are su. �̂�-open 

(resp. ŋ̂-open) sets in 𝑌 (by lemma (2.19)), also 𝑓(𝒲)⋂𝑓(ℬ) = 𝑓(𝒲⋂ℬ) = 𝑓(∅) =∅, hence 𝑌 is su. �̂�-regular (resp. 

su. ŋ̂-regular), therefore the property of su. space being su. �̂�-regular (resp. su. ŋ̂-regular) space is a su. topological 

property. 

Theorem (2.22): Suppose 𝑓 is su*. �̂�∗∗-homeomorphism (resp. su*. ŋ̂∗∗-homeomorphism) function from a su. �̂�∗-

regular (resp. su. ŋ̂∗-regular) space (𝑋, 𝜇𝑋) into a su. space (𝑌, 𝜇𝑌). Hence 𝑌 is su. �̂�∗-regular (resp. su. ŋ̂∗-regular) 

space too. 

Proof: Let ℳbe a su. �̂�-closed (resp. su. ŋ̂-closed) set in the space 𝑌 and let 𝓆 be any element in 𝑌 with 𝓆 ∉ ℳ, so 

there is an element 𝓅 ∈ 𝑋 in which 𝑓(𝓅) = 𝓆 (because 𝑓 is bijective). 𝑓−1 (ℳ) is su. closed set in 𝑋 (because 𝑓 is 

strongly su*. �̂�-continuous (resp. strongly su*. ŋ̂-continuous) function), and then it is su. �̂�-closed (su. ŋ̂-closed) set 

(by remark (2.4)). Since 𝓆 ∉ ℳ, accordingly 𝑓−1(𝓆) = 𝓅 ∉ 𝑓−1 (ℳ). But 𝑋 is su. �̂�∗-regular (resp. su. ŋ̂∗-regular) 

space, so there are su. open sets 𝒲, ℬ in 𝑋 containing 𝓅, 𝑓−1 (ℳ) respectively and 𝒲⋂ℬ=∅. then 𝑓(𝑓−1 (ℳ)) ⊆

𝑓(ℬ) and since 𝑓 is onto, thus ℳ ⊆ 𝑓(ℬ), also 𝑓(𝓅) = 𝓆 ∈ 𝑓(𝒲), where 𝑓(ℬ), 𝑓(𝒲) are su. open sets in 𝑌 (because 

𝑓 is totally su*. �̂�-open (resp. totally su*. ŋ̂-open) function and ℬ, 𝒲 are su. �̂�-open (resp. su. ŋ̂-open) sets in 𝑋 by 

remark (2.4)), and 𝑓(𝒲)⋂𝑓(ℬ) = 𝑓(𝒲⋂ℬ) = 𝑓(∅) =∅, therefore 𝑌 is su. �̂�∗-regular (resp. su. ŋ̂∗-regular) space. 

Proposition (2.23): 1- Suppose 𝑓 is su*. homeomorphism function from a su. regular space (𝑋, 𝜇𝑋)  into a su. space 

(𝑌, 𝜇𝑌).  Hence 𝑌 is su. regular space too. 

2- The property of a su. space being su. �̂�∗-regular (resp. su. ŋ̂∗-regular) space is a topological property. 

3- The property of a su. space being su.  �̂�∗∗-regular (resp. su. ŋ̂∗∗-regular) space is a topological property. 

4- Suppose 𝑓 is su*. �̂�∗∗-homeomorphism function from a su. �̂�-regular space (𝑋, 𝜇𝑋 )  into a su. space (𝑌, 𝜇𝑌).  Hence 

𝑌 is su. �̂�-regular space too. 

5- Suppose 𝑓 is su*. ŋ̂∗∗-homeomorphism function from a su. ŋ̂-regular space (𝑋, 𝜇𝑋) into a su. space (𝑌, 𝜇𝑌).  Hence 

𝑌 is su. ŋ̂-regular space too. 

6- Suppose 𝑓 is su*. �̂�∗-homeomorphism function from a su*. �̂�∗∗-regular space (𝑋, 𝜇𝑋) into a su. space (𝑌, 𝜇𝑌).  

Hence 𝑌 is su. �̂�∗∗-regular space too. 

7- Suppose 𝑓 is su*. ŋ̂∗-homeomorphism function from a su. ŋ̂∗∗-regular space (𝑋, 𝜇𝑋) into a su. space (𝑌, 𝜇𝑌).  Hence 

𝑌 is su. ŋ̂∗∗-regular space too. 

3- Types of Su. 𝑻𝟑-spaces. 
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   In this part we will introduce su. �̂�𝑇3-space, su. �̂�∗𝑇3-space, su. �̂�∗∗𝑇3-space, su. ŋ̂𝑇3-space, su. ŋ̂∗𝑇3-space, and su. 

ŋ̂∗∗𝑇3-space. And we will illustrate the relationship between them. 

 

 

Definition (3.1): In case a su. space (𝑋, 𝜇) is :-  

 1- Su. regular space and su. 𝑇1-space, then it is su. 𝑇3-space [5]. 

 2- Su. ω̂-regular space and su. T1-space, then it is su. �̂�T3-space. 

 3- Su. ŋ̂-regular space and su. 𝑇1 -space, then it is su.  ŋ̂𝑇3 -space. 

 4- Su. �̂�-regular space and su. 𝑇1-space, then it is su. �̂�∗𝑇3-space. 

 5- Su. ŋ̂∗-regular space and su. 𝑇1 -space, then it is su. ŋ̂∗𝑇3 -space. 

 6- Su. �̂�∗∗-regular space and su. 𝑇1-space, then it is su. �̂�∗∗𝑇3-space. 

 7- Su. ŋ̂∗∗-regular space and su. 𝑇1 -space, then it is su. ŋ̂∗∗𝑇3 -space. 

Example (3.2): 1- (ℛ, 𝜇𝐷) is su. �̂�∗𝑇3 and ŋ̂∗𝑇3-space. 

2- 𝑋= {1, 2, 3}, 𝜇= {∅, 𝑋, {1}, {2, 3}, {2}, {1, 2}, {1, 3}} is su. 𝑇3-space, su. �̂�𝑇3-space, su.  ŋ̂𝑇3-space, su.  �̂�∗∗𝑇3-space, su.  

ŋ̂∗∗𝑇3-space, su. �̂�∗∗-regular and su. ŋ̂∗∗-regular space. 

Remark (3.3): 1- If 𝑋 is a su. 𝑇3-space, then it is a su. regular.  

2- If 𝑋 is a su. regular space, then it is not necessary su. 𝑇2-space. 

3- If 𝑋 is a su. 𝑇2-space need not su. regular. 

4- If 𝑋 is a su. 𝑇2-space, so it is su. 𝑇1-space. 

5- Every singleton subset {𝑥} of su. 𝑇1-space is su. closed set [3]. 

The following scheme is helpful. 

 

 

 

 

                                            Su. 𝑇3-space                                                       Su. �̂�𝑇3 (resp. su. ŋ̂𝑇3)- space   

                                                        

 

 

 

 

  

 

 

 

              Su. �̂�∗𝑇3 (resp.  su.  ŋ̂∗𝑇3)-space                                                        Su. �̂�∗∗𝑇3 (resp.  su.  ŋ̂∗∗𝑇3)-space                        

  

 

Example (3.4): 1- 𝑋 = {a, b, c, d, e}, 𝜇= {∅, 𝑋, {a}, {e}, {a, b}, {a, e}, {a, b, e}, {c, d, e}, {b, c, d, e}, {a, c, d, e}, {a, b, c, d}} is 

su. regular, but neither su. 𝑇3-regular nor su. T2-space. 

2- 𝑋= {a, b, c, d}, 𝜇= {∅, 𝑋, {a}, {c}, {a, c}, {a, b}, {a, d}, {c, d}, {b, d}, {a, b, c}, {a, b, d}, {b, c, d}, {a, c, d}} is su. 𝑇2-space 

and su. 𝑇1-space but neither su. regular nor su. 𝑇3-space. 

3- 𝑋= {a, b, c}, 𝜇= {∅, X, {a}, {a, b}, {a, c}, {b, c}} is su. 𝑇1-space, su. �̂�∗∗𝑇3-space, su. ŋ̂∗∗𝑇3-space, su. �̂�𝑇3-space, su. ŋ̂𝑇3-

space, su. �̂�-regular and su. ŋ̂-regular space but not su. regular, not su. 𝑇3-regular, not su. �̂�∗𝑇3-space, not su. ŋ̂∗𝑇3-

space, and not su. 𝑇2-space. 

4- 𝑋= {a, b, c}, 𝜇= {∅, X, {a}, {b}, {a, b}, {a, c}, {b, c}} is su. 𝑇3-space, su. ŋ̂∗∗𝑇3-space, �̂�𝑇2-space and ŋ̂𝑇2-space but 

neither su. �̂�∗𝑇3-space nor su. ŋ̂∗𝑇3-space. 

Proposition (3.5): Each su. topology finer than su. 𝑇2  is also su. 𝑇2.  
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Proof: Let 𝒶 ≠ 𝑏 be two elements in a su. space 𝑋 and 𝜇, 𝜇∗ are two su. topologies defined on 𝑋, where 𝜇∗ is finer 

than 𝜇, and 𝜇 is a su. 𝑇2-topology on 𝑋, so there are disjoint sets 𝒲1, 𝒲2 ∈ 𝜇 containing 𝒶, 𝑏 respectively, since 

𝜇 ⊆ 𝜇∗, hence 𝒲1 , 𝒲2 ∈ 𝜇∗ too, then 𝜇∗ is a su. 𝑇2-topology on 𝑋.  

Proposition (3.6): 1- Each su. topology finer than su. �̂�𝑇2 is also su. �̂�𝑇2.  

2- Each su. topology finer than su. ŋ̂𝑇2 is also su. ŋ̂𝑇2.   

Proof:   As in proposition (2.25).  

Proposition (3.7): Every su. 𝑇3-space is su. 𝑇2-space. 

Proof: Let (𝑋, 𝜇) be a su. 𝑇3-space and let 𝑥, 𝑦 be any distinct points in 𝑋. We have 𝑋 is su. 𝑇1-space (from definition 

of su. 𝑇3-space), so {𝑥} is su. closed set (by remark (3.3)) and 𝑦∉{𝑥}, since 𝑋 is su. regular space so there are su. open 

sets 𝒲, ℬ such that {𝑥} ⊆𝒲, 𝑦 ∈ℬ and 𝒲⋂ℬ=∅, thus 𝑥 ∈ 𝒲, then 𝑥, 𝑦  belong respectively to disjoint su. open sets 

𝒲 and ℬ, therefore 𝑋 is su. 𝑇2-space. 

Proposition (3.8): 1- Every su. �̂�𝑇3-space is su. 𝜔𝑇2-space. 

2- Every su. ŋ̂𝑇3-space is su. ŋ̂𝑇2-space. 

3- Every su. �̂�∗𝑇3-space is su. �̂�𝑇2-space. 

4- Every su. ŋ̂∗𝑇3-space is su. ŋ̂𝑇2-space. 

5- Every su. �̂�∗∗𝑇3-space is su. �̂�𝑇2-space. 

6- Every su. ŋ̂∗∗𝑇3-space is su. ŋ̂𝑇2-space. 

Proof: As in proposition (3.7). 

Example (3.9): 1- 𝑋= {a, b, c, d}, μ= {∅, 𝑋, {a},  {c}, {a, c}, {a, b}, {a, d}, {c, d}, {b, d}, {a, b, c}, {a, b, d}, {b, c, d}, {a, c, d}}, 

so (X, 𝜇) is su. 𝑇2-space but not su. 𝑇3-space, not su. �̂�∗𝑇3-space and not su. ŋ̂∗𝑇3-space. 

Lemma (3.10): If {𝑈𝑖}𝑖=1
𝑛  is a finite collection of su. �̂�-open (resp. su. ŋ̂-open) sets, so their union is also su. �̂�-open 

(su. ŋ̂-open) set.  

Proof: Let 𝑥 ∈ ⋃ 𝑈𝑖
𝑛
𝑖=1  ⟹𝑥 ∈ 𝑈𝛼𝑖

 for some 𝛼𝑖 ∈ 𝐼⟹ there is 𝐺 ∈ 𝜇, with 𝑥 ∈ 𝐺 and 𝐺-𝑈𝛼𝑖
  is countable (resp. finite), 

but 𝐺-⋃ 𝑈𝑖
𝑛
𝑖=1 ⊆  𝐺-𝑈𝛼𝑖

⟹𝐺-⋃ 𝑈𝑖
𝑛
𝑖=1     is countable (resp. finite) ⟹⋃ 𝑈𝑖

𝑛
𝑖=1    is su. �̂�-open (resp. su. ŋ̂-open) set            .

                                                                                                                                                   

Theorem (3.11) [3]: The property of a space being su. 𝑇1-space is a su. hereditary and su. topologically property. 

Theorem (3.12): 1- The property of a space being su.  �̂�𝑇3-space (resp. ŋ̂𝑇3-space) is a su. hereditary and su.  

topologically property. 

2- The property of a space being su. �̂�∗𝑇3-space (resp. ŋ̂∗𝑇3-space) is a su. hereditary and su. topologically property. 

3- The property of a space being su. �̂�∗∗𝑇3-space (resp. ŋ̂∗∗𝑇3-space) is a su. hereditary and su. topologically 

property. 

Proof: It is clear. 

Theorem (3.14): A su. space 𝑋 is a su. �̂�-regular (resp. su. ŋ̂-regular) space, iff for any 𝑥 ∈ 𝑋 and for any su. open set 

𝒰 in 𝑋 containing 𝑥, there is a su. �̂�-open (resp. su. ŋ̂-open) set 𝒱 in 𝑋 such that 𝑥 ∈ 𝒱 ⊆ 𝑐𝑙�̂�
𝜇

(𝒱) ⊆ 𝒰. 

Proof: Suppose 𝑋 is su. �̂�-regular (resp. su. ŋ̂-regular) space, and let 𝒰 be a su. open set in 𝑋 such that 𝑥 ∈ 𝒰, then 

𝒰𝑐 is su. closed set in 𝑋 does not containing 𝑥. But 𝑋 is su. �̂�-regular (resp. su. ŋ̂-regular) space, so there are two su. 

�̂�-open (resp. su. ŋ̂-open) sets 𝒱, 𝒲 such that 𝑥 ∈ 𝒱, 𝒰𝑐 ⊆ 𝒲 and 𝒱⋂𝒲=∅, so 𝒱 ⊆ 𝒲𝑐 , thus 𝑐𝑙�̂�
𝜇

(𝒱)⊆𝑐𝑙�̂�
𝜇 (𝒲𝑐)=𝒲𝑐  

(resp. 𝑐𝑙ŋ̂
𝜇(𝒱) ⊆ 𝑐𝑙ŋ̂

𝜇(𝒲𝑐) = 𝒲𝑐…… (1) (since 𝒲𝑐  is su. �̂�-closed (resp. su. ŋ̂-closed)) set, and since 𝒰𝑐 ⊆ 𝒲, then 

𝒲𝑐 ⊆ 𝒰… (2), from (1) and (2) we get 𝑥 ∈ 𝒱 ⊆ 𝑐𝑙�̂�
𝜇 (𝒱) ⊆ 𝒲𝑐 ⊆ 𝒰 (resp.  𝑥 ∈ 𝒱 ⊆  𝑐𝑙ŋ̂

𝜇(𝒱) ⊆ 𝒲𝑐 ⊆ 𝒰), which means 

𝑥 ∈ 𝒱 ⊆ 𝑐𝑙�̂�
𝜇

(𝒱) ⊆ 𝒰 (resp. 𝑥 ∈ 𝒱 ⊆ 𝑐𝑙ŋ̂
𝜇

(𝒱) ⊆ 𝒰). Conversely, let ℳ be a su. closed set in 𝑋 and 𝑥 be any point in 𝑋 

such that 𝑥 ∈ ℳ, so ℳ𝑐  is su. open set in 𝑋 does not containing 𝑥, put ℳ𝑐 = 𝒰, then there is a su. �̂�-open (resp. su. 

ŋ̂-open) set 𝒱 in 𝑋 in which 𝑥 ∈ 𝒱 ⊆ 𝑐𝑙�̂�
𝜇

(𝒱) ⊆ 𝒰 (resp. 𝑥 ∈ 𝒱 ⊆ 𝑐𝑙ŋ̂
𝜇

(𝒱) ⊆ 𝒰), thus 𝑐𝑙�̂�
𝜇 (𝒱) ⊆ 𝒰, hence 𝒰𝑐 = ℳ ⊆

(𝑐𝑙�̂�
𝜇 (𝒱))

𝑐

⊆ 𝑋 (resp. 𝒰𝑐 = ℳ ⊆ (𝑐𝑙ŋ̂
𝜇

 (𝒱))
𝑐

⊆ 𝑋 (since 𝒱 is su. �̂�-open (resp. su. ŋ̂-open), so 𝑐𝑙�̂�
𝜇

 (𝒱) (resp. 𝑐𝑙ŋ̂
𝜇

  (𝒱) ) 

is su. �̂�-closed (resp. su. ŋ̂-closed) set), since 𝑉 ⊆ 𝑐𝑙�̂�
𝜇

 (𝒱) (resp.𝒱 ⊆ 𝑐𝑙ŋ̂
𝜇

(𝒱)), which implies 𝒱⋂(𝑐𝑙�̂�
𝜇

(𝒱))𝑐=∅ (resp. 

𝒱⋂ (𝑐𝑙ŋ̂
𝜇

 (𝒱))
𝑐

= ∅). Therefore, there are two su. �̂�-open (resp. su. ŋ̂-open) sets 𝒱, (𝑐𝑙�̂�
𝜇 (𝒱))

𝑐

 [resp. 𝒱,(𝑐𝑙ŋ̂
𝜇

 (𝒱))𝑐] in 

𝑋 such that 𝑥 ∈ 𝒱, ℳ ⊆ (𝑐𝑙�̂�
𝜇 (𝒱))

𝑐

 (resp. ℳ ⊆ (𝑐𝑙ŋ̂
𝜇(𝒱))

𝑐

, and 𝒱⋂ (𝑐𝑙�̂�
𝜇

 (𝒱) )𝑐=∅ (resp. 𝒱⋂𝑐𝑙ŋ̂
𝜇

 (𝒱) )𝑐=∅, then 𝑋 is su. 

�̂�-regular (resp. su. ŋ̂-regular) space. 
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Proposition (3.14): A su. space 𝑋 is :-  

1- A su. regular space, iff for any 𝑥 ∈ 𝑋 and for any su. open set 𝒰 in 𝑋 containing 𝑥, there is a su. open set 𝒱 in 𝑋 such 

that 𝑥 ∈ 𝒱 ⊆ 𝑐𝑙(𝒱) ⊆ 𝒰. 

 

 

2- A su. �̂�∗-regular (resp. su. ŋ̂∗-regular) space, iff for any 𝑥 ∈ 𝑋 and for any su. �̂�-open (resp. su. ŋ̂-open) set 𝒰 in 𝑋 

containing 𝑥, there is a su. open set 𝒱 in 𝑋 such that 𝑥 ∈ 𝒱 ⊆ 𝑐𝑙 (𝒱) ⊆ 𝒰. 

3- A su. ω̂∗∗-regular (resp. su. ŋ̂∗∗-regular) space, iff for any 𝑥 ∈ 𝑋 and for any su.  ω̂-open (resp. su.  ŋ̂-open) set 𝒰 in 

𝑋 containing 𝑥, there is a su. ω̂-open (resp. su. ŋ̂-open) set 𝒱 in 𝑋 such that 𝑥 ∈ 𝒱 ⊆ 𝑐𝑙�̂�
𝜇

(𝒱) ⊆ 𝒰 (resp. 𝑥 ∈ 𝒱 ⊆

𝑐𝑙ŋ̂
𝜇

 (𝒱) ⊆ 𝒰). 

Definition (3.15): A function 𝑓: 𝑋 ⟶ 𝑌 is called:- 

1- Perfectly su*. continuous if the inverse image of any su. open (resp. su. closed) set in 𝑌 is a su. clopen set in 𝑋 [4]. 

2- Perfectly su*.  �̂�-continuous if the inverse image of any su. �̂�-open (resp. su. �̂�-closed) set in 𝑌 is a su. clopen set 

in 𝑋.  

3- Totally su*.  �̂�-continuous if the inverse image of any su. open (resp. su. closed) set in 𝑌 is a su.  �̂�-clopen set in 𝑋. 

4- Totally su*.  ŋ̂-continuous if the inverse image of any su. open (resp. su. closed) set in 𝑌 is a su. ŋ̂-clopen set in 𝑋. 

5- Perfectly su*. ŋ̂-continuous if the inverse image of any su. ŋ̂-open (resp. su. ŋ̂-closed) set in 𝑌 is a su. clopen set in 

𝑋.  

6- Perfectly su*. �̂�-irresolute if the inverse image of any su. �̂�-open (resp. su. �̂�-closed) set in 𝑌 is a su.  �̂�-clopen set 

in 𝑋. 

7- Perfectly su*.  ŋ̂-irresolute if the inverse image of any su.  ŋ̂-open (resp. su.  ŋ̂-closed) set in 𝑌 is a su. ŋ̂-clopen set 

𝑋. 

Example (3.16): Let 𝑋=𝑌={1, 2, 3}, 𝜇𝑋= {∅, 𝑋, {1}, {3}, {1, 3}, {2, 3}, {1, 2}}and 𝜇𝑌={∅,𝑌, {3}, {1, 2}}, so 𝑓: 𝑋 ⟶ 𝑌 

defined as 𝑓(1)=2, 𝑓(2)=1, 𝑓(3)=3 is perfectly su*. continuous, perfectly su*. ŋ̂-irresolute, perfectly su*. �̂�-irresolute, 

totally su*. �̂�-continuous, and totally su*. ŋ̂-continuous, but not perfectly su*. ŋ̂-continuous, and not perfectly su*.  

�̂�-continuous function.  

Theorem (3.17): Consider 𝑓: 𝑋 ⟶ 𝑌 is surjective, su*. �̂�-open (resp. su*. ŋ̂-open) and perfectly su*. continuous 

function (or su*. continuous) function, if 𝑋 is su. regular space then 𝑌 is su. �̂�-regular (resp. su. ŋ̂-regular) space. 

Proof: let 𝑦 ∈ 𝑌 and ℳ is su. closed set in 𝑌, there exists 𝑥 ∈ 𝑋 such that 𝑓(𝑥) = 𝑦 (since 𝑓 is surjective) and since 𝑓 

is perfectly su*. continuous, then 𝑓−1 (ℳ) is su. clopen set in 𝑋, and then it is su. closed set in 𝑋. Since 𝑦 ∉ ℳ, so 

𝑓−1 (𝑦) = 𝑥 ∉ 𝑓−1 (ℳ), but 𝑋 is su. regular space, hence there are su. open sets 𝑈, 𝒱 in which 𝑥 ∈ 𝑈, 𝑓−1(ℳ) ⊆

𝒱and 𝑈⋂𝒱=∅, thus 𝑓(𝑥) = 𝑦 ∈ 𝑓(𝑈), 𝑓 (𝑓−1 (ℳ)) = ℳ ⊆ 𝑓(𝒱) and  𝑓(𝑈)⋂𝑓(𝒱) = 𝑓(𝑈⋂𝒱) = 𝑓(∅) =∅, but 𝑓 is su*. 

�̂�-open (resp. su*. ŋ̂-open) function, hence each of 𝑓(𝑈), 𝑓(𝒱) is su. �̂�-open (resp. su. ŋ̂-open) set in 𝑌, therefore 𝑌 is 

su. �̂�-regular (resp. su.  ŋ̂-regular) space. 

Proposition (3.18): 1- Consider 𝑓: 𝑋 ⟶ 𝑌 is surjective, su*. open and perfectly su*. continuous function, if 𝑋 is su. 

regular space then 𝑌 is su. regular space. 

2- Consider 𝑓: 𝑋 ⟶ 𝑌 is surjective, su*. open and perfectly su*. �̂�-continuous (resp. perfectly su*. ŋ̂-continuous) 

function, if 𝑋 is su. regular space then 𝑌 is su.  �̂�∗-regular (resp. su. ŋ̂∗-regular) space. 

3- Consider 𝑓: 𝑋 ⟶ 𝑌 is surjective, su*. open and perfectly su*. �̂�-continuous (resp. perfectly su*. ŋ̂-continuous) 

function, if 𝑋 is su. regular space then 𝑌 is su. �̂�∗-regular (resp. su. ŋ̂∗-regular) space. 

4- Consider 𝑓: 𝑋 ⟶ 𝑌 is surjective, su*. �̂�-open (resp. su*. ŋ̂-open), and perfectly su*. �̂�-continuous (resp. perfectly 

su*. ŋ̂-continuous) function, if 𝑋 is su. regular space then 𝑌 is su.  �̂�∗∗-regular (resp. su. ŋ̂∗∗-regular) space. 

5- Consider 𝑓: 𝑋 ⟶ 𝑌 is injective, su*. closed and totally su*. �̂�-continuous (resp. totally su*. ŋ̂-continuous) function, 

if 𝑌 is su. regular space then 𝑋 is su. �̂�-regular (resp. su.  ŋ̂-regular) space. 

6- Consider 𝑓: 𝑋 ⟶ 𝑌 is injective, su*. closed and perfectly su*. continuous function, if 𝑌 is su. regular space then 𝑌 is 

su. regular space. 

7- Consider 𝑓: 𝑋 ⟶ 𝑌 is injective, su*. �̂�-closed (resp. su*. ŋ̂-closed) and perfectly su*. continuous function, if 𝑌 is su. 

regular space then 𝑋 is su.   �̂�∗-regular (resp. su. ŋ̂∗-regular) space. 
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8- Consider 𝑓: 𝑋 ⟶ 𝑌 is injective, su*. �̂�-closed (resp. su*. ŋ̂-closed) and perfectly su*.  �̂�-continuous (resp. perfectly 

su*.  ŋ̂-continuous) function, if 𝑌 is su. regular space then 𝑋 is su.  �̂�∗∗-regular (resp. su.  ŋ̂∗∗-regular) space.□ 
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