

Available online at www.qu.edu.iq/journalcm

JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS

ISSN:2521-3504(online) ISSN:2074-0204(print)

Some geometric topics of Jackson's (p,q)- derivative convoluted with a Subclass of convex function with negative coefficients

Faten Fakher Abdulnibe a , Kassim A.Jassim b

- a Department of Mathematics ,College of Science, University of Baghdad, Baghdad -Iraq Email: fatenfakher@vahoo.com
- ^b Department of Mathematics, College of Science, University of Baghdad, Baghdad –Iraq Email: <u>Kasimmathphd @gmail.com</u>

ARTICLE INFO

Article history:

Received: 06 /08/2019 Rrevised form: 29 /08/2019 Accepted: 12 /09/2019 Available online: 20 /12/2019

Keywords:

Coefficient bounds, Analytic functions; Starlike, convex; and Close-to-convex functions; Integral means.

ABSTRACT

In the present work, a new subclass $\wp^{\delta,k}_{p,q}(\tau,\eta)$ of convex functions with negative coefficients by derivative operator $\Upsilon^{\delta,k}_{\tau,p,q}$, considered coefficient inequalities, growth and distortion theorem, closure theorem, and some properties of sundry functions pertinence in class considered. So get radii of close-to-convexity for function pertinence in to class $\wp^{\delta,k}_{p,q}(\tau,\eta)$. Moreover, an integrated way inequality resolve for functions pertinence in class $\wp^{\delta,k}_{p,q}(\tau,\eta)$.

MSC

Mathematics Subject Classification: 30C45

DOI: 10.29304/jqcm.2019.11.4.643

1. Introduction and definition

Let \mathcal{A} denote the class of functions of the form

$$\varphi(z) = z + \sum_{v=2}^{\infty} c_v z^v \quad (z \in \Omega).$$
 (1)

which are analytic in the open unit disk $\mho = \{z \in \mathbb{C} : |z| < 1\}$ and normalized by $\phi(0) = 0$ and $\dot{\phi}(0) = 1$. Let S denote the class of all functions $\phi \in \mathcal{A}$ which are univalent in Ω . Also, q-calculus plays a rule in the theory of hypergeometric series, quantum physics and various branches of mathematics as for example, in the areas of ordinary fractional calculus, optimal control problems. The application of q-calculus was initiated by Jackson [12].

Corresponding author Faten Fakher Abdulnibe

Email addresses: fatenfakher@yahoo.com

Communicated by Qusuay Hatim Egaar

The quantum calculus is of the paramount tools that you use to research subclass of analytic functions. Kanas and Raducanu [13] employ the fractional q-calculus operators in considerations of confirmed classes of functions which is analytical in σ . A universal study on applications of q-calculus in operator theory may be found in [8,4,17].

The q-calculus it is lean on one coefficient, the circular of q-calculus is the post-quantum calculus. may be obtained by substituting p=1 in (p, q)-calculus . For details on q-calculus one can refer [8,11,12,15,19]. We let during this paper that 0 . For the means of comfort, several basic definitions and registrations of (<math>p, q)-calculus are aforesaid below:

With (0) the Jackson's <math>(p, q) - derivative for function $\varphi \in \mathcal{A}$, as defined, presented accordingly [12]

$$D_{p,q} \varphi(z) = \begin{cases} \frac{\varphi(pz) - \varphi(qz)}{(p-q)z} & for z \neq 0\\ \varphi'(0) & for z = 0 \end{cases}$$
 (1.2)

By (1.2) we get

$$D_{p,q} \varphi(z) = 1 + \sum_{v=2}^{\infty} [v]_{p,q} c_v z^{v-1}, \qquad (1.3)$$

Where

$$[v]_{p,q} = p^{v-1} + p^{v-2}q + p^{v-3}q^2 + \dots + pq^{v-2} + q^{v-1} = \frac{p^{v}-q^{v}}{v-q}, \quad (1.4)$$

Is called (p, q) - bow or no. Basic twin observe that if p = 1, the no. Basic twin is a natural circularization of the q-number, this is

$$[v]_{p,q} = \frac{1-q^v}{1-q} = [v]_q \quad q \neq 1$$

observe so that if p = 1, the Jackson's (p, q) – derivative,[12]

Its obviously to verify for $\psi(z) = z^v$, we have $D_{p,q} \psi(z) = D_{p,q} z^v = \frac{p^v - q^v}{v - q} z^{v-1} = [v]_{p,q} z^{v-1}$

with $\varphi \in \mathcal{A}$, The Salagean (p,q) – different operator defined as it comes:

$$\psi_{p,q}^{0}\varphi(z) = \varphi(z)$$

$$\psi_{p,q}^{1}\varphi(z) = z D_{p,q} \varphi(z),$$

$$\vdots$$

$$\psi_{p,q}^{k}\varphi(z) = \psi_{p,q}^{1}\left(\psi_{p,q}^{k-1}\varphi(z)\right)$$

$$= z + \sum_{v-2}^{\infty} [v]_{p,q}^{k} c_{v} z^{v} \quad (k \in \mathbb{N}_{0}: = \mathbb{N} \cup \{0\}; z \in \Omega)$$

$$(1.5)$$

note that whether p = 1 and $\lim_{q \to 1^{-}}$, we get the familiar Salagean derivative [16]:

$$\psi^k \varphi(\mathbf{z}) = \mathbf{z} + \sum_{v=2}^{\infty} v^k c_v \, z^v \quad (\mathbf{k} \in \mathbb{N}_0 : \mathbf{z} \in \Omega)$$
 (1.6)

Now let

$$\Upsilon_{\tau,p,q}^{0,k}\varphi(z) = \psi_{,p,q}^{k}\varphi(z),$$

$$Y_{\tau,p,q}^{1,k}\varphi(z) = (1-\tau)\psi_{\tau,p,q}^{\delta,k}\varphi(z) + \tau z(\psi_{\tau,p,q}^{k}\varphi(z))'$$

$$= z + \sum_{v=2}^{\infty} [v]_{p,q}^{k} [1 + (v-1)]c_{v} z^{v},$$

$$Y_{\tau,p,q}^{2,k}\varphi(z) = (1-\tau)Y_{\tau,p,q}^{1,k}\varphi(z) + \tau z(Y_{\tau,p,q}^{1,k}\varphi(z))'$$

$$= z + \sum_{v=2}^{\infty} [v]_{p,q}^{k} [1 + (v-1)\tau]^{2}c_{v}z^{v})$$
(1.8)

In general, we have

$$\begin{split} Y_{\tau,p,q}^{\delta,k} \varphi(z) &= (1-\tau) z (Y_{\tau,p,q}^{\delta-1,k} \varphi(z)) &+ \tau z (Y_{\tau,p,q}^{\delta-1,k} \varphi(z))' \\ &= z + \sum_{v=2}^{\infty} \left[v \right]_{p,q}^{\kappa} \left[1 + (v-1)\tau \right]^{\delta} c_v z^v \right) \quad (\tau \geq 0; k, \xi \in \mathbb{N}_0 \,) \end{split}$$

Clearly, we have $\Upsilon^{0,0}_{\tau,p,q}\varphi(z)=\varphi(z)$ and $\Upsilon^{1,0}_{1,p,q}\varphi(z)=z\,\varphi'(z)$.

We note that when p = 1, we get the differential operator $\Upsilon^{\delta,k}_{\tau,q}\varphi(z)$ knowledge and study by Frasin and Murugusundaramoorthy [9] . As will, you note that where p = 1 also $\lim_q \to 1^-$, we have the differential operator :

$$\Upsilon^{\delta,k}_{\tau,p,q}\varphi(z) = z + \sum_{v=2}^{\infty} v^k \left[1 + (v-1)\tau \ c_v z^v \right]^{\delta} \quad (\tau \ge 0; k, \delta \in \mathbb{N}_0)$$

We note that when k = 0, we get the differentiation operator Υ_{τ}^{δ} defined by Al - Oboudi [3], while if $\delta = 0$, we obtain Salagean differentiation operator Υ^{δ} [16].

Together with the help of the aid of the differential operator $\Upsilon^{\delta,k}_{\tau,q,p}$ we say that the a function $\varphi(z)$ belonging to \mathcal{A} is in the class $Q_{q,p,p}^{\delta,k}(\tau,\eta)$ if and only if

$$R\left\{\frac{(1-\tau)z(\Upsilon_{\tau,p,q}^{\delta,k}\varphi(z))^{\prime\prime}+\tau}{z(\Upsilon_{\tau,p,q}^{\delta,k+1}\varphi(z))^{\prime\prime}}+1\right\} > \eta\left(K,\delta\in\mathbb{N}_{0}\right),\tag{1.9}$$

For some η ($0 \le \eta < 1$) and $\tau(\tau \ge 0)$, and for all $z \in V$.

Suppose \mathcal{T} denote the subclass of \mathcal{A} composed function given by:

$$\varphi(z) = z - \sum_{v=2}^{\infty} c_v z^v \ (c_v \ge 0, z \in \mathcal{V}).$$
 (1.10)

We also define the class $\mathcal{P}_{q,p}^{\delta,k}(\tau,\eta)$ by

$$\mathcal{P}_{a,p}^{\delta,k}(\tau,\eta) = Q_{a,p}^{\delta,k}(\tau,\eta) \cap \mathcal{T}. \tag{1.11}$$

The present paper prove various interesting properties for functions belonging of the class $\mathcal{P}_{q,p}^{\delta,k}(\tau,\eta)$. Some of the results and outcomes of the main results we use are also comparable to those used previously by Frasin et al. Al-Hawary al. Aouf and Srivastava [7] and Amourah [10],[1,2],

2. Coefficient estimates

In this section we start to obtain a necessary and sufficient condition to function $\varphi(z)$ in the class $\mathscr{D}_{p,q}^{\delta,k}(au,\eta)$.

Theorem 2.1. Let the function $\varphi(z)$ be defined by (1.10). Then $\varphi(z) \in \mathscr{D}_{p,q}^{\delta,k}(\tau,\eta)$ if and only if

(2.6)

$$\sum_{v=2}^{\infty} [v]_{p,q}^{k} v (v - \eta) \{1 + ([v] - 1)\tau\} [1 + (v - 1)\tau]^{\delta} c_{v} \le 1 - \eta \quad (2.1)$$

The result is true.

Proof. Suppose that the function $\,\phi(\,z)\,$ is in the class $\,\wp_{p,q}^{\,\xi,k}(\tau,\eta)\,$. Then we have

$$\operatorname{Re} \left\{ \frac{(1-\tau)z(Y_{\tau,p,q}^{\delta,k}\varphi(z))'' + \tau z(Y_{\tau,p,q}^{\delta,k+1}\varphi(z))''}{(1-\tau)(Y_{\tau,p,q}^{\delta,k}\varphi(z))' + \tau(Y_{\tau,p,q}^{\delta,k+1}\varphi(z))'} + 1 \right\} = \operatorname{Re} \left\{ \frac{M}{H} + 1 \right\} > \eta \left(K, \xi \in \mathbb{N}_0 \right) \quad (2.2)$$

for some $\eta(0 \le \eta < 1)$ and $\tau(\tau \ge 0)$, and for all $z \in \mho$. Now

$$M = (1 - \tau) \left(z - \sum_{v=2}^{\infty} v (v - 1) [v]_{p,q}^{k} [1 + (v - 1)\tau]^{\delta} c_{v} z^{v-2} \right) +$$

$$\tau z \left[-\sum_{v=2}^{\infty} v (v-1) [v]_{p,q}^{k+1} [1 + (v-1) \tau]^{\delta} c_v z^{v-2} \right]$$

$$M = \left(-\sum_{v=2}^{\infty} v(v-1)[v]_{p,q}^{k} \quad \left\{1 + \left([v]_{p,q} - 1\right)\tau\right\} [1 + (v-1)\tau]^{\delta} \ c_{v} z^{v-1}\right)$$

$$H = (1 - \tau) \left(1 - \sum_{v=2}^{\infty} v[v]_{p,q}^{\kappa} \left[1 + (v - 1)\tau\right]^{\delta} c_v z^{v-1}\right)$$

$$+ \tau \left(1 - \sum_{v=2}^{\infty} v[v]_{n,a}^{\kappa+1} \left[1 + (v-1)\tau\right]^{\delta} c_v z^{v-1}\right)$$

$$H = 1 - \sum_{v=2}^{\infty} v \left[v \right]_{v,a}^{k} \left\{ 1 + \left(\left[v \right]_{v,a} - 1 \right) \tau \right\} \left[1 + (v - 1)\tau \right]^{\delta} c_{v} z^{v-1}. \tag{2.4}$$

Consequently,

$$\operatorname{Re} \left\{ \frac{(1-\tau)z(\Upsilon_{\tau,p,q}^{\delta,k}\varphi(z))'' + \tau z(\Upsilon_{\tau,p,q}^{\delta,k+1}\varphi(z))''}{(1-\tau)(\Upsilon_{\tau,p,q}^{\delta,k}\varphi(z))' + \tau (\Upsilon_{\tau,p,q}^{\delta,k+1}\varphi(z))'} + 1 \right\}$$
 (2.5)

$$\text{Re}\left\{ \frac{-\sum_{v=2}^{\infty} v\left(v^{-1}\right) \left[v\right]_{p,q}^{k} \left\{1+\left(\left[v\right]_{p,q}-1\right)\tau\right\} \left[1+\left(v^{-1}\right)\tau\right]^{\delta} \ c_{v} \ z^{v^{-1}}}{1-\sum_{v=2}^{\infty} v\left[v\right]_{p,q}^{k} \left\{1+\left(\left[v\right]_{p,q}-1\right)\tau\right\} \left[1+\left(v^{-1}\right)\tau\right]^{\delta} \ c_{v} \ z^{v^{-1}}} \ +1\right\} > \eta$$

Letting $z \to 1^-$ along the real axis, we can see that

$$1 - \sum_{v=2}^{\infty} v(v-1) + v[v]_{p,q}^{k} \left\{ 1 + \left([v]_{p,q} - 1 \right) \tau \right\} [1 + (v-1)\tau]^{\delta} c_{v} \geq$$

$$\eta \left(1 - \sum_{v=2}^{\infty} v[v]_{p,q}^{k} \left\{ 1 + \left([v]_{p,q} - 1 \right) \tau \right\} [1 + (v-1)\tau]^{\delta} c_{v} \right)$$

Therefore we have the (2.1).

Conversely, assume that (2.1) holds sharp. Then

$$\frac{\left|\frac{(1-\tau)z\left(\Upsilon_{\tau,p,q}^{\delta,k}\varphi(z)\right)^{\prime\prime}+\tau z\left(\Upsilon_{\tau,p,q}^{\delta,k+1}\varphi(z)\right)^{\prime\prime}}{(1-\tau)\left(\Upsilon_{\tau,p,q}^{\delta,k}\varphi(z)\right)^{\prime}+\tau\left(\Upsilon_{\tau,p,q}^{\delta,k+1}\varphi(z)\right)^{\prime}}\right|}$$

$$= \left| \frac{\left(-\sum_{v=2}^{\infty} v\left(v-1\right) \left[v\right]_{p,q}^{k} \left\{ 1 + \left(\left[v\right]_{p,q} - 1 \right) \tau \right\} \left[1 + \left(v-1\right) \tau \right]^{\delta} c_{v} z^{v-1} \right)}{1 - \sum_{v=2}^{\infty} v\left[v\right]_{p,q}^{k} \left\{ 1 + \left(\left[v\right]_{p,q} - 1 \right) \tau \right\} \left[1 + \left(v-1\right) \tau \right]^{\delta} c_{v} z^{v-1}} \right|$$

$$\leq \frac{\left(\sum_{v=2}^{\infty} v(v-1) \left[v\right]_{p,q}^{k} \left\{ 1 + \left(\left[v\right]_{p,q} - 1 \right) \tau \right\} \left[1 + \left(v-1\right) \tau \right]^{\delta} c_{v} \right)}{1 - \sum_{v=2}^{\infty} v\left[v\right]_{p,q}^{k} \left\{ 1 + \left(\left[v\right]_{p,q} - 1 \right) \tau \right\} \left[1 + \left(v-1\right) \tau \right]^{\delta} c_{v}} \leq 1 - \eta$$

This indicates that the function values.

$$\varphi(z) = \frac{(1-\tau)z(\Upsilon_{\tau,p,q}^{\delta,k}\varphi(z))'' + \tau z(\Upsilon_{\tau,p,q}^{\delta,k+1}\varphi(z))''}{(1-\tau)(\Upsilon_{\tau,p,q}^{\delta,k}\varphi(z))' + \tau (\Upsilon_{\tau,p,q}^{\delta,k}\varphi(z))'}$$
(2.7)

Located in the circle its center $\omega = 1$ and whose radius is $1 - \eta$. Hence $\varphi(z)$ satisfies the condition (1.9)

At last, the function $\varphi(z)$ given by

$$\varphi(z) = z - \frac{1 - \eta}{[v]_{p,q}^k \ v(v - \eta) \{1 + ([v]_{p,q} - 1)\tau\} [1 + (v - 1)\tau]^{\delta} \ c_v} \ z^v \ (v \ge 2)$$
 (2.8)

Thus we complete the proof.

Corollary 2.2. Suppose the function $\varphi(z)$ defined by (1.10), be in the class $\mathscr{D}_{p,q}^{\delta,k}(\tau,\eta)$. Then

$$c_{v} \leq \frac{1-\eta}{[v]_{p,q}^{k} \ v(v-\eta) \{ \ 1 + ([v]_{p,q} - 1)\tau \} [1 + (v-1)\tau]^{\delta} \ c_{v}} \quad (v \geq 2)$$
 (2.9)

The equality in (2.9) is achieved for the $\varphi(z)$ *given by* (2.8).

3. Inclusion relations

In this part we start by explaining inclusion relation.

Theorem (3.1): Suppose $0 \le \eta 1 \le \eta 2 < 1$, $0 \le \tau \le 1$, $0 \le \delta < 1$ and K, $\delta \in \mathbb{N}_0$. Then

$$\wp_{p,qk}^{\delta,k}(\tau,\eta_1) \supseteq \wp_{p,q}^{\delta,k}(\tau,\eta_2). \tag{3.1}$$

Proof. Let the function $\varphi(z)$ defined by (1.10) , be in the class m $\mathscr{D}_{p,q}^{\epsilon,k}(\tau,\eta_2)$

And let $\eta_1 = \eta_2 - \delta$. consequently, by theorem 2.1, we get

$$\sum_{v=2}^{\infty} [v]_{p,a}^{k} \ v (v - \eta_2) \left\{ 1 + ([v] - 1)\tau \right\} [1 + (v - 1)\tau]^{\delta} c_v \le 1 - \eta_2$$
 (3.2)

Also

$$\sum_{v=2}^{\infty} [v]_{p,q}^{k} V \{1 + ([v] - 1)\tau\} [1 + (v - 1)\tau]^{\delta} c_{v} \le \frac{1 - \eta_{2}}{2 - \eta_{2}} < 1.$$
(3.3)

Then

$$\begin{split} & \sum_{v=2}^{\infty} \ [v]_{p,q}^{k} \ v \ (v-\eta_{1}) \left\{ 1 + \left([v]_{p,q} - 1 \right) \tau \right\} [1 + (v-1)\tau]^{\delta} c_{v} \\ & = \sum_{v=2}^{\infty} \ [v]_{p,q}^{k} \ v \ (v-\eta_{2}) \ \left\{ 1 + \left([v]_{p,q} - 1 \right) \tau \right\} [1 + (v-1)\tau]^{\delta} c_{v} \\ & + \delta \ \sum_{v=2}^{\infty} \ [v]_{p,q}^{k} \ v \ \left\{ 1 + \left([v]_{p,q} - 1 \right) \tau \right\} [1 + (v-1)\tau]^{\delta} \le 1 - \eta_{1} \end{split}$$

Thus we complete the proof.

Theorem (3.2) . Suppose $0 \le \eta < 1$, $0 \le \tau_1 \le \tau_2 \le 1$, and $\kappa, \delta \in \mathbb{N}_0$.

Then

$$\wp_{p,q}^{\delta,k}(\tau_1,\eta) \supseteq \wp_{p,q}^{\delta,k}(\tau_2,\eta)$$
 (3.4)

Proof: Let the function $\varphi(z)$ defined by (1.10), be in the class $\wp_{p,q}^{\delta,k}(\tau,\eta_2)$

Then, by Theorem (2.1), we get

$$\sum_{v=2}^{\infty} [v]_{p,q}^{k} \ v (v - \eta) \{1 + ([v] - 1)\tau_{1}\} [1 + (v - 1)\tau_{1}]^{\delta} c_{v}$$

$$\leq \sum_{v=2}^{\infty} [v]_{p,q}^{k} \ v (v - \eta) \{1 + ([v] - 1)\tau_{2}\} [1 + (v - 1)\tau_{2}]^{\delta} c_{v} \leq 1 - \eta$$

Thus completes the proof.

Theorem (3.3): Let $0 \le \eta < 1, 0 \le \tau \le 1$, and $\kappa, \delta \in \mathbb{N}_0$. Then

$$\wp_{p,q}^{\delta,k}(\tau,\eta) \supseteq \wp_{p,q}^{\delta,k+1}(\tau,\eta) \tag{3.5}$$

And

$$\wp_{p,q}^{\delta,k}(\tau,\eta) \supseteq \wp_{p,q}^{\delta+1,k}(\tau,\eta)$$
 (3.6)

Proof. By Theorem 2.1, we get

$$\sum_{v=2}^{\infty} [v]_{v,a}^{k} \ v \ (v-\eta) \ \left\{1 + \left([v]_{v,a} - 1\right)\tau\right\} [1 + (v-1)\tau]^{\delta} c_{v}$$

$$\leq \sum_{v=2}^{\infty} [v]_{p,q}^{k+1} v (v - \eta) \left\{ 1 + ([v]_{p,q} - 1)\tau \right\} [1 + (v - 1)\tau]^{\delta} c_v$$

$$< 1 - n$$

Also

$$\sum_{v=2}^{\infty} [v]_{p,q}^{k} v(v-\eta) \left\{ 1 + ([v]_{p,q} - 1)\tau \right\} [1 + (v-1)\tau]^{\delta} c_{v}$$

$$\leq \, \textstyle \sum_{v=2}^{\infty} [v]_{p,q}^{k} \, \, v \, (v-\eta) \, \left\{ 1 + \left([v]_{p,q} - 1 \right) \tau \right\} \left[1 + (v-1)\tau \, \right]^{\delta+1} c_v \leq 1 - \, \eta$$

4. Growth and distortion theorems

Theorem (4.1): Suppose the function $\varphi(z)$ given by (1.10), in the class $\mathscr{D}_{p,q}^{\delta,k}(\tau,\eta)$ another, for |z| = r < 1,

$$\left| \gamma_{\tau,p,q}^{i,j} \, \varphi(z) \, \right| \, \geq \, r \, - \, \frac{1 - \eta}{[2]^{\kappa - j} \, 2 \, (2 - \eta) \, \{1 + \, ([2]_{p,q} - 1)\tau\} \, (1 + \tau)^{\delta - i}} \, r^2 \tag{4.1}$$

And

$$\left| \gamma_{\tau,p,q}^{i,j} \varphi(z) \right| \le r + \frac{1-\eta}{\left[2\right]_{p,q}^{\kappa-j} 2(2-\eta) \left\{ 1 + \left([v]_{p,q} - 1 \right) \tau \right\} (1+\tau)^{\delta-i}} r^2 \quad (4.2)$$

 $(0 \le i \le \delta; 0 \le j \le \kappa; z \in \Omega).$

In (4.1) and (4, 2) realized for the function $\varphi(z)$ as follows;

$$\varphi(z) = z - \frac{1-\eta}{[2]_{n,q}^{\kappa} 2 (2-\eta) \{1+([2]_{n,q}-1) \ \tau\} (1+\tau)^{\delta}} z^{2} (z = \pm r)$$
 (4.3)

Proof. Observe that the function $\, \varphi(z) \in \, \mathscr{D}_{p,q}^{\delta,k}(\tau,\eta) \,$ if and only if

and so on

$$y_{\tau,n,a}^{i,j}\varphi(z) = z - \sum_{v=2}^{\infty} [v]_{n,a}^{j} [1 + (v-1)\tau]^{i} c_{v} z^{v}$$
(4.4)

. By Theorem (2.1). We get that

$$[2]_{p,q}^{\kappa-j}(2-\eta)\left\{1+\left([2]_{p,q}-1\right)\tau\right\}\left(1+\tau\right)^{\delta-i}\sum_{v=2}^{\infty}\left[v\right]_{p,q}^{j}(1+\tau)^{i}c_{v} \tag{4.5}$$

$$\leq \sum_{v=2}^{\infty} [v]_{p,q}^{k} \ v (v-\eta) \left\{ 1 + \left([v]_{p,q} - 1 \right) \tau \right\} [1 + (v-1)\tau_{2}]^{\delta} c_{v} \leq 1 - \eta$$

Which suggests,

$$\sum_{v=2}^{\infty} [v]_{p,q}^{j} (1+\tau)^{i} c_{v} \leq \frac{1-\eta}{[2]_{p,q}^{\kappa-j} 2(2-\eta)\{1+([2]_{p,q}-1)\tau\}(1+\tau)^{\delta-i}}$$
(4.6)

confirmation (4.1) and (4.2) of theorem 4.1 you will now track easily from (4.4) and (4.6).

lastly, we observe that the equivalence (4.1) and (4.2) are done for the function $\varphi(z)$ defined by

$$\gamma_{\tau,p,q}^{i,j}\varphi(z) = z - \frac{1-\eta}{[2]_{p,q}^{\kappa-j} 2(2-\eta)\{1+([2]_{p,q}-1)\tau\}(1+\tau)[1+(\nu-1)\tau]^{\delta}} z^2$$
 (4.7)

Which completes the proof.

Taking i = j = 0 in Theorem 4.1, directly we have the following corollary.

Corollary 4.2. Suppose the function $\varphi(z)$. Defined by (1.10) be in the class $\mathscr{D}_{p,q}^{\delta,k}(\tau,\eta)$

Therefore, for |z| = r < 1

$$|\varphi(z)| \ge r - \frac{1-\eta}{[2]_{n,q}^{\kappa} 2(2-\eta)\{1+([2]_{n,q}-1)\tau\}(1+\tau)[1+(\nu-1)\tau]^{\delta}} r^2$$
(4.8)

And

$$|\varphi(z)| \le r + \frac{1-\eta}{[2]_{n,q}^K 2(2-\eta)\{1+([2]_{n,q}-1)\tau\}(1+\tau)^{\delta}} r^2$$
 where, $z \in \mathcal{U}$ (4.9)

The parity in (4.8) also (4.9) are fulfilled to the function $\varphi(z)$ define by (4.3).

putting $i = \tau = 1$ while j = 0 in Theorem 4.1, and benefit from the definition (1.7) we have this corollary.

Corollary (4.3): Suppose a function $\varphi(z)$, knowledge by (1.10), be in the class $\mathscr{D}_{p,q}^{\delta,k}(\tau,\eta)$.

Then, for |z| = r < 1

$$|\varphi'(z)| \ge 1 - \frac{1-\eta}{[2]_{p,q}^{K+1} \ 2 \ (2-\eta) \ (2)^{\delta-1}} r$$
 (4.10)

$$|\varphi'(z)| \le 1 + \frac{1-\eta}{[2]_{n,d}^{K+1} \ 2\ (2-\eta)\ (2)^{\delta-1}} r$$
 where, $z \in \mathcal{V}$ (4.11)

With (4.10) also (4.11) are fulfilled to a function $\varphi(z)$ as follows:

$$\varphi(z) = z - \frac{1-\eta}{[2]_{n,n}^{K+1} 2(2-\eta)(2)^{\xi}} z^2 (z = \pm r)$$
 (4.12)

5. Closure theorems

We shall prove in this section that the class $\mathscr{D}_{p,q}^{\delta,k}$ (τ , $\,\eta$) is closed beneath convex linear combinations.

Theorem (5.1): The class $\wp_{p,q}^{\delta,k}(\tau,\eta)$ is convex set.

Proof. Suppose the function

$$\varphi_{\alpha}(z) = z - \sum_{v=2}^{\infty} c_{\alpha,v} z^{v} (c_{\alpha,v} \ge 0; \alpha = 1,2; z \in \Omega).$$
(5.1)

Be in the class $\mathscr{D}_{p,q}^{\delta,k}(\tau,\eta)$. It is sufficient to show that the function $\psi(z)$ defined by

$$\psi(z) = \mu \varphi_{1(z)} + (1 - \mu)\varphi_2(z)(0 \le \mu \le 1)$$
 (5.2)

and in the class $\,\wp_{p,q}^{\,\delta,k}(\tau,\eta)$. Because , for $0 \le \mu \le 1$,

$$\psi(z) = z - \sum_{\nu=2}^{\infty} \{ \mu c_{1,\nu} + (1 - \mu) c_{2,\nu} \} z^{\nu}$$
 (5.3)

By Theorem (2.1), we get

$$\sum_{v=2}^{\infty} [v]_{p,q}^{k} \ v (v-\eta) \left\{ 1 + \left([v]_{p,q} - 1 \right) \tau \right\} \left[1 + (v-1)\tau \right]^{\delta} \left\{ \mu c_{1,v} + (1-\mu)c_{2,v} \right\} \le 1 - \eta \quad (5.4)$$

Which suggests that $\psi(z) \in \mathcal{D}_{p,q}^{\delta,k}(\tau,\eta)$. Therefore $\mathcal{D}_{p,q}^{\delta,k}(\tau,\eta)$ is convex set.

Theorem (5.2): Let $\varphi_1(z) = z$ also

$$\varphi_{v}(z) = z - \frac{1 - \eta}{[v]_{p,q}^{k} \ v \ (v - \eta) \ \{1 + ([v]_{p,q} - 1) \ \tau\} [1 + (v - 1) \ \tau]^{\delta}} \ z^{v} \ (v \ge 2; \kappa, \delta \in \mathbb{N}0) \ (5.5)$$

For $0 \le \eta < 1$ and $0 \le \tau \le 1$. Then the function $\phi(z)$ is in the class $\wp_{p,q}^{\delta,k}(\tau,\eta)$ if and only if can be expressed in the form:

$$\varphi(z) = \sum_{\nu=1}^{\infty} \mu_{\nu} \, \varphi_{\nu}(z) \tag{5.6}$$

wherever

$$\mu_v \ge 0 (v \ge 1) \text{ and } \sum_{v=1}^{\infty} \mu_v = 1$$
 (5.7)

Proof. Suppose that

$$\varphi(z) = \sum_{v=1}^{\infty} \mu_v \, \varphi_v(z) \tag{5.8}$$

$$= Z - \tfrac{1 - \eta}{[v]_{p,q}^k \ v \, (v - \eta) \, \{1 + \big([v]_{p,q} - 1\big) \, \tau \, \} \, [\, 1 + (v - 1) \, \tau]^\delta} \, \, \mu_v \, z^v$$

Then follow it

$$\sum_{v=2}^{\infty} \frac{ \ ^{[v]_{p,q}^{k} \ v \ (v-\eta) \ \left\{1+\left([v]_{p,q}-1\right)\tau\right\} \ [1+(v-1)\tau]^{\delta}}}{1-\eta} \cdot \frac{1-\eta}{[v]_{p,q}^{k} \ v \ (v-\eta) \left\{1+\left([v]_{p,q}-1\right)\tau\right\} [1+(v-1)\tau]^{\delta}} \mu_{v,q}$$

$$= \sum_{v=2}^{\infty} \mu_v = 1 - \mu_1 \le 1$$

Hence, by Theorem 2.1 $\varphi(z) \in \mathscr{D}_{p,q}^{\delta,k}(\tau,\eta)$.

Conversely, suppose that the function $\phi(z)$ defined by (1.10) belongs to the class $\mathscr{D}_{p,q}^{\delta,k}(\tau,\eta)$. Then

$$c_{V} \leq \frac{1-\eta}{[v]_{p,q}^{k} \ v(v-\eta) \left\{1+\left([v]_{p,q}-1\right)\tau\right\} [1+(v-1)\tau]^{\delta}} \ (v \geq 2, \delta, \kappa \in \mathbb{N}_{0})$$

putting

$$\mu_v = \tfrac{[v]_{p,q}^k \ v \ (v-\eta)\{1+\left([v]_{p,q}-1\right)\tau\} \left[1+(v-1)\tau\right]^\delta}{1-\eta} c_v \text{ where, } v \ \geq 2 \text{ , } \delta, \kappa \in \mathbb{N}_0$$

And

$$\mu_{1=1-\sum_{v=2}^{\infty}\mu_{v}},$$

for function $\phi(z)$ given by (5.6). That is completes proof

6. Radii of Starlikenss, convexity and close - to- convexity,

We must in this section, determine the radii of starlikeness, convexity and close - to-convexity, by the functions pertinence to the class $\mathcal{D}_{p,q}^{\delta,k}(\tau,\eta)$.

Theorem 6.1. Let the function $\phi(z)$, define by (1.10), be in the class $\mathscr{D}_{p,q}^{\delta,k}(\tau,\eta)$. Then $\phi(z)$ is close –to-convex of order p ($0 \le p < 1$) in $|z| < r_1$, where

$$r_{1} := \inf \left(\frac{(1-p)v^{-1} [v]_{p,q}^{k} v(v-\eta) \{1+([v]_{p,q}-1)\tau\} [1+(v-1)\tau]^{\delta}}{1-\eta} \right)^{1/(v-1)} (v \ge 2). \quad (6.1)$$

By the extreme function $\varphi(z)$ define by (2.8). The result is true.

Proof:- We must to prove the following:

$$|\varphi'(z) - 1| \le 1 - \rho \text{ where } |z| < r_1$$
,

wherever r_1 is given by (6.1). In fact, definition by (1.10) it means the following:

$$|\varphi'(z) - 1| \le \sum_{v=2}^{\infty} v c_v |z|^{v-1}$$

So thus,

$$|\varphi'(z) - 1| \le 1 - p$$

Whether,

$$\sum_{v=2}^{\infty} \left(\frac{v}{1-v} \right) c_v |z|^{v-1} \le 1.$$
 (6.2)

however, through Theory (2.1), (6.2) that is true if

$$\left(\frac{v}{1-p}\right)|z|^{v-1} \le \frac{[v]_{p,q}^{k} v(v-\eta)\{1+\left([v]_{p,q}-1\right)\tau\}[1+(v-1)\tau]^{\delta}}{1-\eta}, \tag{6.3}$$

So, if

$$|z| \le \left(\frac{(1-p)v^{-1} [v]_{p,q}^{k} v (v-\eta) \{1+([v]_{p,q}-1)\tau\} [1+(v-1)\tau]^{\delta}}{1-\eta}\right)^{1/(v-1)} (v \ge 2) \quad (6.4)$$

Theorem (6.1) that is easily by (6.4).

Theorem (6.2): Let the function k $\phi(z)$, defined by (1,10), be in the class $\mathscr{D}_{p,q}^{\delta,k}(\tau,\eta)$. Then $\phi(z)$

is starlike of order $p \ (0 \le p < 1)$ in $|z| < r_2$, where

$$r_{2} := \inf \left(\frac{(1-p) \left[v\right]_{p,q}^{k} \ v \left(v-\eta\right) \left\{ 1 + \left(\left[v\right]_{p,q}-1\right) \tau\right\} \left[1 + \left(\left[v-1\right]\right) \tau\right]^{\delta}}{(v-p) \left(1-\eta\right)} \right)^{1/(v-1)} \ \left(v \ge 2\right)$$
 (6.5)

The effect is true, by the external function $\varphi(z)$ by (2.8).

Proof: We need to prove this is

$$\left| \frac{z \, \varphi'(z)}{\varphi(z)} - 1 \right| \le 1 - p \text{ for } |z| < r_2.$$

Where r_2 is given by (6.5). In fact definition (1.10) it means this is

$$\left| \frac{z \, \varphi'(z)}{\varphi(z)} - 1 \right| \leq \frac{\sum_{v=2}^{\infty} (v-1) \, c_v \, |z|^{v-1}}{1 - \sum_{v=2}^{\infty} c_v |z|^{v-1}}$$

Therefore,

$$\left|\frac{z\,\varphi'(z)}{\varphi(z)} - 1\right| \le 1 - p,$$

Whether,

$$\sum_{v=2}^{\infty} \left(\frac{v-p}{1-n} \right) c_v |z|^{v-1} \le 1 \tag{6.6}$$

however, by Theorem 2.1,(6.6) considered true if

$$\left(\frac{v-p}{1-p}\right) |z|^{v-1} \le \frac{[v]_{p,q}^k v(v-\eta) \left\{1 + \left([v]_{p,q} - 1\right)\tau\right\} [1 + (v-1)\tau]^{\delta}}{1-\eta} \tag{6.7}$$

That is, if

$$|z| \le \left(\frac{(1-p) [v]_{p,q}^k v (v-\eta) \{1 + ([v]_{p,q}-1)\tau\} [1 + (v-1)\tau]^{\delta}}{(v-p) (1-\eta)}\right)^{1/(v-1)} (v \ge 2) \quad (6.8)$$

Theorem 6.2 follows easily from (6.8).

Corollary 6.3. Let the function $\phi(z)$, defined by (1,10), be in the class $\mathscr{D}_{p,q}^{\delta,k}(\tau,\eta)$. Then $\phi(z)$ is convex of order ρ ($0 \le p < 1$) in $|z| < r_3$, where

$$R_{3} = inf \left(\frac{(1-p)v^{-1}[v]_{p,q}^{k} \ v \ (v-\eta)\{1+([v]_{p,q}-1)\ \tau\} [1+(v-1)\tau]^{\delta}}{(v-p)\ (1-\eta)} \right)^{1/(v-1)} \ (v \ge 2) \quad (6.9)$$

Proof: It is enough to show that

$$\left| \frac{z\varphi''(z)}{\varphi'(z)} \right| \le 1 - p$$
, for $|z| < R_3$.

Therefore.

$$\left|\frac{z\varphi''(z)}{\varphi'(z)}\right| = \left|\frac{-\sum_{\nu=2}^{\infty} v(\nu-1) a_n z^{\nu-1}}{1-\sum_{\nu=2}^{\infty} vc_\nu z^{\nu-1}}\right| \leq \frac{\sum_{\nu=2}^{\infty} v(\nu-1) c_\nu |z|^{\nu-1}}{1-\sum_{\nu=2}^{\infty} vc_\nu |z|^{\nu-1}} \ .$$

The last inequality must bounded by 1- p if

$$\sum_{\nu=2}^{\infty} \frac{v(\nu-\nu)}{1-\nu} c_{\nu} |\mathbf{z}|^{\nu-1} \le 1.$$
 (6.10)

then, by theorem (2.1), is true if

$$\frac{v(v-p)}{1-p} \big| z \big|^{v-1} \; \le \; \frac{1}{c_v} \le \frac{[v] \frac{k}{p,q} \; \; v \; (v-\eta) \left\{ 1 + \left([v] \, _{p,q} - 1 \right) \tau \right\} [1 + (v-1)\tau \,]^{\delta}}{1-\eta}$$

which implies that

$$|\mathbf{z}| \le \left(\frac{(1-p)v^{-1}[v]_{p,q}^{k} \quad (v-\eta)\{1+([v]_{p,q}-1)\tau\}[1+(v-1)\tau]^{\delta}}{(v-p)(1-\eta)}\right)^{1/(v-1)}, v \ge 2.$$
 (6.11)

Thus we get the result

7. Integral means inequality

For any two functions φ and ψ analytic in ∇ , φ is said to be subordinate to ψ in ∇ ,

written $\varphi(z) \prec \psi(z)$, if there exists a Schwarz function $\omega(z)$, analytic in \mho , with

$$\omega(0) = 0$$
 and $|\omega(z)| < 1$ for all $z \in \mathcal{V}$.

Such that $\varphi(z) = \psi(\omega(z))$ for each $z \in \mathcal{V}$. Moreover, if the function ψ is univalent in ψ , and we get the following equivalence [18]:

$$\varphi(z) \prec \psi(z) \Leftrightarrow \varphi(0) = \psi(0) \text{ and } \varphi(0) \subset \psi(\Omega).$$

Orderly to proof integration means inequality of the functions pertinence to the class $\wp_{p,q}^{\delta,k}(\tau,\eta)$ we want the subordination solution for to Littlewood [14].

Lemma (7.1): Whether the functions φ while ψ are analytic in ∇ together $\varphi(z) < \psi(z)$, another for $\gamma > 0$ also

$$Z = r e^{i\theta}$$
 where $0 < r < 1$

$$\int_{0}^{2\pi} |\varphi(z)|^{\gamma} d\theta \le \int_{0}^{2\pi} |\psi(z)|^{\gamma} d\theta.$$
 (7.1)

Implementation Theorem (2.1) by the external function also Lemma (7.1). We realize this theory

Theorem (7.2): Suppose $\{[v]_{p,q}^k \ v \ (v-\eta)\{1+([v]_{p,q}-1)\tau\}[1+(v-1)\tau]^\delta\}_{v=2}^\infty$

be a non decreasing series . If $\phi \in \wp_{p,q}^{\delta,k}(\tau,\eta)$, then

$$\int_0^{2\pi} |\phi(\mathbf{r} \, e^{i\theta})|^{\gamma} d\theta \leq \int_0^{2\pi} |\phi_{\star}(\mathbf{r} \, e^{i\theta})|^{\gamma} d\theta \, . \, (0 < r < 1; \gamma > 0) \tag{7.2}$$

Wherever

$$\varphi_{\star}(z) = z - \frac{1-\eta}{[2]_{n,\sigma}^{K} 2(2-\eta) \{1 + ([2]_{n,\sigma} - 1) \tau\} (1+\tau)^{\delta}} z^{2}$$
(7.3)

Proof. Let the function $\phi(z)$, defined by (1,10), be in the class $\mathscr{D}_{p,q}^{\delta,k}(\tau,\eta)$. Then we want to show that $\int_0^{2\pi} |1-t|^2 dt$

$$\sum_{v=2}^{\infty} c_v z^{v-1} |^{\gamma} d\theta \le \int_0^{2\pi} \left| 1 - \frac{1-\eta}{[2]_{p,q}^{\kappa} 2(2-\eta) \{1 + ([2]_{p,q} - 1)\tau\} (1+\tau)^{\delta}} z \right|^{\gamma} d\theta \tag{7.4}$$

by stratify Lemma (7.1), it enough to proof this is

$$1 - \sum_{\nu=2}^{\infty} z^{\nu-1} < 1 - \frac{1-\eta}{[2]_{p,q}^{\kappa} 2(2-\eta)\{1+([2]_{p,q}-1)\tau\} (1+\tau)^{\delta}} z.$$
 (7.5)

If the subordination (7.5) holds true, then there exists an analytic function ω with $\omega(0) = 0$ and

 $|\omega(z)| < 1$ such that

$$1 - \sum_{\nu=2}^{\infty} z^{\nu-1} < 1 - \frac{1-\eta}{[2]_{n,q}^{\kappa} 2(2-\eta) \{1 + ([2]_{n,q}-1)\tau\} (1+\tau)^{\delta}} \omega(z).$$
 (7.6)

By Theorem 2.1, we have

$$\left| \omega(z) \right| = \left| \sum_{v=2}^{\infty} \frac{\left[2\right]_{p,q}^{\kappa} 2 (2-\eta) \left\{ 1 + \left(\left[2l \right]_{p,q} - 1 \right) \tau \right\} (1+\tau)^{\delta}}{1-\eta} c_{v} z^{v-1} \right|$$

$$\leq \ |z| \ \sum_{v=2}^{\infty} \frac{ [v]_{p,q}^{k} \ v \, (v-\eta) \, \{ \, {\scriptstyle 1} + \, (\, [v]_{p,q-1} \,) \, \tau \} \, [{\scriptstyle 1} + \, (v-1) \, \tau]^{\delta} }{1-\eta} \, \, c_{_{\boldsymbol{V}}} \, \leq \ |z| \, < 1$$

That is completes the proof of theorem.

References

- [1] T.Al-Hawary, F.Yousef, B.A.Frasin, Subclasses of analytic function of complex order involving Jaksons(p,q)-derivative, Proceeings of International Conference on Fractional Differentiation and its Applications (ICFDA). Available at SSRN 3289803 (2018)
- [2] T.Al-Hawary, B.A. Frasin, F. Yousef, Coefficients estimates for certain classes of analytic functions of complex order, Afrika Matematika 29(7-8) (2018) 1265-1271.
- [3] F. M. AI-Oboudi, On univalent function defined by a generalized Salagean oprator, International Journal of Mathematics and Mathematical Sciences (2004)1429-1436.
- [4] S. Altinkaya, S. Kanas, S. Yalcin Subclass of K-uniformly starlike functions defined by symmetric q-derivative operator, UKrains Kyi Matematychnyi Zhurnal, 70(11) (2018) 1499-1510.
- [5] A.A. Amuorah, F. Yousef, Some properties of a class of analytic functions involving anew generalized differential operator, Boletim da Sociedade Paranaense de Matematica (2018), In press.

- [6] A.A. Amuorah, F. Yousef, T. Al-Hawary, M. Darus, On a class of pyalent non-Bazilevic functions of order $\mu + i\beta$, International Journal of Mathematical Analysis 10(15) (2016) 701-710.
- [7] M.K. Aouf, H.M. Srivastava, Some families of starlike functions with negative coefficients, Journal of mathematical analysis and applications 203(3) (1996) 762-790.
- [8] A. Aral, V. Gupta, R,P, Agarwal, Applications of q-calculus in operator theory, Springer, New York, 2013.
- [9] B.A. Frasin, G.Murugusundaramoorthy, A subordination results for a class of analytic functions defined by qdifferential operator, Submitted.
- [10] B.A. Frasin, T Al-Hawary, F. Yousef, Necessary and sufficient for hypergeometric functions to be in a subclass of analytic functions, Afrika Matematika (2018) 1-8.
- [11] S, Araci, U. Duran, M. Acikgoz and H. M. Sriastava, A certain (p,q)-derivative operator and associated divided differences, J. Inequal. Appl., (2016):301.
- [12] F.H. Jasckson, on q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh 46 (1908) 253-281.
- [13] S Kanas, D. Raducanu, Some class of analytic functions related to conic domains, Mathematica solvaca 64(5) (2014) 1183-1196.
- [14] J.E. Littlewood, On inequalities in theory of functions, Proceedings of the London Mathematical Society 23 (1925) 481-519...
- [15] Z.Karahuseyin, S. Altinkaya, and S. Yalcin, On $H_3(1)$ Hankel determinant for univalent functions defined by TJMM 9 (2017), No. 1, 25-33.
- [16] G. Salagean, Subclasses of univalent functions, in "Complex Analysis: Fifth Romanian-Finnish Seminar", Lecture Notes in Mathematics. Springer, Berlin, Heidelberg 1013(1983) 362-372.
- [17] K.Vijaya,G, Mugusundaramoorthy, S,Yalcin, Certain class of analytic functions involving Salagean type qdefference operator, Konuralp Journal of Mathematics 6(2)(2018) 264-271.
- [18] F. Yousef, A.A. Amourah, M. Darus, Differential sandwich theorems for p-valent functions associated with a certain generalized differential operator and integral operator, Italian Journal of Pure and Applied Mathematics 36 (2016) 543-556.
- [19] H.M. Srivastava, Some generalizations and basic (or q-) extensions of the Bernoulli, Euler and Genocchi polynomiaAppl. Math. Inf. Sci5(34) (1975),109-116.