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A B S T R A C T 

______________________________________________________________________________ 

Transportation polytopes of non- negative m   n matrices compose of two vectors: a 
and b which row sums are equal to  fixed  constant and column sums are equal to 
different constant. The transportation polytopes are denoted by T (a, b) and these two 
vectors are called margins. An open problem that the 2-way transportation polytopes 
are Hamiltonian is proved in this paper with application of optimization. 
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1. Introduction 

Transportation polytopes are familiar object in operations research and mathematical programming [1, 6, and 16] 
and statisticians [4, 5] during the 1970’s and 1980’s the  research of the 2-way transportation polytopes was very 
active. The transportation polytopes and transporting problem has been studied by Yemelichev, Kovalev, and 
Kratsov [21] and Vlach’s survey [19].   
Classical   transportation   problems appear from the transporting goods such as the north -west corner rule which 
is a method that depend on finding the first reasonable solution of the transportation problem. One possible way to 
solve the transportation problem is that demand should be equal to the supply. In fact the main reason that led 
Kantorovich [11], Hitchcock [10], and T. C. Koopmans [17] to look at these problems is to improve the cost of 
transporting goods. Its considered the first linear programming problem that have been discussed  then not so long   
Birkhoff  [3], von Neumann  [20], and Motzkin [15] were the main contributors to this subject The prosperity of 
Aggregate algorithm such as Hungarian method [12,18] depends on the substantial Aggregate structure of the 
convex polyhedral that illustrate the possible solutions.  

https://mathscinet.ams.org/msc/msc2010.html?t=57M15&btn=Current
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Transportation polytopes have a relationship with complete bipartite graph. let      be complete bipartite graph 
with two sets of vertices    and     It  can be considered that    is the supply and    is the demand where      is an 

edge connecting between a vertex in     to vertex in     in       

2. Basic concepts 

Definition (1), [9] 

A graph is a set of point or vertices and set of lines or edges G = (V, E) where V (G) is the set of vertices and E (G) is 
the set of edges. Each vertex in the graph is connected to each other through an edge as shown in fig 1. 
 

 
 

Figure 1. A graph G 

Definition (2), [9] 

The graph      is the complete bipartite graph consisting of two sets     = {  , . . . ,  } and      {  , . . . ,  } and 

having an edge connecting every vertex in    to every vertex in      as shown in fig 2. 
 
 
 

 
 

Figure 2. Complete bipartite graph 
 
 
Definition (3) [9] 

A closed walk of length at least 3 is called a cycle such that no repeated edges exist and the only repeated vertex is  , 
such that    =   . Hamiltonian cycle is a cycle containing every vertex in the graph. A graph G = (V, E) is said to be 
Hamiltonian if it contains a Hamiltonian cycle as shown in fig 3. 
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Figure 3.  Hamiltonian graph 
 
Definition (4), [9] 
 A graph G(V, E) is graph  consisting of set of vertices V(G), which are connected to each other by a set of edges E(G), 
all edges are directed from one vertex to another such graph is called directed graph. 
 

 
 

Figure 4. Directed graph 
Definition (5), [9] 

A graph with no cycles is called acyclic as shown in fig 5. 
 

 
 

Figure 5. Cyclic graph 
Definition (6), [9] 
Let G = (V, E) be acyclic graph. If G has more than one component, then G is called a forest.other wise is called a tree 
as shown in fig 6. 
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Figure 6. Forest graph 
 
 
Definition (7), [9] 

Let G = (V, E) be a graph. If H = (Vˋ, Eˋ) is acyclic subgraph of G such that V = Vˋ then H is called a spanning forest of G. 
If H has exactly one component, then H is called a spanning tree. 
 
 
Definition (8), [13] 

Given two vectors of positive entries a = (     . . . ,   ) and b = (      . . . ,   ) whose coordinates sum to a fixed number, 
the transportation polytope denoted by T (a, b), is the set of all m   n non-negative matrices in which row i has sum 
   and column j has sum   .  We call T (a, b) transportation polytope of order m   n. 

 

Example 1: Let a =         and b =           the transportation polytopes has the vertices.  
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Definition (9), [13]  

The auxiliary graph is subgraph of      with edge set {     |m (i, j) > 0}.where m is a vertex of T (a, b) and m (i, j) is 

the number of units from the ith row to the jth column.  
 
Example 2: using     in example 1 the auxiliary graph is  
 
E (  ) = {   ,   ,   ,   ,   } 
 
Then the auxiliary graph is       
 

5 

5 

1 
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Figure 7. Auxiliary graph 
 
 
Now an open problem is proved about the properties of transportation   polytope that given as a theorem  
 
 Theorem  

The graph formed by the vertices and edges of any 2_way transportation polytope is Hamiltonian. If    , where   
and   denoted the number of rows and columns for the transportation polytopes. 

Let M = (   ) be a matrix of size        that belong to the transportation polytope T (a, b). Create an auxiliary 

graph with       node and edges  {(i , j) :     > 0 }, where the matrix M is a vertex of the transportation polytope 

T(a ,b), if and only if the auxiliary graph forms a spanning forest  in the complete bipartite graph      . From the 

definition of bipartite graph every cycle in bipartite graph is even and alternates between vertices from    and    . 
Since Hamilton cycle uses all the vertices in    and      then m=|  |=|  |=n. suppose that      has partite sets     
={   . . .,  } and    ={  , . . . ,   },  since       is an edge of      for every  1≤ i , j ≤ n then    ,   ,   ,   ,. . . ,   ,    is a 

Hamiltonian cycle . 

That is 2-way transportation polytope is Hamiltonian. 

                                                                              T (a, b) 

                                                                                              From a and b we get 

 

                                                                                   Matrix M   

               Find the aux graph with       vertex  

                                                                                   

                                                                                    Aux graph 

                                                                                                          Vertices of aux is the vertices of       

 

                                                                    Complete bipartite graph  

 

 

                                                                                 Hamiltonian  

 

Example 3: Let a, b = (1, 1, 2) then the T (a, b) has the vertices. 
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     {    ,     ,    } ,      {    ,     ,     } ,      {    ,     ,          } 

 

    {    ,     ,          } ,     {    ,     ,          } 

 

     {    ,     ,          } ,       {    ,     ,          }. 

T is spanning forest  

 

Figure 8. A spanning forest 

 

3. Application [1] 

Now an application is given to consolation the concept of the proven theorem.  

1-The optimization program 

The optimization program is used in heavy load situations. If the number of jobs is low, there is no need for the 
optimization program or its use at a certain time point, the stacker crane control program must determine which of 
the jobs will be determined later. In addition, the stacker crane may either perform some jobs or be in a state of 
stillness. If the stacker crane is idle, the generated job will be executed immediately. The administration will not 
accept waiting for stacker crane times. If there are other jobs, the new generated job will be placed in a list of all 
jobs.an optimization process is called minimizing the unloaded moves between them.  What should not happen is 
that the stacker crane is not active because the optimization process has not yet ended so a three-phase process has 
been implemented which can be interrupted during implementation and still ensures a possible solution.  
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2-Optimization process 

Suppose a sequence S = {           of n jobs that must be performed has been obtained and the job that is 
performed is   and the newly created job is      

Suppose       S. 

Phase 1: Run a simple insertion heuristic 

Job     is inserted between k and k + 1, where 

K=           = {       
           

         
 } 

(Assume that         = 0 ∀ i = 1, ..., n). 

Here we just scan through the current sequence S and try to insert job      as 

Cheaply as possible. 

Phase 2: Run a more sophisticated heuristic 

 The possibility to use any of the available heuristics for the ATSP, 

For example, the farthest insertion heuristic.  

Phase 3: Solve the problem to optimality 

This is done using the branch&bound code of Fischetti and Toth [14] that solves the instances arising here in a 
reasonable amount of time. 

3-Computational results 

The optimization process was integrated into a simulation model and the results obtained from the simulation 
model were used to compare curriculum used with and the old strategy  that is when the stacker crane is in idle 
mode because the process of optimization is not over yet which leads to delayed performance of the job In addition, 
there is no restricted amount of computing time for optimization process in the simulation model. All AHHP 
problems have been resolved with the third phase of optimization process. The following table contains data from 
the actual life of the week that was used to verify the efficiency of the simulation model. 

 The Key of the Table is 

J: Number of transportation tasks (jobs). 

K: Unloaded travel time of the stacker crane with the old priority based 

Rule (in seconds). 

S: Unloaded travel time of the stacker crane with the optimization process 

(In seconds). 

I. %: Improvement in %, calculated by  
(   – )      –  

    –  
 . 100 

M: Maximal number of jobs at the same time. 

A: Average number of jobs at the same time. 
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Table1: Minimizing the unloaded travel times 

 

 

 

 

 

 

 

Analysis of the data showed that the mentioned week had a low production volume, adding that the stacker crane 

was not subjected to any major faults and therefore the results in the improvements of the unloaded movements 

shown in the Column (I %) range from 3% to 6% were disappointing in column ( ) There were only two jobs at the 

same time so there was no need for optimize. 

 

                                               Transportation tasks 

 

                                      Possible unloaded moves            actual position of the stacker crane  

Figure 8. Stacker crane moves 

4. Conclusion  

According to the important role of the transportation polytope in the real life, therefore a lot of open problem 
appear one of them is to prove that the 2_way transportation polytope is Hamiltonian, which is taken in this paper 
also the application that consolation its important is given. 
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