Page 72-79

Abdul Rahman.H\Enaam.F

On Maps Of Period 2 On Prime Near – Rings Abdul Rahman H. Majeed Enaam F. Adhab Department of Mathematics, college of science, University of Baghdad . Baghdad, Iraq

 Recived : 30\3\2015
 Revised: 7\6\2015
 Accepted :21\6\2015

Abstract

In this paper , we introduce the notion of maps of period 2 on near-ring N, the main our purpose is to study and investigate the existence and properties of mapping such as homomorphisms, anti - homomorphisms, α -derivations and α -centeralizers when they are of period 2 on near – rings.

Mathematics Subject Classification: 16W25, 16Y30.

Keywords: prime near-ring, semiprime near-ring, mapping of period 2,

homomorphisms, anti –homomorphisms, α -derivations and α -centeralizers.

1.Introduction

A right near – ring (resp.left near ring) is a set N together with two binary operations (+) and (.) such that (i)(N,+) is a group (not necessarily abelian).(ii)(N,.) is a semi group.(iii)For all a,b,c \in N ; we have (a+b).c = a.c + b.c (resp. a.(b+c) = a.b + b.c . Through this paper, N will be a zero symmetric left near – ring (i.e., a left near-ring N satisfying the property 0.x=0 for all $x \in N$). we will denote the product of any two elements x and y in N ,i.e.; x.y by xy . The symbol Z will denote the multiplicative centre of N, that is $Z=\{x \in N \mid xy = yx \text{ for all } y \in N\}$. N is called a prime near-ring if $xNy = \{0\}$ implies either x = 0 or y = 0. It is called semiprime if $xNx=\{0\}$ implies x=0. Near-ring N is called n-torsion free if nx=0 implies x=0. A nonempty subset U of N is called semigroup left ideal (resp. semigroup right ideal) if $NU\subseteq U$ (resp.UN $\subseteq U$)and if U is both a semigroup left ideal and a semigroup right ideal, it will be called a semigroup ideal. A normal subgroup (I,+) of (N, +) is called a right ideal (resp. left ideal) of N if $(x + i)y - xy \in I$ for all $x,y \in N$ and $i \in I$ (resp. $xi \in I$ for all $i\in I$ and $x\in N$). I is called ideal of N if it is both a left ideal as well as a right ideal of N. For terminologies concerning near-rings , we refer to Pilz [7].

The concept of mapping of period 2 has already introduced in ring by Bell . H.E and Daif . M.N in [5], in the present paper, motivated by this concept we define a mapping of period 2 on near-ring . A mapping of the near ring N into itself is of period 2 on N if $f^2(x) = x$ for all $x \in N$. Let U be a non empty subset of N, a mapping $f:N \to N$ is of period 2 on U if $f^2(x) = x$ for all $x \in U$.

Abdul Rahman.H\Enaam.F

An additive mapping $f:N \to N$ is said to be homomorphism(anti-homomorphism) if f(xy)=f(x)f(y) for all $x,y \in N$ (f(xy) = f(y)f(x) for all $x,y \in N$).Let U be a non empty subset of N, an additive mapping $f:N \to N$ is said to be homomorphism(antihomomorphism) on U, if f(xy)=f(x)f(y) for all $x,y \in U$ (f(xy) = f(y)f(x) for all $x,y \in$ U). Anti-homomorphism of period 2 in ring theory is called an involution and the ring admitting an involution * is called ring with involution * or * ring (see [2],[3],[5] ,[6] for reference where further references can be found). Note that when a homomorphism (anti-homomorphism) of period 2 then f is bijective .

Let α be an automorphism of N. An additive endomorphism $d: N \longrightarrow N$ is said to be an α -derivation of N if $d(xy) = \alpha(x)d(y) + d(x)y$, or equivalently, as noted in([8], proposition 1) that $d(xy) = d(x)y + \alpha(x)d(y)$ for all $x, y \in N$.

The concept of α –centralizer has been studied in rings by Ali .S in [1] and Ashraf .M in [3] . In the present paper , motivated by this concept ,we define α –centralizer in near-rings and study some properties involved there. Let α be an automorphism of N . An additive endomorphism d :N \rightarrow N is said to be left α –centralizer (right α – centralizer) of N if $d(xy) = d(x) \alpha(y), (d(xy) = \alpha(x)d(y))$ for all x,y \in N.

Many authors studied the relationship between structure of near $- \operatorname{ring} N$ and the behaviour of special mapping on N(see [2],[4],[6],[8] for reference where further references can be found). In the year 2014 Bell . H.E and Daif . M.N in [5] studied the existence of derivations of period 2 on prime and semiprime rings . This research has been motivated by their works , we have extended their results in the setting of mappings of period 2 on a prime and semiprime near-ring .

3. Preliminaries.

The following lemmas are essential for developing the proofs of our main results.

Lemma 2.1 [8] Let d be an α -derivation on a near-ring N. Then (i) $(\alpha(x)d(y) + d(x)y)z = \alpha(x)d(y) z + d(x)y z$; (ii) $(d(x)y + \alpha(x)d(y))z = d(x)y z + \alpha(x)d(y) z$. for all x, y, $z \in N$.

Lemma 2.2 [8] Let d be an α -derivation of a prime near-ring N and a ϵ N such that ad(x) = 0 (or d(x)a = 0) for all $x \in N$. Then a=0 or d=0.

Lemma 2.3 [8] If U is a non-zero semigroup right ideal (resp, semigroup left ideal) and x is an element of N such that $Ux = \{0\}$ (resp, $xU = \{0\}$) then x = 0. Lemma 2.4 Let N be left near – ring , d is α -derivation of N then 2 (d(x)y + α (x)d(y))z = 2d(x)yz + 2 α (x)d(y)z Proof . By Lemma 2.1 (ii) we have 2(d(x)y + α (x)d(y))z = 2(d(x)yz + α (x)d(y)z) = d(x)yz + α (x)d(y)z + d(x)yz + α (x)d(y)z = d(x)yz + (α (x)d(y) + d(x)y)z + α (x)d(y)z = d(x)yz + (α (x)d(y) + d(x)y)z + α (x)d(y)z = d(x)yz + (d(x)y + α (x)d(y)z + α (x)d(y)z = d(x)yz + d(x)yz + α (x)d(y)z + α (x)d(y)z = 2d(x)yz + 2 α (x)d(y)z .

Abdul Rahman.H\Enaam.F

3. Main Result.

In this section we study homomorphisms, anti-homomorphisms, α -derivations and α -centralizers when they are of period 2.

Theorem 3.1. Let N be prime near – ring, U is a non-zero semigroup ideal of N, if U admits an endomorphism f, such that f is of period 2 and f(xy) = f(yx) for all x, $y \in U$, $f(U) \subseteq U$, then N is commutative ring.

Proof. $xy = f^2(xy) = f(f(xy)) = f(f(yx)) = f(f(y)f(x)) = f^2(y)f^2(x) = yx$ for all x, $y \in U$. For all x, $y \in U$ and r,s $\in N$ we have xy (rs-sr) = xyrs – xysr = yxrs – ysxr = xrys – xrys = 0, this implies Uy(rs-sr) = {0}, by Lemma 2.3 we get y(rs-sr) = 0. i.e.; U(rs-sr) = 0, using Lemma 2.3 again we conclude that rs = sr for all r,s $\in N$. So we get (x+y)z = z(x+y) = zx + zy = xz + yz for all x, $y, z \in N$ (1) Now let x, y, $z \in N$, by applying (1) we obtain

(z+z)(x+y) = z(x+y)+z(x+y)

= zx + zy + zx + zy for all x , y ,z \in N.

On the other hand

(z+z)(x+y) = (z+z)x + (z+z)y

= zx + zx + zy + zy for all x, y, z \in N.

By comparing both expressions, we obtain

zx + zy = zy + zx for all x, y, $z \in N$.

This is reduced to z(x + y - x - y) = 0 for all x, y, $z \in N$, it is mean that N(x + y - x - y) = 0, Lemma 2.3 implies that x + y - x - y = 0 for all x, $y \in N$, thus we conclude that N is a commutative ring.

Corollary 3.1. Let N be prime near – ring ,if N admits an endomorphism f, such that f is of period 2 and $f(x \ y) = f(y \ x)$ for all x , $y \in N$, then N is commutative ring .

In the year 2013 it was proved by Boua and Raji [6, theorem 1] that if a prime near ring N admits an involution then N is a ring, we have extended this result in the setting of an anti-homomorphism of period 2(involution) on a semiprime near-ring.

Theorem(2.3). Let N be a near - ring , U is a non-zero semigroup ideal of N, if N admits an anti-homomrphism f, such that f is of period 2 on U then the multiplicative law of N is right distributive .

Proof. $(x + y)z = f^{2}(x + y)f^{2}(z) = f(f(x + y))f(f(z)) = f(f(z)f(x + y)) = f(f(z)(f(x) + f(y))) = f(f(z)f(x) + f(z)f(y)) = f(f(z)f(x)) + f(f(z)f(y)) = (f(f(xz)) + f(f(yz)) = f^{2}(xz) + f^{2}(yz) = xz + yz.$ Thus we conclude that (x + y)z = xz + yz for all x,y,z \in U (2) Replacing x and y by xt and xr respectively in (2) we obtain (xt + xr)z = xtz + xrz for all x,z \in U and t, r \in N, which can be written as x(t + r)z = x(tz + rz) for all x, z \in U, t, r \in N, that is mean x((t + r)z - (tz + rz)) = 0 for all x, z \in U, t, r \in N, hence U((t + r)z - (tz + rz)) = 0, then by Lemma 2.3 we have (t + r)z = (tz + rz) for all $z \in$ U, t, r \in N. (3)

Abdul Rahm	an.H\Enaam.F
Now replacing z by kz, where $k \in N$, in (3) we obtain	
$(t + r)kz = tkz + rkz$ for all $z \in U$, t, r, $k \in N$.	(4)
By (3)we have $(tkz + rkz) = (tk + rk)z$ for all $z \in U$, t, r, $k \in N$, t	hus relation (4)
becomes	
$(t + r)kz = (tk + rk)z$ for all $z \in U$, t, r, $k \in N$.	(5)
On the other hand, by (2) we have for all $z \in U$, t , r , $k \in N$	
((t+r)k - (tk + rk))z = (t+r)kz + (-(tk + rk))z.	(6)
Then by combining (5) and (6) ,we find that $((t + r)k - (tk + rk))z = (tk + rk)z$	tk + rk)z + (-(tk))z
(t + rk) = ((tk + rk) + (-(tk + rk))) = 0.z = 0, that is mean ((t + r)k - t) = 0.z = 0, that is mean (t + r)k = 0.z = 0, that is mean (t + r)k = 0.z = 0, that is mean (t + r)k = 0.z = 0, that is mean (t + r)k = 0.z = 0, that is mean (t + r)k = 0.z = 0, that is mean (t + r)k = 0.z = 0, that is mean (t + r)k = 0.z = 0, that is mean (t + r)k = 0.z = 0, that is mean (t + r)k = 0.z = 0, that is mean (t + r)k = 0.z = 0, that is mean (t + r)k = 0.z = 0.z = 0, that is mean (t + r)k = 0.z = 0.z = 0, that is mean (t + r)k = 0.z = 0.z = 0, that is mean (t + r)k = 0.z = 0.z = 0, that is mean (t + r)k = 0.z = 0.z = 0, that is mean (t + r)k = 0.z = 0.z = 0, that is mean (t + r)k = 0.z = 0.z = 0, that is mean (t + r)k = 0.z = 0.z = 0, that is mean (t + r)k = 0.z = 0.z = 0, that is mean (t + r)k = 0.z = 0.z = 0.z = 0, that is mean (t + r)k = 0.z = 0.z = 0.z = 0, that is mean (t + r)k = 0.z = 0.	(tk + rk))U = 0
for all t, r , k \in N, by Lemma 2.3 we get	
$(t + r)k = tk + rk$ for all t, r, $k \in N$.	(7)
Hence, the multiplicative law of N is right distributive.	
Theorem 3.3. Let N be semiprime near - ring, U is a non-zero semig	roup ideal of N,
if N admits an anti-homomrphism f, such that f is of period 2 on U t	hen N is a ring.
Proof . from (7) we have	
(z + z)(x + y) = z(x + y) + z(x + y) = zx + zy + zx + zy for all x , y ,z	εN
On the other hand	

(z + z)(x + y) = (z + z)x + (z + z)y = zx + zx + zy + zy for all x, y, z \in N.

By comparing both expressions, we obtain zx + zy = zy + zx for all x, y, $z \in N$ This is reduced to z(x + y - x - y) = 0 for all x, y, $z \in N$, since N is left near ring, then we get $(x + y - x - y) N(x + y - x - y) = \{0\}$, but N is semiprime near-ring so we conclude that x + y - x - y = 0 for all x, $y \in N$, then N is a ring.

Corollary 3.2. Let N be semiprime (prime) near - ring, if N admits an anti-homomorphism f, such that f is of period 2 on N then N is a ring .

Theorem 3.4. Let N be a 2-torsion free prime left near- ring, U is a nonzero semi group left ideal of N then N admits no nonzero α -derivation d such that $d\alpha = \alpha d$ and d is of period 2 on U.

Proof. Suppose that there exist nonzero α -derivation d on N such that $d^2(x) = x$ for all $x \in U$. For $x, y \in U$, $d(x)y \in U$ and the condition $d(x)y = d^2(d(x)y) = d(d^2(x)y + \alpha(d(x))d(y)) = d(xy + d(\alpha(x))d(y)) = d(xy) + \alpha(d(\alpha(x))d(y) + \alpha^2(\alpha(x))d(y) + \alpha(d(\alpha(x))d^2(y) = d(x)y + 2\alpha(x)d(y) + \alpha^2(d(x))y = \alpha(x)d(y) + \alpha^2(d(x))y = 0$ for all $x, y \in U$. (8) $xy = d^2(xy) = d(d(xy)) = d(d(x)y + \alpha(x)d(y)) = d^2(x)y + \alpha(d(x))d(y) + d(\alpha(x))d(y) + \alpha^2(x)d^2(y) = xy + 2\alpha(d(x))d(y) + \alpha^2(x)y$, thus we get $2\alpha(d(x))d(y) + \alpha^2(x)y = 0$ for all $x, y \in U$. (9) Replacing x by rx in(9), where $r \in N$, and using Lemma 2.4 we get $0 = 2\alpha(d(rx))d(y) + \alpha^2(r)\alpha^2(x)y = 2d(\alpha(r))d(y) + \alpha^2(r)\alpha^2(x)y = 2d(\alpha(r))\alpha(x)d(y) + \alpha^2(r)\alpha^2(x)y$

 $= 2d(\alpha(r))\alpha(x)d(y) + \alpha^2(r) (2d(\alpha(x))d(y) + \alpha^2(x)y).$

Abdul Rahman.H\Enaam.F

Using (9) in previous relation implies $2d(\alpha(r))\alpha(x)d(y) = 0$ for all x, y \in U and r \in N.

(10)

substituting yr for r in (10), and using Lemma 2.4 we get

 $0 = 2d(\alpha(yr)\alpha(x)d(y) = 2d(\alpha(y)\alpha(r))\alpha(x)d(y) = 2d(\alpha(y))\alpha(r)\alpha(x)d(y) + 2\alpha^2(y)d(\alpha(r))\alpha(x)d(y).$ Using (10) again implies $2d(\alpha(y))\alpha(r)\alpha(x)d(y) = 0$, since α is an automorphism, then we get $2d(\alpha(y))N\alpha(x)d(y) = 0$. 2-torsion freeness and primeness of N implies that either $d(\alpha(y)) = 0$ or $\alpha(x)d(y) = 0$ for all x, y \in U.

If $d(\alpha(y)) = 0$, i.e.; $\alpha(d(y)) = 0$ for all $y \in U$, since α is an automorphism then d(y) = 0 for all $y \in U$, hence d(ry) = 0 for all $y \in U$ and $r \in N$, i.e.; d(r)y = 0 for all $y \in U$ and $r \in N$, By Lemma 2.2 we conclude d = 0. So we get a contradiction. Now if $\alpha(x)d(y) = 0$ for all $x, y \in U$. By (8) we obtain $\alpha^2(d(x))y = 0$ for all $x, y \in U$, so we have $\alpha^2(d(x))ry = 0$ for all $x, y \in U$ and $r \in N$, that is $\alpha^2(d(x))N = 0$ and primness of N (similarly in the first case) implies either d = 0 or U = 0, so we have a contradiction.

Corollary 3.3. A 2- torsion free prime near – ring N, admits no α -derivation such that $d\alpha = \alpha d$ and of period 2 on N.

Now we prove some results about that what happens if we take α is an antihomomorphism instead of automorphism in definitions of α -derivation and left α centralizer.

Theorem 3.5. Let N be a prime near-ring. If N admits an additive endomorphism d :N \rightarrow N such that $d(xy) = d(x)y + \alpha(x)d(y)$ for all x, $y \in N$ where α is an anti-homomorphism of period 2 then N is a commutative ring.

Proof. Since α is an anti-homomorphism of period 2, by Corollary 3.2 we conclude that N is a ring.

For all x , y , $z \in N$, we have

 $d((xy)z) = d(xy)z + \alpha(xy)d(z) = (d(x)y + \alpha(x)d(y))z + \alpha(y)\alpha(x)d(z)$

On the other hand

 $\begin{aligned} d(x(yz)) &= d(x)yz + \alpha(x)d(yz) &= d(x)yz + \alpha(x)(d(y)z + \alpha(y)d(z)) &= d(x)yz + \\ \alpha(x)d(y)z + \alpha(x)\alpha(y)d(z), \text{ but } (d(x)y + \alpha(x)d(y))z &= d(x)yz + \alpha(x)d(yz), \text{ so we get } \\ \alpha(y)\alpha(x)d(z) &= \alpha(x)\alpha(y)d(z), \text{ that is mean}\\ \alpha(\alpha(y)\alpha(x)d(z)) &= \alpha(\alpha(x)\alpha(y)d(z)), \text{ we conclude } \\ \alpha(d(z))xy &= \alpha(d(z))yx, \end{aligned}$

replacing x by xt in previous relation and using it again we have $\alpha(d(z))xty = \alpha(d(z))xyt$, so we have $\alpha(d(z))x(ty - yt) = 0$, that is $\alpha(d(z))N(ty - yt) = \{0\}$, primness of N yields either $\alpha(d(z)) = 0$ or (ty - yt) = 0, since α is bijective then we have d = 0 so we get a contradiction and this implies that ty = yt for all x, $y \in N$. we conclude that N is a commutative ring.

Abdul Rahman.H\Enaam.F

Theorem 3.6. Let N be a prime near ring . Let f be a non-zero left α -centralizer , if f is of period 2 then α is of period 2.

Proof. For all x, $y \in N$, we have $f(x)y = f^2(f(x)y) = f(f(f(x)y)) = f(f^2(x)\alpha(y)) = f(x \alpha(y)) = f(x)\alpha^2(y)$, i.e.; $f(x)(y - \alpha^2(y)) = 0$ for all x, $y \in N$, replace x by tx, where t $\in N$, in previous relation we get $0 = f(tx)(y - \alpha^2(y)) = f(t)\alpha(x)(y - \alpha^2(y))$, since α is bijective we conclude that $f(t)N(y-\alpha^2(y)) = \{0\}$ for all t, $y \in N$, since $f \neq 0$, primness of N yields $y-\alpha^2(y) = 0$ for all $y \in N$, we conclude that α is of period 2.

The converse of the previous Theorem is not true in general, the following example shows that α is of period 2 but f is not of period 2.

Let S be a zero symmetric left near-ring . Suppose that

$$N = \left\{ \begin{pmatrix} 0 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad : \quad x, y, 0 \in S \right\}.$$

Define $\alpha : N \longrightarrow N$, such that $\alpha = I$, where I is the identity mapping on N and define a map $f : N \longrightarrow N$ as follows

$$f\begin{pmatrix} 0 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 & y \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

N is a zero symmetric left near-ring and f is an left α -centralizer of N, α is of period 2 but f is not of period 2

In the following theorem, we investigate commutativity of prime near ring admitting a map $f : N \longrightarrow N$ such that $f(xy)=f(x)\alpha(y)$ if we take α as an anti-homomorphism of period 2 of N.

Theorem 3.7. Let N be prime near-ring. If N admits non-zero additive mapping $f : N \rightarrow N$ such that $f(xy)=f(x)\alpha(y)$ for all x,y N, where α is an anti-homomorphism of period 2 on N, then N is a commutative ring.

Abdul Rahman.H\Enaam.F

Proof. Since α is an anti-homomorphism of period 2 then by Corollary 3.2 we conclude that N is a ring.

 $f(xy)=f(x)\alpha(y)$ for all $x, y \in N$.

(11)

replace y by yt in (11), where t \in N, we get

 $f(xyt) = f(x)\alpha(yt) = f(x)\alpha(t)\alpha(y)$

On the other hand we have

 $\begin{aligned} f(xyt) &= f(x)\alpha(y)\alpha(t) = f(x)\alpha(y)\alpha(t), \text{ hence } f(x)\alpha(y)\alpha(t) = f(x)\alpha(t)\alpha(y) \text{ for all } x, y, t \in N. \text{ So} \\ \text{we get } f(x)(\alpha(y)\alpha(t) - \alpha(t)\alpha(y)) &= 0 \text{ for all } x, y, t \in N, \text{ since } \alpha \text{ is bijective then we can} \\ \text{replace } \alpha(y) \text{ by } r \text{ and } \alpha(t) \text{ by } s, \text{ where } r, s \in N. \text{ So we have} \\ f(x)(rs-sr) &= 0 \text{ for all } r, s \in N. \end{aligned}$

Replace x by xn, where n \in N, in (12) we get f(xn)(rs - sr) = 0, that is

 $f(x)\alpha(n)(rs - sr) = 0$, hence $f(x)N(rs - sr) = \{0\}$, since N is a prime and $f \neq 0$ then rs = sr for all r,s \in N.i.e.; N is commutative ring.

The following example shows that the primness of N is a necessary condition in the previous theorem

Let S be a zero symmetric left near-ring . Suppose that

$$N = \left\{ \begin{pmatrix} 0 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad : \ x, y, 0 \in S \right\}.$$

Define a map $\alpha : N \longrightarrow N$ as follows

$$\alpha \begin{pmatrix} 0 & x & y \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & y & x \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Define $f: N \rightarrow N$ such that

	/0	Х	У\		/0	0	У\
f	0	0	0	=	0	0	0
	/0	0	0/		/0	0	0/

N is a zero symmetric left near-ring and f is an additive mapping satisfying $f(xy)=f(x)\alpha(y)$ for all $x, y \in N$, α is an anti-homomorphism of period 2, however N is not a ring.

Abdul Rahman.H\Enaam.F

REFERENCE

[1] Ali ,S. and Haetinger, C " Jordan $\alpha\text{-centralizer}$ in rings and some applications" .Bol .soc ,Paran .Mat.V .26 (2013),71-80 .

[2] ArgaÇ.N. "On Prime And Semiprime Near-Rings With Derivations.Int .J. & Math .J.Sci.Vol.20, No. 4 (1997)737-740.

[3] Ashraf .M. "On Jordan α - *Centralizers in Semiprime Rings with Involution" Int.J.Contemp.Math.Sciences, Vol.7, No.23, 2012, 1103-1112.

[4] Bell , H.E . and mason. G. "on derivations in near-rings , near-rings and near fields". (G.Betsch , ed.) North – Holland , Amsterdam (1987), 31-35.

[5] Bell . H.E and Daif . M.N " On Maps of Period 2 on Prime and Semiprime Rings" Hindawi Publishing Corporation . V.2014 (2014),1-5 .

[6] Boua, A. and Raji, A. " 3-prime near-rings with involutions" International Journal of Mathematical Engineering and Science, V. 12(2013)12-16.

[7] Pilz ,G. "Near–Rings". North Holland Publishing Company Amsterdam .New York , Oxford. (1983) .

[8] Samman.M.S "Existence and Posner's Theorem For Derivations In Prime Near –Rings" .Acta Math . Univ .Comenianae . V . LXXVIII, (2009) , 37 -24 .

الدوال ذات الدورة 2 على الحلقات المقتربة

عبد الرحمن حميد مجيد انعام فرحان عذاب جامعة بغداد / كلية العلوم / قسم الرياضيات

المستخلص:

قدمنا في هذا البحث تعريفا للدالة ذات الدورة ۲ على الحلقات المقتربة وكان الغرض الرئيسي من هذا البحث هو دراسة وجود وخواص بعض الدوال مثل التشاكلات و تشاكلات ضد واشتقاقات α وتمركزات من النوع α عندما تكون هذه الدوال ذات الدورة ۲ على الحلقات المقتربة .