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1. Introduction

Many mathematical formulations of physical phenomena contain PIDEs, which can describe some physical
situations such as viscoelasticity, convection- diffusion problems, heat flow in materials with memory, nuclear
reactor dynamics, geophysics and plasma physics etc.

Consider the following PIDE with a weakly singular kernel is
U, t) + mu,(x, t) — b uy, (x,t) = fOtK(t —s)ulx,s)ds+ f(x,t) x€labl,t>0 (1)
where, K(t—s)=(t—s)"%, 0<a<l1

subject to the initial condition are :

Corresponding author Zahraa Adnan jameel

Email addresses: zahraad788@yahoo.com

Communicated by Alaa H. H. Al-Ka’bi


mailto:zahraad788@yahoo.com
mailto:ahameeda722@yahoo.com
mailto:zahraad788@yahoo.com

Hameeda 0. Al-Humedi \ Zahraa Adnan jameel JQCM -Vol.12 (1) 2020, pp Math9-20 10

u(x,0) = go(x), a<x<b (2)
and the boundary conditions are :

u(a,t) = fo(t), ulb,t) = fi(t), t=0 (3)
where gq(x), fo(t), f1(t) are known functions and f (x, t) is a smooth function.

The integral-differential equations (1) - (3) are primary importance in many physical systems especially those
involving fluid flow [4, 16].

T. Tang [18] and A.F. Soliman et al. [15] used finite difference scheme for PIDEs with a weakly singular kernel and
PIDEs respectively. A.F. Soliman et al [14] applied the numerical solution for solving PIDEs with sixth-degree B-
spline functions. H. Zhang et al [20] used quintic B-spline collocation method for finding a solution to fourth order
PIDEs with a weakly singular kernel. S.S. Siddiqi and S. Arshed [12] utilized cubic B-spline collocation method to
solve a convection-diffusion integro-differential equation with a weakly singular kernel. M. Gholamian and J.
Saberi-Nadjafi [5] and M. Gholamian et al. [6] used cubic B-splines collocation method for solving class of PIDEs and
the second order PIDEs with a weakly singular kernel respectively. R.C. Mittal and R.K. Jain [9] studied a collocation
method based on redefined cubic B-splines basis functions for solving convection-diffusion equation with Dirichlets
type boundary conditions. A. Ali et al [2] solved PIDEs with a weakly singular kernel by using a quartic B-spline
collocation method. S. S. Siddiqi and S. Arshed [13] solved the PIDEs by applying cubic B-spline collocation method.
H. Zhang and X. Han [21] used a quasi-wavelet method to find a solution of time dependent fractional partial
differential equation. F.I. Haq et al [7] got the numerical solution of modified regularized long wave (MRLW)
equation using quartic B-splines. H.O. Al-Humedi and A. Abd Al-wahed [3] resolved modified equal width (MEW) by
stratifying B-spline Galerkin methods with a change weight function. A. Abdul Wahid [1] employed sextic B-spline
Galerkin scheme with quintic weight function for solving Burgers equation.

In this paper, we will solve PIDEs by using a new numerical solution depending on the combination of the cubic B-
spline Galerkin method and a quadratic weight function.

2. Cubic B-Spline with a Quadratic Weight Function

The cubic B-spline C,,(x), (m = —1(1)N + 1), at the knots x,,, which form a basis over the solution domain [a, b], is

defined as [11]

(x = Xpm-2)? if x € [z, Xm—1],
h3 4 3h%(x — Xpm—1) + 3R(X — Xp_1)? = 3(X — Xpn—p)>, if X € [Xmo1, X,
Cn () =15 h® + 3K (tynsr — %) + A — 27 = 3Cmes — X%, 06X € Dy X ] )
(xm+2 - x)3' ifx € [xm+1'xm+2]'
0, otherwise.

The set of splines (C_;(x), Cy(x), ..., Cy(x), Cys1(x)) forms a basis for functions defined over [a, b]. Consider the

approximate solution Uy (x, t) to the exact solution U(x, t) is given by

N+1

Un(,8) = ) Clai(), 5)

i=-1

where ¢; are unknown time-dependent parameters to be determined from the boundary and weighted residual

conditions. We will use the following local coordinate transformation
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hm=x-x, 0<n<l, (6)

a cubic B-spline shape functions in terms of 1 over the element [x,,, x,,,1] that can be defined as

Cmo1 = (1 —M)%,
Cn=1+31-1m+31-n)?-31-71)?
l Cm+1 =1+ 30+ 312 =313,

Chtz = T]3,

(7)

All splines apart from C,,_4, Cpp, Cppiq and Gy, are zero over the element [x,,, x,,.1].The Variation of the function

U(n, t) over element [x,,, X,,+1] IS approximated by

m+2
U@L = ) Cae), ®
i=m-1
where 6,,_1(t), 0,,,(t), 01 and o,,4,(t) act as element parameters and B-splines C,,_1 (), C;n(1), Ciner(n) and
Cm+2(m) as element shape functions. The spline C,,(x) vanishes outside the interval [X,;,_;, X;n42]- So, the value of U
with its first and second derivatives U’, U" respectively at the knots, x,, which is determined in terms of element
parameters g, by
Up =Ulxy) = 0oy + 40, + Opge
Up =U'(xp) = %(Um—l — Oms1) (9)

U'm =U"(xp) = %(Um—l —20m + Omy1)

take the weight function, W quadratic B-spline that is defined as

(X2 — x)* — 3(xm41 — x)% + 3(xm — x)?, if x € [Xp—1, %],
B. (x) =1 (xm+2 - x)z - 3(xm+1 - x)2: ifx € [xm:xm+1]' [10)
" W2 (maz — %)%, if x € [Xm+1, Xma+2],
0, otherwise .

by applying Galerkin method on equation (1) with a weight function W, we get

f;W [ + MUy — b Uy — fOtK(t—s) u(x,s)ds — f(x,t)] dx =0 (11)

Jy W dn + 5 [T Wy dn =5 [ Wy, dn = [{Tf; W (€ = )™ u(n, s)ds = Wf(n,0)] dn = 0, (12)

m b
where, ;—/1 and ﬁ—ﬁ.
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By taking weight function quadratic B-spline and applying weak form we get:

1 . 1 . ;. ,
ey [y CiBydn o; + X0 A [J (A CB; + BC; B dn— BCiB(m) 15 10—
mi2 [t =) [} CiBjdn o,(s) ds — [, f(n,¢) B(n)dn = 0, (13)

write the equation (13) as in following matrix form:
X50)°+[2Q5+ B (S — Z§)] o® + [, (t —s)™X§ o°(s)ds — F; =0, (14)

where 6€ = (0;y—1,0m » Om+1, Om+2) are the element parameters which can be gotten with the element matrices

X{;, Y5, Z{; and Qf; are rectangular 3 X 4 write by the following integrals:

) L0 71 38 1 ) 3 5 -7 -1
ij=foCiBjdn=5 19 221 221 19|, nﬁzfoci’B;dnzg—z 2 2 =2
1 38 71 10 -1 -7 5 3

) (-6 -7 12 1 1 0 -10
Q5 = J, C{B,-dn=5[—13 —41 41 13], Z5=C/B 1} = [1 -1 -1 1].
-1 -12 7 6 0 -1 0 1

Where i and j take the value m-1, m, m+1, m+2 from element [Xp,, X 41]-
Assembling all contribution from all element yields the global system of equations.
Compensate the time point t = ¢, 4, get

Xijo (tpsr) + [2Qij + B (Yij — Zij)] 0(tnsr) + f(,tn+1(tn+1 —5)*X;jo(s)ds — F; =0, (15)

where ¢ = (0,,04, ...,0n)" is a global element.
Substituting the time derivatives ¢ by backward finite difference (15) get:

0 (tn+1)—0(tn)

0 (tns1) = At
The integral in above equation can be calculated as [12]
Xij [ (bpar — )0 ()ds = Xy [[™15™ 6(tnsy — 5)ds
= Xij Bfeo 0(tnogn) Ji) 7 5™ ds
= 2 Xy Do 0(tnoseen) [Ce+ DY = (10171, (16)

the matrix form (15) can be written as:

1—

n - n 4 * - -
Xy 20 4[5 0y + B(Yy — Ziy)] 0(tuss) + 2 Xy Bhng 0(tuogesn) [k + DI = ()] = F; =0 (17)

Write 0 (t,41) = 6™, 0 (t,) = o™ and 0(t,_xy1) = 0™ %1, then
2—
[X; +Ac{2Q; + B(Yy; — Zj)} o™t =X;; 0™ + Altjxij heo 0"TFL[(k + D — (k)] + At F (18)

or,
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(% + 8t {20y + B(Yy — Zy)} =2 x| o™ =Xy 0" + 2 Bh, 0" by + AL E, (19)

1 o
where,

by =[(k+ 1" = (K)™™] k=123,...

1
B = [ £t B
0

The system (19) is of (N+1) linear equation with (N+3) unknowns.

Applying the initial condition u(x, 0) = g,(x) to the equation (15) makes the matrix equation square, computing the
initial vector a° = [0¢, 0,07, ..., 09 |7 from the initial condition

u(x,0) = go(x) given (N+1) equation in (N+3) unknowns, to determine these unknown, the following relations at

the knots are used
Ux(o'o) = ux(XO' 0)'

U(xi' 0) = gO(xi)' i= 1(1)(N - 1)
U,(L,0) = uy(xy, 0).
We have the tridiagonal system of equation that can be solved by: R¢°=E

where,

SN
SN )
=)

at first reducing it to tridiagonal matrix by eliminating the first equation and then applying Thomas algorithm [10].

3. stability

To study the stability of the proposed method, we will apply the Von-Neumann method [8], of equation (19) and set
f(n,t) =0 [19]forany,0 <7n <1 to have:

(@1 — 01)omts + (@2—02)om™1 + (43 — @3) o™t 4+ (ga— 03) ol + (@5 —02)omis  + (@6 — 01)0mis =

1
G70m—2 tdgOm_1 +Go0oy t+ 4o 0'm+1 + dgOmsz + %7Um+3 + 0 n O ]+ by + 02 Yk=10m- Kb +
03 Xh=10m b + 03 X om i b + 02 Xioomist b + 01 Yie 1Um+k+1 by, (20)

suppose the following form that can present the solution of (20): ol = ynelfmh,

where, y represents the time dependence of the solution, and the exponential function shows that the spatial
dependence such that Sh represents the position along the grid and i is v—1. By substituting, g, into (20), we get:

Gy =Hy™ + RER y "D by (21)
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where,
G=(q:—0)e 2" + (g, —0)e™ " +(g3—03) +(Gs —03)e*" +(qs— 02)e* " + (g5 — 01)e>P"
H=(gre" +gge™™ +qo + qgoe + gge®" + q,e3F")

R = (Qle—ziﬁh + 0, e—iﬁhbj + 05 +o0; et + g,e?Bh 4o eSiBh)

and,

1 1 1 57 25 9 302 40 10
d=(S+2aa-208),  gp=(Z+Zaa-2ae8), gy =(2+2aa+2ap),
302 40 10 57 25 9 1 1 1

%4:(5—5Atl+7Atﬁ); G5 = (E_EAM_EAW)’ %éz(a_ﬁAtl—EAtﬁ),

=) 4= +-() o-GI) «-E5) «-E )

From equation (21) we get

H R _ R -
A I o ) A N e (22)
we apply
H R
Bi=-%-%
B =—%h , k=2,..n (23)

using (22) with (23) and applying them in equation (21) we have
V"= Biy" = Byy" 4+ Byyy + By =0 (24)

Itis easy toseethat ¢ > 0,H > 0and R > 0. Hence all By, B,, ...., B, are positive in the equation (24).

Theorem 1:[17] from all values of the root x; of the arbitrary polynomial as

1

p(x) = apx™ — ax"t — ax™ 2 4 -+ ap_1x + ay,

we have

i } (25)

&4
ao

Gl < max{ 1,27,

The stability must prove that |y;| = 1 in equation (24) from Theorem 1, B, = 1and B, > 0,j = 1, ..., n we have,

n |Bk| — —(H+R $k=1 bi)

k=11, G

_ —(H+R[(n+1)17*-1])
G

(26)
where,

Tk b= Zia [k + 17— k7]



Hameeda O. Al-Humedi \ Zahraa Adnan jameel JQCM - Vol.12 (1) 2020, pp Math 9-20 15

=+ 1" -1 (27)

let A, = (n+ 1) — 1 from (26) we get

—(H+R Ax)

n —
Shoy By == (28)
. —(H+R A
if R < 0 and from (28) we get: % <1
Lq cos(2Bh)+Lyisin(2Bh)+L3 cos(Bh)+Lyisin(Bh)+Ls cos(3Bh)+Lsisin(3fh)+Lg (29)
L7 cos(2Bh)+Lgisin(2Bh)) +Lgcos(Bh)+L1gisin(Bh)+L11 cos(3Bh)+L11isin(3Bh)+L1,
where,
L. = _58_58 A2~ L 56 56 At A L. = _ 359_ 35 A2
17 60 60 1-x % 7 27 60 60 1-x X 7 3T g0 60 1-x X7
L 245 245 At?% L 1 1 A2 L 302 302 At?%
47 60 60 1-« X’ 5T 60 60 1-x X 7 76 60 60 1-o X
58 24 10 58 At2% 56 26 8 56 At2~*
L, =———AtA——Atf —— , Lg=—=——AtA—-Atf —— ,
60 10 2 60 1-« 60 10 2 60 1-«
359 15 1 359 At?™% 245 65 19 245 At?%
Ly=———AtA+-Atf —— ) Lig=———AtA+—=Atf —— 2
60 10 2 60 1-o 60 10 2 60 1-
1 1 1 1 A2 302 . 40 10 302 At?~%
Li; =———AtA—-Atf — = , L, =—+—AtA+—Atf —— .
60 10 2 60 1-« 60 10 2 60 1-o

The equation (29) is the necessary and sufficient condition for the stability of the proposed mothed.

From the above stability analysis, the present method is unconditionally stable.

4. Numerical Examples

In this section, we will apply the scheme described in section 3 to three test examples to demonstrate the efficiency,
accuracy, and applicability of the present scheme. Results obtained by this scheme are compared with the analytical
solution of each example and with [5], [12] by computing the maximum norm error L, and norm error L,.

Let, t, = nk, n = 0(1)M , where M denoted the final time level t,; and N + 1 is the number of the nodes to check
the accuracy of the proposed method, where,

Lo = maxogeylulx;, ty) — UM|

1 2 1
L, = ;(Z?’:olu(xi,tm) - UM%z

Example 1:[12]
u (6, t) + mu,(x,t) — b uy,(x,t) = fot(t — )% u(x,s)ds + f(x,t) x €[0,1], x= %, t>0
m=20.05,b=04

The initial and boundary conditions are
u(x,0) = sin mx 0<x<1
u(0,t) =u(1,t) =0, 0<t<T

The exact solutionis: u(x,t) = (¢t + 1)? sin mx.
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Example 2:[12]

u (6, t) + mu,(x, t) — b uy, (x,t) = fot(t —s) " u(x,s)ds + f(x,t) x€[0,1], x= ;, t>0

m = 0.5,b = 0.005.

The initial and boundary conditions are
u(x,0)=cosmx, 0< x<1

u(0,t) = (t + 1), u(l,t) = —(t+ 1), t=0

The exact solutionis:  u(x,t) = (t + 1) cos mx.

Example 3:[5]

u (e, t) + mu, (x, t) — b uy, (x,t) = fot(t —s) " u(x,s)ds + f(x,t) x€[0,1], x= %, t>0

m=0.5,b=0.4

The initial condition and boundary condition are
u(x,0) = (x —x?), 0<x<1
u(0,t) = u(1,t) =0, 0<st<1

The exact solution is: u(x,t) = (x — x?)(t? + 1)

Table 1: L,and L, at At = 0.0001 and At = 0.00001 of Examplel

h M L, Lo L, Lo
(At =0.00001) (At =0.00001) (At =0.0001) (At =0.0001)
0.1 10 5.6813e-08 2.4801e-07 5.6472e-07 2.4513e-06
0.02 50 8.4470e-10 9.1344e-09 8.1822e-09 8.1209e-08
0.001 100 1.4369e-10 2.1425e-09 1.3967e-09 2.1379e-08
0.0066 150 5.1276e-11 8.9552e-10 4.9789e-10 9.4531e-09
0.005 200 2.4807e-11 5.1250e-10 2.3913e-10 5.2231e-09
0.004 250 1.4159e-11 3.3574e-10 1.3536e-10 3.2852e-09
0.0033 300 8.9572e-12 2.3606e-10 8.5045e-11 2.2475e-09
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Table 2: L,and L, at At = 0.0001 and At = 0.00001 of Example 2

Approximate Solutions

The Exact and Approximate Solutions of Example 1 at N=50 and M=100

1.2 r r r
Exact Sol.
1 e ®  Numerical Sol. |,
0.8 / \
0.6
0.4 / \
ool -
0
-0.2
»
-0.4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X-axis

h M L, Lo L, Loy
(At =0.00001) (At =0.00001) (At =0.0001) (At =0.0001)
0.1 10 2.5442e-08 1.1873e-07 2.5436e-07 1.1896e-06
0.02 50 5.1248e-10 6.8644e-09 5.1274e-09 6.9042e-08
0.001 100 1.2357e-10 2.3619e-09 1.2391e-09 2.3981e-08
0.0066 150 5.9420e-11 1.3380e-09 5.9774e-10 1.3809e-08
0.005 200 3.6572e-11 9.1623e-10 3.6898e-10 9.6677e-09
0.004 250 2.5452e-11 6.9236e-10 2.5708e-10 7.4957e-09
0.0033 300 1.9054e-11 5.5548e-10 1.9205e-10 6.1758e-09
The Exact and Approximate Solutions of Example 2 at N=50 and M=50
1.5 T T T
Exact Sol.
®  Numerical Sol.
B asad>
N\\
P "o,
-§ 0.5 -\\.
3
% 0
£
53 0.5 \‘\\\
P N“‘ﬂuk.
-1.5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

X-axis
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Table 3: L,and L, at At = 0.0001 and At = 0.00001 of Example 3

h M L, Lo Ly Lo
(At =0.00001) (At =0.00001) (At =0.0001) (At =0.0001)

0.1 10 6.5919€-09 4.1885e-08 6.5417¢e-08 4.2026e-07

0.02 50 6.3302e-11 1.7249¢-09 4.5916e-10 1.6248e-08
0.001 100 7.2371e-12 4.2376e-10 7.0307e-11 3.3139¢-09
0.0066 150 1.7266e-12 1.8113e-10 2.3985e-11 1.1548e-09
0.005 200 7.7409e-13 9.6355e-11 1.0357e-11 5.1434e-10
0.004 250 5.0706e-13 5.7676e-11 5.2986e-12 2.6662e-10
0.0033 300 3.5806e-13 3.7170e-11 3.0909e-12 1.5354e-10

5 Conclusions

Approximate Solutions

0.3

0.25

0.2

0.1

-0.05
0

The Exact and Approximate Solutions of Example 3 at N=50 and M=100

Exact Sol.
®  Numerical Sol.

s S AR AAE >

o

\\

7

~

",

0.1 0.2

0.3

0.5 0.6
X-axis

0.9 1

In this article, partial integro-differential equations with the weakly singular kernel were solved by using the
cubic B-spline Galerkin method with quadratic B-spline as a weight function. Backward Euler scheme was used for
time direction, and the cubic B-spline Galerkin method with quadratic weight function used for spatial derivative.
The numerical solutions for N=50, 100 and 200 with At=0.0001 and 0.00001 at different time M are presented in
Tables 1-3. From Figures 1-3 the numerical and the exact solutions are very consistent which signalizes the
numerical solutions effectively. We calculated L,, and L, norms errors are varied to test the accuracy of the
proposed method. In addition, the numerical results are in good agreement with the exact solutions. Moreover,
when comparing the results obtained with [5] and [12] found this method gives good results. The numerical cubic B-
spline Galerkin scheme with quadratic B-spline as a weight function is an effectively and a unconditionally stable

method.
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