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A B S T R A C T 

The article deals with the simultaneous existence of inclination and rotation on the peristaltic 
activity of the Rabinowitsch fluid model on a symmetric inclined channel. The heat transfer 
analysis and heat source/sink are taken into consideration. The governing equations are 
addressed using the low -Reynolds and infinite wave approximations. The system of ordinary 
differential equations is obtained from nonlinear partial differential equations and solved 
numerically. The axial velocity, secondary velocity, temperature field, and stream function 
were calculated and analyzed. The influences of the physical parameters are discussed 
graphically, and the study revealed that the rotation enhances the axial velocity, secondary 
velocity, and temperature field. 
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1. Introduction 

Today, interest in peristalsis issues has increased due to many applications in physics and medicine. The relaxation 
and contraction mechanism in the fluid movement along the wall is known as peristaltic motion. Peristalsis is 
important in many physiological processes, such as the urine transmission to the bladder through the ureter, the 
action of bile in the gallbladder, fluid movement through lymphatic vessels, spermatozoa movement in ducts, and 
movement of the esophagus when swallowing food. Peristalsis is also important in many industrial applications as 
pumps to transport of many kinds of fluid, radar systems, micro-pumps in pharmacology and fuel control in the 
rocket chamber, and power generators. Several studies have been presented about peristaltic flow [1, 2, 3]. 
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Non-Newtonian fluids are currently of great interest because of their many uses in science and technology.  Several 
models have been used to describe rheological behavior in non-Newtonian fluids, including the Rabinowitsch model 
in which has been important for understanding the rheological behavior of biological fluids. This model is 
characterized by its cubic stress relationship, and displays the properties of shear-thinning or pseudo-plastic (the 
pseudo-plasticity coefficient  𝜁 is positive, e.g., blood plasma and ketchup), shear-thickening or Dilatant (𝜁  is 
negative, e.g., sand and polyethylene glycol), Newtonian (𝜁 is zero e.g., air and water) models. Several researchers 
have studied this model. (Vaidya et al. 2019)[4] studied a Rabinowitsch fluid under the influence of variable liquid 
properties and a compliant wall. (Manjunatha et al. 2.19)[5] examined the peristaltic flow of a Rabinowitsch fluid 
through a non-uniform inclined channel in two dimensions. (Lin 2012)[6] discussed a theoretical study of the 
Rabinowitsch model's influence on the squeeze film properties through parallel annular disks. Other authors [7,8,9] 
illustrated engineering applications of Rabinowitsch fluids. 

Numerous studies deal with the effect of heat transfer because of its importance in fluid mechanics as illustrated in 
industrial fields and mechanical engineering and physiological operations, such as food treatment biochemical 
processes, transfer in polymers, biomedical engineering, oxygenation, hemodialysis and promulgation of chemical 
impurities. The investigations about the heat transfer influences have been reported in [10, 11,12]. 

The rotation phenomenon has vast applications in cosmic and geophysical flows and helps us to better comprehend 
galaxy formation and ocean circulation. Rotational diffusion accounts for nanoparticle orientation in fluids. The 
following is a review of studies that discuss the effects of rotation. (Hayat et al. 2016) [13] present the effect of MHD 
on the peristaltic flow of a Jeffrey fluid through a rotating channel. (Hayat et al. 2017) [14] introduced the effect of 
heat transfer on the peristaltic flow of Ree-Eyring fluids in the rotating frame. (Dar et al. 2016) [15] discussed the 
effects of rotation and inclined magnetic field on the peristaltic transpose of a micro polar fluid through an inclined 
symmetric channel (Abd- Alla et al. 2015)[16] discussed the influence of MHD on the peristaltic flow of a Jeffrey fluid 
through an asymmetric rotating channel.( Padma et al. 2018) [17] presented the Hall influence and MHD flow on the 
unsteady flow between two parallel plates through a rotating porous media channel. (Hatami et al. 2018)  [18] used 
analytical methods to solve the three-dimensional problem of a Nano-fluid film on an inclined rotating disk. There 
have also been other attempts to study the effect of rotation [19,20, 21]. 

This article helps to understand and study the influence of rotation phenomena as well as the effect of heat transfer 
on the peristaltic motion of the Rabinowitsch fluid model through a uniform channel characterized as symmetrical 
and inclined. For further clarification, this article organized to Section 2 that presents the physical modeling 
statement for our problem. The system of non-linear equations has been solved numerically and the results of the 
axial velocity, secondary velocity, temperature, and stream function are interpreted for relevant parameters and 
analyzed through graphs in Section 3. Finally, conclusions are given in Section 4. 

2. Modeling 

The paper examines an incompressible Rabinowitsch fluid model in peristaltic motion through a uniform, inclined 
and rotating channel, such that the model and channel rotate with uniform angular velocity Ω about the horizontal 
axis (see Fig.1). The non-Newtonian fluid (Rabinowitsch fluid) fills a three-dimensional symmetric channel of width 
2a,  and the flow of the fluid, induced by the sinusoidal wave trains of wavelength λ and constant speed c, propagate 
along the channel borders, b represent the wave amplitude and t ̅ the wave time. The geometrical equation of the 
wall surface can be expressed as: 

�̅� = 𝐻 (�̅�, 𝑡̅) = 𝑎 + 𝑏 sin
2𝜋

𝜆
(�̅� − 𝑐𝑡̅)                                                                                                                                     (1) 
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Fig. 1.  Geometry of the problem 

Governing equations of three dimensional for incompressible fluid flow in the laboratory frame is given by 

∇�⃑� = 0                                                                                                                                                                                        (2) 

𝜌 [
𝜕�⃑⃑� 

𝜕𝑡̅
+ (�⃑� . ∇)�⃑� ] + 𝜌[Ω × (Ω × �⃑� ) + 2Ω × �⃑� ] = ∇�̅� + 𝜌𝑔                                                                                           (3) 

𝜌𝐶𝑝
𝑑𝑇

𝑑𝑡
= 𝜅 ∇2𝑇 + �̅�. �⃑� + 𝑄0(𝑇 − 𝑇0)                                                                                                                                  (4) 

where �⃑� = (�̅�, �̅�, �̅�) is the fluid velocity, 𝜌 is the fluid density, Ω⃑⃑ = (0,0, Ω) = Ω �⃑�  is the rotation vector (�⃑�  is a unit 

vector), 𝜏̅ denotes the Cauchy stress tensor, �⃑�  is the gradient  operator,  𝐶𝑝  is the specific heat, κ is thermal 

conductivity of the fluid, 𝑇 is temperature, and 𝑄0  denotes the heat source/sink parameter. In Eq. 3, the centrifugal 

force 𝜌Ω⃑⃑ ∧ (Ω⃑⃑ ∧ �⃑� ) and the Coriolis force 2𝜌(Ω⃑⃑ ∧ �⃑� ) are two additional describing motion in the rotating frame. 

Rewrite Eqs. (2) -(4) as 

𝜕�̅�

𝜕�̅�
+

𝜕�̅�

𝜕�̅�
+

𝜕�̅�

𝜕𝑍
= 0                                                                                                                                                                    (5) 

𝜌 (
𝜕�̅�

𝜕𝑡̅
+ �̅�

𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕𝑍
) − 2𝜌Ω�̅� = −

𝜕�̅�

𝜕�̅�
+

𝜕�̅��̅��̅�

𝜕�̅�
+

𝜕�̅��̅��̅�

𝜕�̅�
+

𝜕�̅��̅��̅�

𝜕𝑍
+ 𝜌𝑔 sin𝛼                                                  (6) 

𝜌 (
𝜕�̅�

𝜕𝑡̅
+ �̅�

𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕𝑍
) + 2𝜌Ω�̅� = −

𝜕�̅�

𝜕�̅�
+

𝜕�̅��̅��̅�

𝜕�̅�
+

𝜕�̅��̅��̅�

𝜕�̅�
+

𝜕�̅��̅��̅�

𝜕𝑍
                                                                         (7) 

𝜌 (
𝜕�̅�

𝜕𝑡̅
+ �̅�

𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕𝑍
) = −

𝜕�̅�

𝜕𝑍
+

𝜕�̅��̅��̅�

𝜕�̅�
+

𝜕�̅��̅��̅�

𝜕�̅�
+

𝜕�̅��̅��̅�

𝜕𝑍
− 𝜌𝑔 cos𝛼                                                                (8) 

𝜌𝐶𝑝 (
𝜕𝑇

𝜕𝑡̅
+ 𝑈

𝜕𝑇

𝜕�̅�
+ �̅�

𝜕𝑇

𝜕�̅�
+ �̅�

𝜕𝑇

𝜕𝑍
) = κ (

𝜕2𝑇

𝜕�̅�2 +
𝜕2𝑇

𝜕�̅�2 +
𝜕2𝑇

𝜕𝑍2) + 𝑆�̅̅��̅�
𝜕𝑈

𝜕�̅�
+ 𝑆�̅̅�𝑍  (

𝜕𝑈

𝜕𝑍
+

𝜕�̅�

𝜕�̅�
) + 𝑆�̅̅�𝑍

𝜕�̅�

𝜕𝑍
+ 𝑄0(𝑇 − 𝑇0)                   (9) 

The constituent equation for the Rabinowitsch fluid model is expressed as follows: 

𝑆�̅̅�𝑍 + 𝜁 ̅𝑆�̅̅�𝑍
3 = 𝜇

𝜕�̅�

𝜕𝑍
                                                                                                                                                               (10) 

𝑆̅�̅�𝑍 + 𝜁 ̅𝑆�̅̅�𝑍
3 = 𝜇

𝜕�̅�

𝜕𝑍
                                                                                                                                                                (11) 

The associated boundary conditions are no-slip conditions at the walls of the channel 

𝜕�̅�

𝜕𝑍
= 0,   

𝜕�̅�

𝜕𝑍
= 0,   𝜅

𝜕𝑇

𝜕𝑍
= 0    𝑎𝑡    �̅� = 0                                                                                                                          (12) 
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 �̅� = 0,      �̅� = 0,   𝜅
𝜕𝑇

𝜕𝑍
= −�̅�1(𝑇0 − 𝑇)    𝑎𝑡    �̅� = �̅�                                                                                                  (13) 

where 𝑈, �̅� and �̅� are the velocity components in the �̅�, �̅� and �̅� directions respectively, �̅�( �̅� = �̃� −
1

2
�̅�2Ω2𝜌  )  is the 

modified pressure, �̅� is given by �̅�2 = �̅�2 + �̅�2 ,  𝜇 is the fluid viscosity and 𝜁  ̅refers to the coefficient of pseudo-
plasticity.  

The steady flow is obtained when we move away from the laboratory(unsteady) frame of reference (�̅�, �̅�, �̅�) to the 
wave (steady) frame of reference (�̅�, �̅�, 𝑧̅) with constant wave propagation speed. The transformation between two 
frames is given by 

�̅� = �̅� − 𝑐𝑡̅    , �̅� = 𝑌 ̅ , 𝑧̅ = �̅�    , �̅� = �̅� − 𝑐    , �̅� = �̅�     , �̅� = 𝑊 ̅̅ ̅̅     , �̅� = �̅�                                                            (14) 

Using Eq. (14), Eqs. (5)- (9) become 

𝜕�̅�

𝜕�̅�
+

𝜕�̅�

𝜕�̅�
+

𝜕�̅�

𝜕�̅�
= 0                                                                                                                                                                   (15) 

𝜌 ((�̅� + 𝑐)
𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
) − 2𝜌Ω�̅� = −

𝜕�̅�

𝜕�̅�
+

𝜕�̅��̅��̅�

𝜕𝑥
+

𝜕�̅��̅��̅�

𝜕�̅�
+

𝜕�̅��̅��̅�

𝜕�̅�
+ 𝜌𝑔 sin𝛼                                                   (16) 

𝜌 ((�̅� + 𝑐)
𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
) + 2𝜌Ω(�̅� + 𝑐) = −

𝜕�̅�

𝜕�̅�
+

𝜕�̅��̅��̅�

𝜕�̅�
+

𝜕�̅��̅��̅�

𝜕�̅�
+

𝜕�̅��̅��̅�

𝜕�̅�
                                                             (17) 

𝜌 ((�̅� + 𝑐)
𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
+ �̅�

𝜕�̅�

𝜕�̅�
) = −

𝜕�̅�

𝜕�̅�
+

𝜕�̅��̅��̅�

𝜕�̅�
+

𝜕�̅��̅��̅�

𝜕�̅�
+

𝜕�̅��̅��̅�

𝜕�̅�
− 𝜌𝑔 cos𝛼                                                                  (18) 

𝜌𝐶𝑝 ((�̅� + 𝑐)
𝜕𝑇

𝜕�̅�
+ �̅�

𝜕𝑇

𝜕�̅�
+ �̅�

𝜕𝑇

𝜕�̅�
) = κ (

𝜕2𝑇

𝜕�̅�2 +
𝜕2𝑇

𝜕�̅�2 +
𝜕2𝑇

𝜕�̅�2) + 𝑆�̅̅��̅�
𝜕𝑢+𝑐

𝜕�̅�
+ 𝑆�̅̅��̅�  (

𝜕𝑢+𝑐

𝜕�̅�
+

𝜕�̅�

𝜕�̅�
) + 𝑆�̅̅��̅�

𝜕�̅�

𝜕�̅�
+ 𝑄0(𝑇 − 𝑇0)             (19) 

The non-dimensional quantities can be introduced as follows: 

𝑥 =
�̅�

𝜆
,      𝑦 =

�̅�

𝜆
,    𝑧 =

�̅�

𝑎
,      𝑡 =

𝑐�̅�

𝜆
,      𝑝 =

𝑎2�̅�

𝑐𝜇𝜆
 , 𝛿 =

𝑎

𝜆
   ,   𝑢 =

𝑢

𝑐
,     𝑣 =

�̅�

𝑐
,     𝑤 =

�̅�

𝑐
,    𝑅𝑒 =

𝜌𝑐𝑎

𝜇
,

𝑆𝑖𝑗 =
𝑎�̅�𝑖𝑗

𝑐𝜇
  ,𝜃 =

𝑇−𝑇0

𝑇0
, 𝑇′ =

𝑅𝑒Ω𝑎

𝑐
, 𝜂 =

𝑄0𝑎
2

𝜅
,   𝐵𝑟 =

𝑐2𝜇

𝜅𝑇0
,  𝐵𝑖 =

𝑎ℎ

𝜅
,  

  𝐹 =
𝑐𝜇

𝜌𝑔𝑎2 , 𝜁 =
𝑐2𝜇2�̅�

𝑎2  , 𝑢 = 𝜓𝑧 ,   𝑤 = −𝛿𝜓𝑥                                                                                     (20) 

To proceed, we employ Eqs. (14) and (20) in Eqs. (10), (11) and (15) -(19), yielding 

𝑐

𝜆

𝜕𝑢

𝜕𝑥
+

𝑐

𝜆

𝜕𝑣

𝜕𝑦
+

𝑐

𝑎

𝜕𝑤

𝜕𝑧
= 0                                                                                                                                                           (21) 

𝜌 (𝑐(𝑢 + 1)
𝜕𝑐𝑢

𝜕𝜆𝑥
+ 𝑐𝑣

𝜕𝑐𝑢

𝜕𝜆𝑦
+ 𝑐𝑤

𝜕𝑐𝑢

𝜕𝑎𝑧
) − 2𝜌

c𝑇′

𝑅𝑒 𝑎
c v = −

𝜕𝑐𝜇𝜆𝑝

𝑎2𝜕𝜆𝑥
+

𝜕𝑐𝜇𝑆𝑥𝑥

𝑎𝜕𝜆𝑥
+

𝜕𝑐𝜇𝑆𝑥𝑦

𝑎𝜕𝜆𝑦
+     

𝜕𝑐𝜇𝑆𝑥𝑧

𝑎𝜕𝑎𝑧
+ 𝜌

𝑐𝜇

𝜌𝐹𝑎2 sin 𝛼    (22) 

𝜌 (𝑐(𝑢 + 1)
𝜕𝑐𝑣

𝜕𝜆𝑥
+ 𝑐𝑣

𝜕𝑐𝑣

𝜕𝜆𝑦
+ 𝑐𝑤

𝜕𝑐𝑣

𝜕𝑎𝑧
) − 2𝜌

c𝑇′

𝑅𝑒 𝑎
c (u + 1) = −

𝜕𝑐𝜇𝜆𝑝

𝑎2𝜕𝜆𝑦
+

𝜕𝑐𝜇𝑆𝑦𝑥

𝑎𝜕𝜆𝑥
+

𝜕𝑐𝜇𝑆𝑦𝑦

𝑎𝜕𝜆𝑦
+

𝜕𝑐𝜇𝑆𝑦𝑧

𝑎𝜕𝑎𝑧
                        (23) 

𝜌 (𝑐(𝑢 + 1)
𝜕𝑐𝑤

𝜕𝜆𝑥
+ 𝑐𝑣

𝜕𝑐𝑤

𝜕𝜆𝑦
+ 𝑐𝑤

𝜕𝑐𝑤

𝜕𝑎𝑧
) = −

𝜕𝑐𝜇𝜆𝑝

𝑎2𝜕𝑎𝑧
+

𝜕𝑐𝜇𝑆𝑧𝑥

𝑎𝜕𝜆𝑥
+

𝜕𝑐𝜇𝑆𝑧𝑦

𝑎𝜕𝜆𝑦
+

𝜕𝑐𝜇𝑆𝑧𝑧

𝑎𝜕𝑎𝑧
+ 𝜌

𝑐𝜇

𝜌𝐹𝑎2 cos 𝛼                                (24) 

𝜌𝐶𝑝 (𝑐(𝑢 + 1)
𝜕(𝜃𝑇0−𝑇0)

𝜕𝜆𝑥
+ 𝑐𝑣

𝜕(𝜃𝑇0−𝑇0)

𝜕𝜆𝑦
+ 𝑐𝑤

𝜕(𝜃𝑇0−𝑇0)

𝜕𝑎𝑧
) = κ (

𝜕2(𝜃𝑇0−𝑇0)

𝜕(𝜆𝑥)2
+

𝜕2(𝜃𝑇0−𝑇0)

𝜕(𝜆𝑦)2
+

𝜕2(𝜃𝑇0−𝑇0)

𝜕(𝑎𝑧)2
) +

𝑐𝜇𝑆𝑥𝑥

𝑎

𝜕𝑐𝑢

𝜕𝜆𝑥
+

𝑐𝜇𝑆𝑥𝑧

𝑎
 (

𝜕𝑐𝑢

𝜕𝑎𝑧
+

𝜕𝑐𝑤

𝜕𝜆𝑥
) +

𝑐𝜇𝑆𝑧𝑧

𝑎

𝜕𝑐𝑤

𝜕𝑎𝑧
+

𝜅 𝜂

𝑎2 (𝜃𝑇0 − 𝑇0)                                                                                                              (25) 
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𝑐 𝜇 𝑆𝑥𝑧

𝑎
 +

𝑎2𝜁

𝑐2𝜇2
 
𝑐3𝜇3

𝑆𝑥𝑧
3

𝑎3
 = 𝜇

𝜕𝑐𝑢

𝜕𝑎𝑧
                                                                                                                                        (26) 

𝑐𝜇𝑆𝑦𝑧

𝑎
 +

𝑎2𝜁

𝑐2𝜇2  
𝑐3 𝜇3 𝑆𝑦𝑧

3

𝑎3  = 𝜇
𝜕𝑐𝑣

𝜕𝑎𝑧
                                                                                                                                        (27) 

After some simplification and using the assumption of infinite wavelength and low Reynolds number, the problem 
becomes 

−2T′v = −
𝜕𝑝

𝜕𝑥
+

𝜕𝑆𝑥𝑧

𝜕𝑧
+

sin𝛼

𝐹
                                                                                                                                                (28) 

−2T′ (u + 1) = −
𝜕𝑝

𝜕𝑦
+

𝜕𝑆𝑦𝑧

𝜕𝑧
                                                                                                                                                (29) 

𝜕𝑝

𝜕𝑧
= 0                                                                                                                                                                                       (30) 

𝜕2𝜃

𝜕𝑧2 + 𝐵𝑟𝑆𝑥𝑧
𝜕𝑢

𝜕𝑧
 + 𝜂 𝜃 = 0                                                                                                                                                   (31) 

𝑆𝑥𝑧 + 𝜁 𝑆𝑥𝑧
3  =

𝜕𝑢

𝜕𝑧
                                                                                                                                                                    (32) 

𝑆𝑦𝑧 + 𝜁 𝑆𝑦𝑧
3  =

𝜕𝑣

𝜕𝑧
                                                                                                                                                                    (33) 

The non-dimensional conditions are 

𝜓 = 0     , 𝜓𝑧𝑧 = 0, 𝑣𝑧 = 0, 𝑢𝑧 = 0,   𝑆𝑥𝑧 = 0, 𝑆𝑦𝑧 = 0,   
𝜕𝜃

𝜕𝑧
= 0       𝑎𝑡   𝑧 = 0                                                  (34) 

𝜓 = 𝐹1    , 𝑣 = 0,     𝑢 = −1,       
𝜕𝜃

𝜕𝑧
− 𝐵𝑖𝜃 = 0       𝑎𝑡   𝑧 = ℎ                                                                                      (35) 

ℎ = 1 + 𝜖 sin 2𝜋𝑥                                                                                                                                                                  (36) 

where 𝜓 is the stream function, 𝑇′ is the Taylor number, 𝐹 is the body force,  and the Brinkman number 𝐵𝑟 , 𝛼 is the 
angle of inclination,  𝜂 is the heat source /sink parameter, 𝐵𝑖  is the Biot number and 𝐹1 is calculated from the 
following  

𝐹1 = ∫ 𝑢 𝑑𝑧
ℎ

0
                                                                                                                                                                           (37) 

The pressure term 
∂p

∂y
  in Eq. (29) will be neglected due to secondary flow which results from the effect of the 

rotation. 

3. Numerical solution and Discussion 

This section reviews the numerical results of velocity, temperature and stream function graphically. A numerical 
technique is employed to solve the system of nonlinear equations (28) -(33) with boundary conditions equations 
(34) -(36) since the exact solution is difficult to obtain. The solution is built on (ND Solve) command with 
Mathematica programing. The pressure gradient in Eq. (28) is taken as a constant to facilitate the numerical 
solution. 

3.1. The axial velocity 𝒖: 

Figure 2 elucidates the impact of the fluid parameters  𝑇′, 𝜁, 𝐹, 𝛼 on the axial velocity  𝑢. Figure 2(a) characterizes 
the role of 𝑇′  on the axial velocity. In the middle of the channel, the velocity is higher, whereas, at the boundary, the 
velocity decreases when the value of the 𝑇′ is large. Figure 2(b) illustrates that, with dilatant nature, the velocity of 
the fluid is maximum but is minimum with pseudo-plastic nature. Figure 2(c) indicates the influence of 𝐹 on the 
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velocity: the velocity increases at the wall when  𝐹 increases while the reverse occurs at the center of the channel. 
Figure 2(d) shows that the axial velocity is enhanced in the middle whenever the 𝛼 increases.  

Fig.2 (a)          
 
 

Fig.2 (b)           
 

Fig.2 (c)              
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Fig.2 (d)              
 

Fig. 2. axial velocity profiles u for various values of  Fig. 2(a)  Taylor number T′, Fig.2 (b) the coefficient of Pseudo-

plasticity  ζ . Fig.2 (c) the body force  F. Fig.2 (d) the angle of inclination α, and other parameters are  (
dp

dx
=

0.7, ϵ = 0.1, x = 0.1,  Bi = 2, Br = 0.5 , S = 0.4). 
 

3.2. Secondary Velocity 𝒗: 
 
Figure (3) shows the effectiveness of parameters 𝑇′,  𝜁,  𝐹 and 𝛼 on the secondary velocity 𝑣. Figure 3(a) illustrates 
that rotation enhances the secondary velocity at the centerline and reduces it near the wall. Figure 3(b) shows that 
the secondary velocity is maximum with the pseudo-plastic fluid, slows down with the Newtonian fluid and becomes 
a minimum in the dilatant fluid. Figure 3(c) demonstrates that the secondary velocity is augmented when 𝐹 
increases. The influence of 𝛼 on the secondary flow is shown in Figure 3(d), where 𝑣 decreases when 𝛼 increases. 
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Fig.3 (b)                

Fig.3 (c)                  

Fig.3 (d)                 
 
Fig. 3. Secondary velocity profiles 𝑣 for various values of  Fig.3(a)  Taylor number 𝑇′, Fig.3 (b) the coefficient of 
Pseudo-plasticity  𝜁. Fig.3 (c) the body force  𝐹 . Fig.3 (d) the angle of inclination 𝛼, and other parameters are  (

𝑑𝑝

𝑑𝑥
=

0.7, 𝜖 = 0.1, 𝑥 = 0.1,  𝐵𝑖 = 2, 𝐵𝑟 = 0.5 , 𝑆 = 0.4). 

 

3.3. Temperature profile θ: 

Figure 4 disclose the effectiveness of different parameters on the temperature 𝜃. Figure 4(a) examines the behavior 
of the temperature 𝜃 with 𝑇′ (Taylor number). We observe that 𝜃 increases with increasing  𝑇′. When comparing the 
temperature of the three classes of fluid, we notice that the dilatant fluid temperature is the highest, while the 
pseudo-plastic fluid is the lowest and the Newtonian fluid takes the mean level see Figure 4(b). In Figure 4(c) the 
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temperature is enhanced when  𝐵𝑖  (Biot number) increases. It is clear from Figure 4(d) that 𝜃 diminishes with 
increasing 𝐹. Fig.4 (e) demonstrates that whenever 𝛼 expands, the 𝜃 increases. In Figure 4(f), we observe increasing 
𝜂 results in a temperature decrease in the middle of the channel and an increase near the wall. Figure 4(g) shows 
that 𝜃 decreases when the magnitude 𝐵𝑟  increases.  
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Fig.4 (d)                    
 

 Fig.4 (e)                     
 

 Fig.4 (f)                     
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Fig.4 (g)                      
Fig. 4. Temperature profiles 𝜃 for various values of Fig.4 (a) Taylor number  𝑇′, Fig.4 (b) the coefficient of Pseudo-
plasticity  𝜁 .Fig.4 (c) Biot number   𝐵𝑖  .Fig.4 (d) the body force  𝐹. Fig.4 (e) the angle of inclination 𝛼, Fig.4(f) the heat 

source/ sink  𝜂 and Fig.4 (g) the Brinkman number 𝐵𝑟   and other parameters are  (
𝑑𝑝

𝑑𝑥
= 0.7, 𝜖 = 0.1, 𝑥 = 0.1). 

3.4. Stream Function  𝝍: 

Figure 5 examine the behavior that the stream function takes when the value of the physical parameters varies. It is 
clear from the graphs that the stream function only has non zero values in a bounded region of space and has wavy 
conduct at the 𝑧-axis. Figure 5(a) illustrates the effect of 𝑇′on the stream 𝜓 and shows that the stream increases 
initially and then gradually decreases. Figure 5(b) demonstrates that the stream function is maximal for a pseudo-
plastic fluid, decreases for a Newtonian fluid and becomes minimal for a dilatant fluid. As shown in Figure 5(c), the 
stream function increasing with increasing 𝐹. Figure 5(d) shows that 𝜓 decreases with increasing 𝛼.  

 
Fig.5 (a)                                                                             Fig.5 (b) 

 

  
Fig.5 (c)                                                                                   Fig.5 (d) 

 
Fig. 5. Stream function profiles 𝜓 for various values of  Fig.5 (a)  Taylor number 𝑇′, Fig.5 (b) the coefficient of 

Pseudo-plasticity  𝜁, Fig.5 (c) the body force  𝐹, Fig.5 (d) the angle of inclination 𝛼,  and other parameters are  (
𝑑𝑝

𝑑𝑥
=

0.7, 𝜖 = 0.7, 𝑥 = 0.2,  𝐵𝑖 = 2, 𝐵𝑟 = 0.5 , 𝑆 = 0.4). 
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4. Conclusions 

We study the peristaltic transport of a Rabinowitsch fluid under no-slip conditions, in three-dimensional fluid flow. 

The present study clarifies the impact of rotation, inclined channel and source/sink on the Rabinowitsch fluid. We 

list the main observations below: 

• The impact of rotation on the axial and secondary velocity is the same, such that the velocity increases in 
the middle of the channel and decreases near the wall.  

• The inclination and the rotation of the channel raise the temperature of the fluid. 

• Initially, the stream function increases with the rotating the channel and then gradually decreases. 

• The axial velocity improves with the inclination of the channel, but the opposite occurs for the secondary 
velocity. 

• The stream function decreases when the angle of the inclination increases, and increases when the body 
force 𝐹 increases. 

• The presence of 𝐹 and 𝐵𝑟  decrease the temperature of the fluid. 

• The presence of 𝐵𝑖  raises the temperature of the fluid. 

• The temperature decreases in the middle of the channel and increases near the wall with the presence of a 
heat source/sink 𝑆 

• 𝐹 enhances the axial velocity near the wall but decreases it at the center of the channel. 

• The secondary velocity increases with the presence of 𝐹. 

REFERENCES 

[1] V. Jagadeesh, S. Sreenadh, P. Lakshminarayana, “Influence of Inclined Magnetic Field on the Peristaltic Flow of a 
Jeffery fluid in an Inclined Porous Channel”, International Journal of Engineering &Technology,(2018), 
7(4.10),319-322. 

[2] H. A. Ali, Ahmed M. Abdulhadi,” the Peristaltic Transport of MHD Powell- Eyring Fluid through Porous Medium in 
Asymmetric Channel with Slip Condition”, International Journal of Science and Research, 6,12 ( 2016). 

[3] H. A. Ali, Ahmed M. Abdulhadi,” the Peristaltic Transport of MHD Eyring- Powell Fluid Through Porous Medium 
in a Three Dimensional Rectangular duct”, International Journal of Pure and Applied Mathematics, 119,18 (2018). 

[4] H. Vaidya, C. Rajashekhar, G. Manjunatha, K.V. Prasad, “Peristaltic Mechanism of a Rabinowitsch Fluid in an 
Inclined Channel with Complaint Wall and variable Liquid Properties”, Journal of the Brazilian Society of 
Mechanical Sciences and Engineering, (2019), p:41-52. 

[5] G. Manjunatha, C. Rajashekhar, Hanumes Vaidya. K.V. Prasad, O.D. Makinde,” Effects Wall Properties on 
Peristaltic Transport of Rabinowitsch Fluid Through an Inclined Non-Uniform Slippery Tube”, Defect and 
Diffusion Forum,392, (2019),p:138-157. 

[6] J.-Ren Lin,” Non-Newtonian Squeeze Film Characteristics between Parallel Annular Disks: Rabinowitsch Fluid 
Model”, Tribology International ,52,(2012),p:190-194. 

[7] N.B. Naduvinamani, M. Rajashekar, A.K. Kadadi,” Squeeze Film Lubrication Between Circular Stepped Plates”, 
Tribology International, 73,(2014),p:,78-82. 

[8] H. Vaidy, C. Rajashekhar, G. Manjunatha, K.V. Prasad,” Effect of variable Liquid Properties on Peristaltic 
Transport of Rabinowitsch Liquid in Convectively Heated Complaint Porous Channel”, J. Cent. South Univ. 
26,(2019) , p:1116-1132. 



Saba S. Hasen/ Ahmed M Abdulhadi,                                                                                                                                           JQCM - Vol.12 (1 ) 2020 , pp Math 21-33     33 

 

[9] J.Lin, Li -Ming Chu, Tzu-Chen Hung, Pin- Yu Wang,” Derivation of Two-Dimensional Non-Newtonian Reynolds 
Equation and Application to Power-Law Film Slider Bearings: Rabinowitsch Fluid Model”, Applied Mathematical 
Modelling, 40,(2016),p:8832-8841. 

[10] H. A. Ali, Ahmed M. Abdulhadi,” Analysis of Heat Transfer on Peristaltic Transport of Powell-Eyring Fluid in an 
Inclined Tapered Symmetric Channel with Hall and Ohm’s Heating Influences”, Journal of al-Qadisiyah for 
Computer Science and Mathematics, 10,2,(2018).  

 [11] R. M.G.,” Heat and Mass Transfer on Magneto Hydrodynamic Peristaltic Flow in a Porous Medium with Partial 
Slip”, Alexandria Engineering Journal, 55,(2016),p:1225-1234. 

[12] M. R. Salman, Ahmed M. Abdulhadi,” Analysis of Heat and Mass Transfer in a Tapered ASymmetric Channel 
During Peristaltic Transport of (Pseudo plastic Nano Fluid) with variable Viscosity Under the Effect of (MHD) ”, 
Journal of al-Qadisiyah for Computer Science and Mathematics, 10,3,(2018),p:80-96. 

[13] T. Hayat, Maimona Rafiq. Bashir Ahmad,” Soret and Dufour Effects on MHD Peristaltic Flow of Jeffery Fluid in a 
Rotating System with Porous Medium”, PLOS one, (2016). 

[14] T. Hayat, H. Zahir, A. Alsaedi.b. Ahmad,” Heat Transfer Analysis on Peristaltic Transport of Ree- Eyring Fluid in 
Rotating Frame”, Chinese Journal of Physics, 55,(2017),p:1894-1907. 

[15] A. Ahmad Dar, K. Elangovan,” Influence of an Inclined Magnetic Field and Rotation on the Peristaltic Flow of a 
Micropolar Fluid in an Inclined Channel”, Hindawi Publishing Corporation (New Journal of Science), (2016), 14 
pages. 

[16] A. M. Abd- Alla, S. M. Abo-Dahab,” Magnetic field and Rotation Effects on Peristaltic Transport of Jeffery fluid in 
an Asymmetric Channel”, Journal of Magnetism and Magnetic Materials,374, (2015),p:680-689. 

[17] G. Padma, S.V. Suneetha,” Hall Effect on MHD flow through Porous Medium in a Rotating Parallel Plate Channel”, 
Internal Journal of Applied Engineering Research, 13, no. 11,(2018),p:9772-9789. 

[18] M. Hatami D. Jing Majeed A. Yousif,” Three-Dimensional Analysis of Condensation Nanofluid Film on an Inclined 
Rotating Disk by Efficient Analytical Methods”, Arab Journal of Basic and Applied Sciences, 25 no.11,(2018),p:28-
73. 

[19] B. Zohra, and Mohamed Najib Bouaziz.” MHD Rotating Fluid Past a Semi-Infinite Vertical Moving Plate:Coriolis 
Force and Wall Velocity Effects” Journal of Advanced Research in Fluid Mechanics and Thermal Sciences 60, Issue 1 
(2019),p:38-51 

[20] A.M. Abd- Alla, S. M. Abo-Dahab, H.D. El- shahrany,” Effects of Rotation and Magnetic Field on the Nonlinear 
Peristaltic Flow of second-order Fluid an ASymmetric Channel Through a Porous Medium”, Chin Phys. b, 
22,7,(2013). 

[21] D.RY, Cao BY, “Superthigh-Speed Unidirectional Rotation of a Carbon Nanotube in a Sheared Fluid and its 
Decoupled Dynamics”, Rsc Adv, 5,(2015),p:19-24.  

 


