

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

On DG − *Topological operators Associated with Digraphs*

Khalid Shea Khaiarallha Al'Dzhabri ^a , Abedal-Hamza Mahdi Hamza ^b , Yousif Saheb Eissa ^c

a Unviversity of Al Qadisiyha, College of Education, Department of mathematics. Email: *Khalid.aljabrimath@qu.edu.iq*

b University of Kufa, Faculty of computer science and mathematics. Email : *Abdulhamza.hamza@uokufa.edu.iq*

c University of Kufa, Faculty of computer science and mathematics. Email: *yousifalmosaalmsa@gmial.com*

DOI : 10.29304/jqcm.2020.12.1.668

1 . Introduction""

Graph theory is an important mathematical tool in many subjects play an important role in discrete mathematics for two reasons .Firstly , the graph are mathematically elegant in theory. Although are simple relation graphs , they can be used to represent topographic space , harmonic objects , and many other mathematical graphs . The second reason many concepts will be very useful from a practical perspective when they are empirically represented by graphs . There is a relation between topology and digraphs and therefor many authors studied this relations . In 1967,J.N.Evans , etal. [4] proved very important relation which find a one to one correspondence between them .In 1968 , T.N. Bhargav and T.J.Ahlporen [7] studied and investigated some properties of topological spaces and digraphs by showed that each digraph defines a unique topology . In 1972 , R.N. Lieberman [8]defined two topologies on the set of vertices of every digraph called left $E -$ topology and the right $E -$ topology . In 2010, C. Marijuan [2] associated each topology τ to each digraph *D* by constructed a subbasis of closed sets for τ such that the set of vertices adjacent to u in D , for all vertices u from this subbasis and he associated a digraph to a topology by specialization relation between points in a topological space such that for any two points $x, y \in X$, x is adjacent to

Corresponding author Khalid Shea Khaiarallha Al'Dzhabri

Email addresses: Khalid.aljabrimath@qu.edu.iq

y iff $x\in \overline{\{y\}}$. In 2013 , A . H .Mahdi and S . N . Al-khafaji [1] constructed a topology on finite undirected graphs and a topology on subgraph on the set of edges and discussed the connectedness of each of the graph and the topological space , that induced that finite undirected graph . In 2015 , Khalid Al'Dzhabri in [6] found the correspondence between the finite topology and the graph of finite reflexive transitive relation . In 2018 , K .A .Abdu and A . Kilicman in [5] fended new certain types of topological space which associated with digraphs called compatible and incompatible edges topologies .

In our work, we introduced and studied new concepts of topological operators such as $DG - closure$, $DG - kernel$, DG – core and DG – interior . Firstly, we introduced a relationship between topology and digraph named DG – topological space induced by new open set called DG – open set and the topology associated with the digraph $D = (V, E)$ denoted by τ_{DG} and $\tau_{DG} = \{A: A \text{ is } DG - open \text{ set }\}.$

A subset A of V is called DG – open if for every $u \in A$ and an arc $vu \in E$ then $v \in A$. The pair (V, τ_{DG}) is called the $DG -$ topological space . In addition , we investigated some properties of these concepts .

2 . Basic definitions and facts

.

In this section , we recalled that some definitions and facts and update another definition by using our new concepts

Definition2.1[3]: A digraph (directed graph) is a set V of vertices and a set E of order pairs of vertices such that $E \subseteq V \times V$ and denoted by $D = (V, E)$ or simply by $D(V)$ if the set E is fixed.

Definition2.2[3]:Let $\acute{V} \subseteq V$, the digraph $D = (\acute{V}, E \cap \acute{V} \times \acute{V})$ denoted simply by $D(\acute{V})$, is a subdigraph of the digraph $D = (V, E).$

Definintion2.3[3]:An element of E is called an arc of the digraph $D = (V, E)$ and it is denoted by uv; and said to be an arc from u to v .

Definition2.4[3]:An arc from u_i to u_i is called a loop at u_i and denoted by $u_iu_i \in E$.

Definition2.5 [3]:A directed path (dipath) of length *L* from u_i to u_j is an ordered ($L + 1$) –tuple of vertices of $D = (V, E)$, $u_i, u_{k_1}, u_{k_2}, u_{k_3}, ..., u_{k_{(L-1)}}, u_j$ in which L is a positive integer and $\{u_iu_{k1}, u_{k1}u_{k2}, u_{k2}u_{k3}, u_{k(L-1)}u_j\}$ is a subset of the arc set E of $D = (V, E)$.The vertex u_i is called the initial vertex ,the vertices $u_{k_1}, u_{k_2}, ..., u_{k_{(L-1)}}$ is called intermediate vertices ,and u_j is called the terminal vertex of the digraph .

Definition2.6:If there exists a dipath from u_i to u_j in $D = (V, E)$,we say that u_i indegree to u_j or u_j outdegree from u_i and denoted by $\psi(i,j)$.The ordered pair (u_i,u_j) is called an indegrees pair . If u_i is not indegree to u_j ,denoted by $\tilde{\psi}(i,j)$.

Definition2.7:If both $\psi(i,j)$ and $\psi(j,i)$ that is if u_i is indegree to u_j and u_j indegree to u_i we say that u_i and u_j are symmetrically indegrable and denoted by $\psi^*(i,j)$

Remarrk2.8:Note that the relation ψ^* is an equivalence relation on the set *V* in $D = (V, E)$.

Definition2.9[3]: A digraph $D = (V, E)$ is called a transitive digraph if $uv \in E$ and $vw \in E$ implies that $uw \in E$.

Now by using $\psi(i, j)$ in the definition 2.6 we give the following definitions.

Definition2.10:Let $D = (V, E)$ be a digraph. Then D is called

i) ψ -strongly connected , if $\psi^*(i,j)$, for every u_i and u_j in V.

ii) ψ —unilaterally connected , if $\psi(i,j)$ or $\psi(j,i)$ for every u_i and u_j in $V.$

iii) ψ —weakly connected , if $D = (V, E \cup E^c)$ is ψ —strongly connected where $E^c = \{vu : uv \in E\}$.

iv) ψ –disconnected if it is not even ψ –weakly connected.

3 . On *DG* − Operators Topology Associated with Digraphs

In this section we introduced DG -topological space by define new concept called DG - open set . A topology may be determined on a set Vdefining certain subset of V to be open with respect to a digraph $D(V, E)$, and we introduced concepts $DG - closure$, $DG - k$ ernel, $DG - core$, $DG - limit$ point, and $DG - interior$ operators to investigate the connectedness of the digraph with these concepts and some properties we will be study in this section .

Definition3.1: Let $D = (V, E)$ be a digraph . A subset A of V is called DG – open set if for $u \in A$ and an arc $vu \in E$, then $v \in A$.

Remark 3.2:From the definition above the topology associated with the digraph $D = (V, E)$ is denoted by τ_{DG} where $\tau_{DG} = \{A: A \text{ is } DG - open \text{ set}\}\$ and (V, τ_{DG}) is called $DG - topological \text{ space}.$

Example3.3: Consider the digraph $D = (V, E)$ where $V = \{v_1, v_2, v_3, v_4, v_5\}$

And the topology corresponding to the above digraph $\tau_{DG} = {\emptyset, V, \{v_2\}}$, ${\{v_1, v_2\}}$ $\{v_2, v_4\}$, { v_1, v_2, v_4 }, { v_2, v_4, v_5 }, { v_1, v_2, v_4, v_5 }

Theorem3.4:Let $D = (V, E)$ be a digraph. Then (V, τ_{DG}) is a topology on the set V associated with the digraph $D = (V, E).$

Proof:

[O1] Notice Ø and $V \in \tau_{DG}$

[O2] Let $\{U_\alpha\}$ be a collection of subsets of *V* in τ_{DG} , and let $u \in U_\alpha U_\alpha$ and $uv \in E$. Then $\exists U_{\alpha_0} \in \{U_\alpha\}$ with $uv \in E$. This implies that $v \in U$, so $\bigcup_{\alpha} U_{\alpha} \in \tau_{DG}$.

[O3] Let $U_i \in \tau_{DG}$, $\forall i = 1,2,3...$, n. Now let $u \in \bigcap_{i=1}^n U_i$ and $vu \in E$, then $u \in U_i$ for all i and $v \in U_i$ and therefore the family $\bigcap_{i=1}^n U_i \in \tau_{DG}$.Hence τ_{DG} is topology on V .

Theorem 3.5: Every DG – topological space is Alexandroff space.

Proof: To prove that the arbitrary intersection of DG – open sets is DG – open set . Let U and W two DG – open sets and $u \in U \cap W$, $uv \in E$, to prove that $v \in U \cap W$ since $u \in U \cap W$, then $u \in U$, $u \in W$, and $uv \in E$, since each of them *U* and *W* are DG – open sets, then $v \in U$ and $v \in W$, therefore $v \in U \cap W$, hence $U \cap W$ is DG – open set.

Proposition 3.6:Let $D = (V, E)$ be a digraph . A subset A of V is DG -open set if and only if $v \in A$ and $u \in A^c$, implies $uv \notin E$.

Proof : Let A be a DG –open set then $u \in A$, and $uv \in E$ and we have $v \in A$ and that is means that if $u \notin A$, then $v \in A$ and $uv \notin E$. Now suppose that $v \in A$ and $u \in A^c$, then $uv \notin E$ and to prove that A is a DG - open set since $v \in A$ and $u \in A^c$, then $uv \notin E$ and that means if $uv \in E$ and $v \in A$ then we have $u \in A$ and hence A is a DG $-\text{open}$ set.

Definition3.7: The complement of DG –open set is called DG –closed set.

Remark3.8:A subset A of V is DG -closed if and only if $u_i \in A$ and $u_j \in A^c$ implies that $u_iu_j \notin E$,That is a subset A of V is called DG –closed if there dose not exists an arc from A to A^c in $D = (V, E)$.

Proposition 3.9: Let $D = (V, E)$,and let u_i and u_j be fixed vertices of a set V. Then u_i is indegree to u_j if and only if for each subset $A \subseteq V$ such that $u_i \in A$,and $u_j \notin A$,there exists an arc from A to A^c .

Proof: If $u_i = u_j$, the proposition is obviously .Now suppose that u_i is indegree to u_j for $u_i \neq u_j$. Thus there exists a dipath of finite length from u_i to u_j .Let A be a subset of V such that $u_i \in A$ and $u_j \notin A$. From definition 2.5, a dipath is an ordered tuple of finite length, let u_k , the k th vertex in this tuple, be the first vertex of this dipath which is not in A and other vertices belong to A,and also $u_k \neq u_i$. Thus $u_{k-1} \in A$ and we have the required arc namely $u_{k-1}u_k$ And $A \subseteq V$ with $u_i \in A$ and $u_j \notin A$,and suppose that exists an arc from A to A^c .Now form the set $A_i = \{u_d : \psi(i, d)\}$ Suppose that $u_j \notin A_i$, then by hypothesis, there exists an arc from A_i to A_i^c , say $u_r u_s$ such that $u_r \in A_i$ and $u_s \in A_i^c$.But u_i is indegree to u_r and this means $u_i = u_r$ or there exists a finite dipath from u_i to u_r and thus there exists a finite dipath from u_i to u_s which containing the vertex u_r .Thus u_i is indegree to u_s , and therefore $u_s \in A_i$ which is a contradiction. Hence $u_j \in A_i$ i.e u_i indegree to u_j .

Proposition3.10: Let $D = (V, E)$ u_i and u_j be fixed vertices of the V.Then u_i is indegree to u_j if and only if each DG – closed set W , such that $u_i \in W$, implies $u_i \in W$; or equivalently each DG –open set M , such that $u_i \in M$, then $u_i \in M$.

Proof :Let u_i and u_j be two vertices of the V and suppose that u_i is indegree to u_j . Let W be an DG $-$ closed set such that $u_i \in W$.If $u_j \in W^c$, then by Proposition 3.9 there exists an arc from W to W^c ,which implies that W is not DG $$ closed set. Hence $u_i \in W$. Now suppose W that a DG – closed set such that $u_i \in W$ implies $u_i \in W$ this means there does not exist an DG – open set W^c such that $u_j \in W^c$ but $u_i \notin W^c$.Now assume that each DG – open set M such that $u_i \in M$, then $u_i \in M$ and so each DG – open set M such that $u_i \in M$ but $u_i \notin M$ is not DG – open set .Hence M^c is not DG $-$ closed set .Thus for each set M^c , there exists an arc from M^c to M and by Proposition 3.9 u_i is indegree to u_j .

Proposition 3.11: Let (V, τ_{DG}) be a topological space associated with the digraph $D = (V, E)$. Then $D = (V, E)$ is ψ – strongly connected if and only if τ_{DG} is an indiscrete topology .

Proof : Suppose that $D = (V, E)$ is ψ -strongly connected and u_i and u_j are arbitrary vertices of V, then $\psi(i, j)$; i.e u_i is in degree to u_j .If A is any DG – open set A such that $u_j \in A$. Then $u_i \in A$. Proposition 3.10 implies the only DG – open set in (V, τ_{DG}) is V. Hence $\tau_{DG} = {\phi, V}$. Now assume that $\tau_{DG} = {\phi, V}$. To prove that $D = (V, E)$ is ψ −strongly connected , let u_i and u_j be arbitrary vertices of V, since each DG $-$ open set containing u_i contains u_j and each DG – open set containing u_j contains u_i and since V is the only DG – open set in (V, τ_{DG}) then by Proposition 3.10 $\psi(i, j)$ and $\psi(j, i)$. i.e $\psi^*(i, j)$. Hence $D = (V, E)$ is ψ -strongly connected .

Proposition3.12: Let (V, τ_{DG}) be a topological space associated with the digraph $D = (V, E)$. Then $D = (V, E)$ is ψ –unilaterally connected if and only if every two DG – open sets of (V, τ_{DG}) one of them containing the other .

Proof :Suppose that every two DG – open sets f (V, τ_{DG}) one is subset of the other. Suppose that u_i and u_j are two vertices of V.Then there does not exist an DG – open set A_1 such that $u_i \in A_1$ but $u_i \notin A_1$ or there does not exist an DG – open set A_2 such that $u_j \in A_2$ but $u_i \notin A_2$. Since either $A_1 \subseteq A_2$ or $A_2 \subseteq A_1$, then either each DG – open set A_1 such that $u_j \in A_1$ implies that $u_i \in A_1$ or each DG — open set A_2 such that $u_i \in A_2$ implies that $u_j \in A_2$ and this satisfy if and only if $\psi(i, j)$ or $\psi(j, i)$ for any two vertices u_i and u_j of V. Hence $D = (V, E)$ is ψ –unilaterally connected.

Definition 3.13: Let $D = (V, E)$ be a digraph and (V, τ_{DG}) be a DG - topological space .The DG - closure of a subset A of V denoted by \overline{A}^{DG} , is the intersection of all DG – closed subsets of V containing A .i.e $\bar{A}^{DG} = \cap \{U: U \text{ is } DG$ – closed, $A \subseteq U \subseteq V$.

Example3.14: Consider the digraph $D = (V, E)$, where $V = \{v_1, v_2, v_3, v_4\}$.

The topology associated to above digraph is

 $\tau_{DG} = \{\emptyset, V, \{v_2\}, \{v_2, v_3\}, \{v_1, v_2, v_3\}\}\text{, then }\overline{\{v_1, v_3\}}^{DG} = \{v_1, v_3, v_4\}\text{.}$

Now, in the following definition, we define a new operator by using the term of the DG – open set namely DG – kernel .

Definition3.15: Let $D = (V, E)$ be a digraph and (V, τ_{DG}) be a $DG -$ topological space. The $DG -$ kernel of a subset Aof *V*, denoted by $kl_{DG}(A)$, is defined by $kl_{DG}(A) = \cap \{U: U \text{ is } DG$ – open, $A \subseteq U \subseteq V\}$.

Example 3.16 : Consider the digraph $D = (V, E)$ where $V = \{v_1, v_2, v_3, v_4, v_5\}$

And the topology associated to above digraph is $\tau_{DG} = \{\emptyset, V, \{\nu_1\}, \{\nu_3, \nu_4\},\}$

 $\{v_1, v_3, v_4\}, \{v_2, v_3, v_4, v_5\}\}\$, then $Kl_{DG}(\{v_2, v_4\}) = \{v_2, v_3, v_4, v_5\}\$.

Remarks 3.17:i) The DG – closure set is always DG – closed set and that a set A is DG – closed set if and only if $A=\bar{A}^{DG}$.

ii) \bar{A}^{DG} is the set of all vertices which are reachable from A.

iii) From Theorem 3.5 the topology τ_{DG} on a digraph $D(V)$ has completely additive closure i.e(The intersection of an arbitrary DG – open sets is DG – open set) and we see that the DG – kernel of a set is DG – open set and that a set A is DG – open set if and only if $A = Kl_{DG}(A)$.

iv) Since τ_{DG} satisfy the completely additive closure then $\overline{(A\cup B)}^{DG} = \bar{A}^{DG}\cup \bar{B}^{DG}$ and $Kl_{DG}(A\cup B)=Kl_{DG}(A)$ U $\mathop{\mathrm Kl}\nolimits_{\mathop{\mathrm D}\nolimits{\mathop{\mathrm G}\nolimits}}(B)$.

Theorem3.18: Let (V, τ_{DC}) be a DG – topological space associated with the digraph $D = (V, E)$. Then any vertex u_i of $D(V)$,

i) $\overline{(u_l)}^{DG}=\{u_l;\psi(i,j)\}$, in another words , $\overline{(u_l)}^{DG}$ is the set of vertices of the digraph $D(V)$ which are out degree from u_i .

ii) $Kl_{DG}(u_i) = \{u_j: \psi(j, i)\}\$, in another words $Kl_{DG}(u_i)$ is the set of vertices of the digraph $D(V)$ which are indegree to the vertex u_i .

Proof: i) From definition 3.13, $\overline{(u_l)}^{DG}=\cap$ {U: U is DG $-$ closed and $u_i\in U$ } and that is, $\overline{(u_l)}^{DG}$ is the set of all vertices u_j such that every DG – closed set U such that $u_i\in U$, then $u_j\in U$, and from Proposition 3.10 we have $\overline{(u_i)}^{DG}=$ $\{u_j : \psi(i,j)\}.$

ii) similarly by using definition 3.15 and Proposition 3.10 we have that $Kl_{DG}(u_i) = \{u_j : \psi(j, i)\}.$

Definition3.19:Let $D = (V, E)$ be a digraph and (V, τ_{DG}) be a $DG -$ topological space a subset A of V is called DG dense if $\overline{(A)}^{DG} = V$.

Definition3.20:Let $D = (V, E)$ be a digraph and (V, τ_{DG}) be a $DG -$ topological space A_i and A_j are called DG —separated in (V, τ_{DG}) if $\overline{(A_i)}^{DG} \cap A_{j=}\emptyset$ and $A_i \cap \overline{(A_j)}^{DG} = \emptyset$

Theorem3.21: Let (V, τ_{DC}) be a topological space associated with the digraph $D = (V, E)$. Then for any $A \subseteq V$,

i) $\overline{A}^{DG} = \{u_j : \psi(i, j)\}$, for some $u_i \in A\}$ and,

ii) $Kl_{DG} = \{u_j : \psi(j, i) \text{ for some } u_i \in A\}.$

Proof: i) Since using remark 3.17(iv) and Theorem 3.18(i) we have $\overline{(A \cup B)}^{DG} = \overline{A}^{DG} \cup \overline{B}^{DG}$, $(\overline{A})^{DG} = (\overline{\cup \{u_i : u_i \in A\}})^{DG} = \cup \{(\overline{u_i})^{DG} : u_i \in A\} = \cup \{u_j : \psi(i,j) : u_i \in A\} = \{u_j : \psi(i,j) \text{ for some } u_i \in A\}.$

ii) Since using remark 3.17(iv) and Theorem 3.18(ii) we have $Kl_{DG}(A \cup B) = Kl_{DG}(A) \cup Kl_{DG}(B)$,

 $Kl_{DG}(A) = Kl_{DG}(\cup \{u_i\}: u_i \in A) = \cup \{Kl_{DG}(u_i): u_i \in A\} = \cup (\{u_j: \psi(j,i): u_i \in A\} = \{u_j: \psi(j,i) \text{ for some } u_j \in A\}.$

Corollary3.22:A set A is DG – dense in V of $D(V)$ if and only if for each vertex u_k of V, there exists a vertex u_i of A such that is in degree to u_k .

Proof: The proof is follows from Theorems (3.18)(i) and (3.21)(i).

Corollary3.23: Let A_i and A_j be two subsets of V. Then A_i and A_j are DG – separated in $D(V)$ iff there does not exist vertices $u_i \in A_i$ and $u_j \in A_j$,such that $\psi(i,j)$ or $\psi(j,i)$.

Proof:⇒) Since A_i and A_j are DG – separated in $D(V)$, then $\overline{(A_i)}^{DG} \cap A_{j} = \emptyset$ and $A_i \cap \overline{(A_j)}^{DG} = \emptyset$ iff .From Theorems (3.18)(i) and (3.21)(i), there dose not exist vertices $u_i \in A_i$ and $u_i \in A_j$ such that $\psi(i,j)$ and there dose not exist vertices $u_r \in A_i$ and $u_s \in A_i$ such that $\psi(s, r)$.

Definition3.24:The DG – core of a set A, denoted by $C_{DG}(A)$, is the intersection of all subsets of *V* containing A which are DG –closed or DG – open i.e $C_{DG}(A) = \cap \{U: U \text{ is } DG$ – closed or DG – open , $A \subseteq U \subseteq V\}$.

Remark 3.25: Note that $C_{DG}(A) = \overline{A}^{DG} \cap Kl_{DG}(A)$.

Example3.26: Consider the digraph $D = (V, E)$, $v₁$

The topology associated to above digraph is $\tau_{DG} = \{\emptyset, V, \{\nu_2\}, \{\nu_1, \nu_2\}, \{\nu_2, \nu_4\}$

, $\{v_1, v_2, v_4\}$, $\{v_2, v_4, v_5\}$, $\{v_1, v_2, v_4, v_5\}$, then $C_{DG}(\{v_1, v_4, v_5\}) = \{v_1, v_2, v_4, v_5\}$.

Theorem3.27:For any vertex u_i of $D = (V, E)$, $C_{DG}(u_i) = \{u_j : \psi^*(i,j)\}$. In another words, $C_{DG}(u_i)$ is the set of all vertices of the digraph which are symmetrically indegrable to u_i .

Proof: By using remark 3.25 and definition 3.24 ,we have the following :

$$
C_{DG}(u_i) = \overline{(u_i)}^{DG} \cap Kl_{DG}(u_i) = \{u_j : \psi(i,j)\} \cap \{u_j : \psi(j,i)\} = \{u_j : \psi(i,j) \text{ and } \psi(j,i)\} = \{u_j : \psi^*(i,j)\}
$$

Theorem3.28:For any set $A \subseteq V$ of $D = (V, E)$,

 $C_{DG}(A) = \{u_j : \psi(i, j)$ for some $u_i \in A$ and $\psi(j, k)$ for some $u_k \in A\}$

Prove: By using remark 3.25 and definition 3.24 we have the following : $C_{DG}(A) = \bar{A}^{DG} \cap Kl_{DG}(A) = \{u_j: \psi(i,j) \text{ for some } u_i \in A\} \cap \{u_j: \psi(j,k) \text{ for some } u_k \in A\} = \{u_j: \psi(i,j) \text{ for some } u_i \in A\}$ A and $\psi(j, k)$ for some $u_k \in A$.

Note that $\cup \{C_{DG}(A_i): i \in I\} \subseteq \{C_{DG}\cup A_i : i \in I\}$ and thus for any $A \subseteq V$,

 $\{u_j : \psi^*(i,j)$ for some $u_i \in A\} \subseteq C_{DG}(A)$.

Corollary3.29:For any vertex u_i of $D = (V, E)$, the DG – core of u_i is the maximum subset, say A of V containing u_i such that the subdigraph $D(A)$ is ψ – strongly connected.

Proof: From Theorem 3.27, $u_k \in C_{DG}(u_i)$ iff $\psi^*(i,k)$. Then the subdigraph $D(C_{DG}(u_i))$ is ψ – strongly connected. And for any set A_i containing u_i and containing some other vertex say u_j , where $u_j \notin C_{DG}(u_i)$, $D(A_i)$ is not ψ – strongly connected.

Defintion3.30:Let (V, τ_{DC}) be a DG -topological space associated with the digraph $D = (V, E)$ and $A \subseteq V$. The point $v \in V$ is called DG – limit point of A if for every DG – open set U containing $v, (U - \{v\}) \cap A \neq \emptyset$.

Remark3.31: The set of DG $-$ limit points of A is denoted by \acute{A}^{DG} .

Example 3.32:Consider the digraph $D = (V, E)$ when $v_z = \{v_1, v_2, v_3, v_4, v_5\}.$

the topology associated to above digraph is $\tau_{DG} = \{\emptyset, V, \{\nu_1\}, \{\nu_3\}, \{\nu_1, \nu_2\}$

, { v_1 , v_3 }, { v_1 , v_2 , v_3 }}, then { (v_1, v_3) } $^{DG} = \{v_2, v_4\}$.

Theorem3.33:Let (V, τ_{DC}) be a DG – topological space associated with the digraph $D = (V, E)$ and let $A \subseteq V$. Then $A \cup \hat{A}^{DG}$ is DG – closed set.

Proof: Let $v\in (A\cup A^{DG})$ and $u\in (A\cup A^{DG})^c.$ To prove that $vu\notin E$, since $u\in (A\cup A^{DG})^c$ then $u\notin (A\cup A^{DG})$, so $u\notin A$ $\wedge u \notin A^{DG}$. Then there exist a DG – open set U containing u such that $(U - \{u\}) \cap A = \emptyset$. Then we get a DG – open set *U* containing *u* but not *v* and $vu \notin E$. Hence ($AU\hat{A}^{DG}$) is DG – closed .

Theorem3.34: Let (V, τ_{DG}) be a DG – topological space associated with the digraph $D = (V, E)$. Then $\hat{A}^{DG} \subseteq A$ if and only if A is DG – closed.

Proof: Suppose that $\hat{A}^{DG} \subseteq A$ and to prove that A is DG − closed , let $u \in A^c$ and $v \in A$. Since $u \in A^c$ then $u \notin A$, then $u \notin \hat{A}^{DG}$ since $\hat{A}^{DG} \subseteq A$. Then there exist a DG – open set U such that $u \in U$ and $(U - \{u\}) \cap A = \emptyset$. Then $vu \notin$ E .Hence A is $DG -$ closed.

Now assume that A is DG –closed. To prove that $\hat{A}^{DG} \subseteq A$, let $u \notin A$. Then

 $u \in A^c$. Since A^c is a DG −open set containing u and $A \cap A^c = \emptyset$, then $u \notin \hat{A}^{DG}$. Hence $\hat{A}^{DG} \subseteq A$.

Definition3.35: Let $D = (V, E)$ be a digraph and (V, τ_{DG}) be a $DG -$ topological space .The $DG -$ interior of a set A denoted by $A^{\circ DG}$ is the union of all DG – open sets of V contained in A. That is $A^{\circ DG} = \bigcup \{U: U \subseteq A$, U is DG – open set in V }.

Remarks 3.36: i) For any $A \subseteq V$, $A^{\circ DG} = V - \overline{A^c}^{DG}$.

ii) $A^{\circ DG}$ = the set of all vertices which are not reachable from $V-A.$

Example3.37: Consider the digraph $D = (V, E)$, where $V = \{v_1, v_2, v_3, v_4\}$

The topology associated to above digraph is $\tau_{DG} = \{\emptyset, V, \{v_2\}, \{v_2, v_3\}, \{v_1, v_2, v_3\}\}\,$ then $\{v_2, v_4\}^{\circ DG} = \{v_2\}$.

 ${\bf Theorem 3.38:}$ Let $\ (V,\tau_{DG})$ be a topological space associated with the digraph $D=(V,E).$ Then $(A^{^{\circ}DG})^c=\overline{A^c}^{DG}$.

Proof: It is clear [remark 3.36(i)].

Theorem3.39:Let (V, τ_{DG}) be a DG – topological space associated with the digraph $D = (V, E)$ and let $A, B \subset V$. Then:

i) $A^{\circ DG}$ is the largest DG – open contained in A.

ii) $A^{\circ DG} = A$ if and only if A is DG – open.

iii) $(A^{\circ DG})^{\circ DG} = A^{\circ DG}$.

iv) $(A \cap B)^{\circ DG} = A^{\circ DG} \cap B^{\circ DG}$.

Proof: i) By definition 3.35, $A^{\circ DG}$ is the DG – open contained in A.To prove $A^{\circ DG}$ is the largest DG – open contained in A. Suppose that U is DG – open and $U \subseteq A$. To prove $U \subset A^{\circ DG}$ if (1). Suppose $v \in U$ if (2). Then $v \in U_i U_i$ where U_i is DG — open set for all i and $U \subseteq A$.

Since *U* is a *DG* $-$ open set then $u \in U$ and an arc $vu \in E$ then $v \in U$, i.e $v \in U_i$ such that U_i is DG $-$ open and $U_i \subseteq A_i$ for all i, then $v \in A^{\circ DG}$, then $U \subset A^{\circ DG}$.

Hence $A^{\circ DG}$ is largest DG – open contained in A .

ii) Suppose that $A^{\circ DG} = A$. Then A is DG — open ,since $A^{\circ DG}$ is DG — open .

Suppose that A is DG – open, we need to prove on ∘ .

Since $A^{\circ DG} \subset A$, Since A is a DG – open set, then $u \in A$ and an arc $vu \in E$ then $v \in A$, i.e $v \in U_iU_i$, such that U_i is DG – open set and $U_i \subseteq A$ for all i , then $v \in A^{\circ DG}$. Then $A \subseteq A^{\circ DG}$. Hence $A = A^{\circ DG}$

iii)Since $A^{\circ DG}$ is a DG — open set then $(A^{\circ DG})^{\circ DG} = A^{\circ DG}$.

 \overline{J} ($\overline{A} \cap B$)^o $D^G = (\overline{A^G \cup B^c})^{D}$ ^o $C = (\overline{A^c}^{D} \cup \overline{B^c}^{D} \cup \overline{B^c}^{D} \cup C)$ $\subset (\overline{A^c}^{D} \cup \overline{B^c}^{D} \cup C)$ $\subset (\overline{B^c}^{D} \cup C)$ $\subset (A^G \cup B^G)$ $\subset (A^G \cup B^G)$

4.On DG − Connected Spaces.

In this section we introduced the concept of DG-connected space and investigate some theorems which associated with digraphs.

Definition4.1: Let(V, τ_{DG}) be a $DG -$ topological space , then (V, τ_{DG}) is called a $DG -$ topologically connected if V can not be expressed as union of two disjoint non empty DG – open sets and other wise (V, τ_{DG}) is called a DG −disconnected space **Theorem4.2:** Let (V, τ_{DG}) be a topological space associated with the digraph $D =$ (V, E) . Then $D = (V, E)$ is ψ – weakly connected iff (V, τ_{DG}) is a DG – topologically connected.

Proof: Suppose that (V, τ_{DG}) is a DG – connected space, then V cannot be expressed as the union of two nonempty disjoint DG – open sets and this iff any nonempty proper subset of V is not a DG – open or is not DG – closed. Equivalently, by definition 3.1, for each proper subset, say A, of V, there exists an arc from A^c to A or there exists an arc from A to A^c in the digraph $D(V)$, that is in $D = (V, E \cup E^c)$, where $E^c = \{uv : vu \in E\}$. Hence, the only DG open set in $D = (V, E \cup E^c)$ are Ø and V. Then from Proposition 3.11 $D = (V, E \cup E^c)$ is ψ -strongly connected and hence $D = (V, E)$ is ψ – weakly connected.

Theorem4.3: Let (V, τ_{DG}) be a DG - topological space associated with the digraph $D = (V, E)$. Then $D = (V, E)$ is a ψ – disconnected iff (V, τ_{DG}) is a DG – topologically disconnected .

Proof: A proof is the contrapositive of Theorem 4.2

Theorem4.4: Let (V, τ_{DG}) be a DG – topological space associated with the digraph $D = (V, E)$. Then $D = (V, E)$ is a ψ – disconnected iff V can be expressed as the union of two DG – separated subsets of (V, τ_{DG}).

Proof: The digraph $D = (V, E)$ is ψ – disconnected iff, the set V can be expressed as the union of two disjoint nonempty DG – open sets , say A_1 and A_1^c that is , there does not exist an arc from A_1 to A_1^c or from A_1^c to A_1 . Hence $\bar{A}_1^{DG}=A_1$ and $\overline{A_1^{c}}^{DG}=A_1^{c}$. Therefore $D=(V,E)$ is ψ $-$ disconnected iff A_1 and A_1^{c} are $\;DG$ $-$ separated in (V , τ_{DG}) .

Theorem4.5: Let (V, τ_{DG}) be a DG -topological space associated with the digraph $D = (V, E)$. Then $D = (V, E)$ is ψ – disconnected or ψ – weakly connected, but not ψ – unilaterally connected iff (V, τ_{DG}) contains two nonempty DG –separated subsets.

Proof: Suppose that $D = (V, E)$ is either ψ –disconnected or ψ –weakly connected but not ψ –unilaterally connected, then $D = (V, E)$ is neither ψ –strongly connected nor ψ –unilaterally connected. Then there exists vertices u_i and u_j in V such that $\widetilde{\psi}(i,j)$ and $\widetilde{\psi}(j,i)$ and hence $u_i \notin \overline{u_j}^{DG}$ and $u_j \notin \overline{u_i}^{DG}$ [Theorem 3.4]. Thus $\{u_i\}$ and $\{u_j\}$ are two nonempty DG – separated subsets of (V, τ_{DG}) .

Now suppose that (V, τ_{DG}) contains two nonempty DG — separated subsets , say A_i and A_j . By corollary 3.23, there does not exist $u_i \in A_i$ and $u_j \in A_j$, such that $\psi(i,j)$ or $\psi(j,i)$. since A_i and A_j are nonempty ,then there exist vertices say $u_r \in A_i$ and $u_s \in A_j$, such that $\tilde{\psi}(r, s)$ and $\tilde{\psi}(s, r)$. Then $D(V)$ is either ψ – disconnected or ψ – weakly connected but not ψ – unilaterally connected.

Theorem4.6: Let (V, τ_{DG}) be a DG -topological space associated with the digraph $D = (V, E)$. Then $D = (V, E)$ is ψ − strongly connected iff each a vertex of *V* is DG − dense in (*V*, τ_{DG}).

Proof :By Proposition 3.11, $D = (V, E)$ is ψ – strongly connected iff $\tau_{DG} = \{\emptyset, V\}$ and this is true iff $\bar{u}_i^{DG} = A$, for each vertex $u_i \in V$

5. **On** −**Separation Axioms**

In this section, we introduce the following two DG – separation axioms $DG - T_0$ space and $DG - T_1$ spaces and we prove some theorems of a digraph in terms of the DG – separation axioms satisfied by the DG – topological space which is determined by that digraphs .

Definition5.1: Let $D = (V, E)$ be a digraph and (V, τ_{DG}) be an DG -topological space. Then (V, τ_{DG}) is a DG - T_0 space if for every $u_i, u_j \in V$, $u_i \neq u_j$ there exists a DG — open set contains either u_i or u_j .

Example 5.2: Cosider the digraph $D = (V, E)$, where $V = \{v_1, v_2, v_3\}$

Which has the topology associated to above digraph is $\tau_{DG} = \{\emptyset, V, \{\nu_1\}, \{\nu_1, \nu_2\}\}\.$ Since for each two different elements, there exists an DG – open set containing one of them and does not contain the other, then (V, τ_{DG}) is a $DG - T_0$ space.

Definition5.3: Let $D = (V, E)$ be a digraph and (V, τ_{DG}) be an DG – topological space. Then (V, τ_{DG}) is a $DG - T_1$ if each set which consists of a single vertex is DG -closed.

Example 5.4: Consider the digraph $D = (V, E)$ where $V = \{v_1, v_2, v_3\}$ which has the topology

 $\tau_{DG} = \{\emptyset, V, \{v_1\}, \{v_2\}, \{v_3\}, \{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}\}\.$ Since each set, which consists of a single vertex is a DG – closed set then (V, τ_{DG}) is $DG - T_1$ space.

Proposition5.5: Let (V, τ_{DG}) be a DG -topological space associated with the digraph $D = (V, E)$. Then every $DG - T_1$ space is $DG - T_0$ space.

Proof: Let (V, τ_{DG}) be a $DG - T_1$ space we prove that (V, τ_{DG}) is a $DG - T_0$ space, let v_1 , $v_2 \in V$ such that $v_1 \neq$ v_2 , then there exists two DG $-$ open sets U, $H \in V$ such that $(v_1 \in U, v_2 \notin U)$ and $(v_1 \notin H, v_2 \in H)$, then there exist a DG – open set contains one of two points and no contains the other points . Hence (V, τ_{DG}) is $DG - T_0$ space .

Remark5.6: The converse of the above proposition is not true in general from the following example .

Example 5.7: Consider the digraph $D = (V, E)$, where $V = \{v_1, v_2, v_3, v_4, v_5\}$

The topology associated above digraph is

 $\tau_{DG} = \{\emptyset, V, \{v_2\}, \{v_5\}, \{v_1, v_2, v_5\}, \{v_1, v_2, v_3, v_5\}, \{v_2, v_5\}, \{v_2, v_3\}, \{v_2, v_3, v_5\}\}$, (V, τ_{DG}) is $DG - T_0$ space but not $DG - T_1$ space.

Now we the following theorems which investigate a digraph in term of the DG – separation axioms.

Theorem5.8: Let (V, τ_{DG}) be a DG – topological space associated with the digraph $D = (V, E)$. Then $\tilde{\psi}(i, i)$ or $\tilde{\psi}(i, i)$ iff (V, τ_{DG}) is a $DG - T_0$ space.

Proof: Let u_i and u_j denoted distinct arbitrary vertices of $D = (V, E)$. Then u_i is not indegree to u_j or u_j is not indegree to u_i iff by proposition 3.10 there exists an DG $-$ open set W such that $u_j\in W$ but $u_i\notin W$ or there exists an DG − open set U, such that $u_i \in U$ but $u_j \notin U$. Hence (V, τ_{DG}) is $DG - T_0$ space.

Theorem5.9: Let (V, τ_{DG}) be a DG – topological space associated with the digraph $D = (V, E)$. Then there does not exists an arc from any vertex of V to any other distinct vertex of A iff (V, τ_{nc}) is a $DG - T_1$ space or equivalently, iff (V, τ_{DG}) is a discrete space.

Proof: Let u_i, u_j be two distinct vertices of V such tat $u_i, u_j \notin E$ iff for each set consists of a single vertex is DG $$ closed. Then (V, τ_{DG}) is $DG - T_1$ space . Since (V, τ_{DG}) is allexondoff space , then each set consists of a single vertex is DG –closed iff every subset of V is a DG –open set, hence (V, τ_{DG}) is a discrete space .

References

[1] A.H.Mahdi and S. N. Al-khafaji , Construction A Topology On Graphs, Journal of Al-Qadisiyah for computer science and mathematics 12(2), 39-46,(2013),

[2] C. Marijuan, *Finite topology and digraphs*, Proyecciones (Antofagasta), 29, 291–307 (2010). https://doi.org/10.4067/s0716-09172010000300008.

[3] C. Vasudev, *Graph Theory with Applications*, New Age International Publishers, New Delhi, 2006.

[4] J. W. Evans, F. Harary and M. S. Lynn, *On the computer enumeration of finite topologies,* Comm. Assoc. Comp*.* Mach., 10 , 295-298 (1967).<https://doi.org/10.1145/363282.363311>.

[5] K.A. Abdu, and A. Kilicman, *topologies on the edges set of directed graphs*, International Journal of Mathematical Analysis, 12(2), 71-84 ,(2018).

[6] Kh.Sh . Al' Dzhabri., *The graph of reflexive-transitive relations and the graph of finite topologies*. Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki. 1 3-11 (2015).

[7] T. N. Bhargava, T. J. Ahlborn, *On topological spaces associated with digraphs*, Acta Mathematica Academiae Scientiarum Hungaricae, 19 , 47–52 (1968). https://doi.org/10.1007/bf01894678 .

[8] R. N. Lieberman, *Topologies on Directed Graphs*, Technical Reports Server TR-214, University of Maryland, 1972.