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1. Introduction

In the last few years, some authors have studied the oscillation theory of higher-order neutral differential equations
see references [1]-[2] and [6]-[9], a few of which have studied the oscillation of the system of neutral differential
equations [3],[4]. There are many applications for system of neutral differential equations in various fields such as
physics, biology, ecology, engineering, for example a neutral lotka-volterra system in the modeling of bio-dynamic,
etc. In this paper we discussed the oscillation of bounded solutions of system of nth order neutral differential
equations of the form

L2 X + 2 (Ox(@ ()] = (O (0:(D))

atn

i >t (1)
—m Y (®) + 02Dy (T2 ()] = q2() 2(x(02(8)))

We assume that the following hypotheses are satisfied:
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(H1) q4, 9, € C[[to, ), R],Tl,rz,crl,o'z € C[[to,OO), R],‘L’l(t) <t 1,(t) <t o (t) <t, 0,(t) <t limp,g 7,(t) = o,
lim;_,e 7o (t) = 00,lim,_, ¢ 0, (t) = o0, lim,_, 0,(t) = o, g5, g, are increasing functions.

(H2) py,p2 € C[[t0, ), R, 0 < py(6) <6, <1 , 0<po(t) <6, < 1.

(H3) f; € C[[tO,OO),]R],xﬁ-(x) >0,x+0,i=12 4 < % <A, , A3 < % <A,. We consider only those

solutions(x, y) of (1) which satisfy sup{|x(¢)|:t =T} > 0, sup{|y(¢t)|: t = T} > 0. As usual, a solutions of (1) is called
oscillatory if all of its components are oscillatory that is it has arbitrarily large zeros, otherwise is said to be

nonoscillatory.
2. Main Results

In this section two results are presented where some sufficient conditions obtained to ensure every bounded
solution of Sys.(1) either oscillate or nonoscillatory converges to zero as t — oo.
Theorem 1. Suppose that g, (t), q,(t) = 0 and (H1)-(H3) hold and

; n-1 (®
lim sup ¢ oy @ (s) ds > 1, -
lim sup t"~1 J:;:l(t) q2(s) ds > 1,

t—oo
Then every bounded solution of (1) either oscillates or converging to zero as t — oo.
Proof. Assume for the sake of contradiction that Sys.(1) has bounded nonoscillatory solution, (that is either
eventually positive or eventually negative). From (2) we get:

1 <limsupt™? f:il(t) q.(s)ds
1

t—oo

< limsuptn1 f:o q.(s) ds @)

t— oo

< lim sup f:o sl g, (s)ds.
t—-oo

We claim that (2) implies to,
f: s"1q,(s)ds = o and

L ty =t 4
ftl s qy(s)ds = oo, e ®

Otherwise if

jms”‘l q.(s)ds < . (5)

1

Then there exist t, > t; such that:

f s lg,(s)ds < 1.
t

2

this contradicts (3), in the same way we can show that,

f s 1q,(s)ds = oo,
t

1

Setting:

u(t) = x(0) + p1 (Ox(r, (@),
v(©) = y(©) + p,Oy(r, (@),
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From the integral identity:

w(t) = T E O + D[ (6 gyt w ). (6)
Where t > t;.

1. Assume that n is odd and the Sys.(1) has nonoscillatory solution, then we have the following cases:

1. Case 1. x(t) > 0,y(t) > 0 (the case x(t) < 0,y(t) < 0, is similar).

2. Then

u(t) >0, u™() >0, and
v(t) >0,vM@) =0, t=t; >t,.

Since n is odd and u(t) is bounded so we have only the following possible case:
u™ () > 0,u™ V() <0,..,u'(t) >0,ult) >0
v () >0, v V() <0,..,v'(t) > 0,v(t) >0
Further, we have
y(@) = v(t) = p2(0)y(z2(t)), then
0:(0)y(01(1) = a1 (O (01(1)) = 41 (O)P2(01 (D)) (72(01())) ()
~q1 (P2 (01 (D) v(72(01 (1)) < —q1()p2 (01 (D)) (72(01 (1))).

From the equation (6), we obtain:

( )l k (_ )n k s o

( — i- u® 7 _\n 1.,(n)
”k)(t)—Ei i o RO R o 1),jt(€ 0" UM ©)de.
Let k = 1 then:

1 N
WO =G z)!f € - 0" u™E©)ds,
1 N
“(n- z)lf CE-"?qOf (y(al(f))) dé
2). f € - 0" q(y(0:()dg,

2), f (€ - 0" 2@ ©v(@:©) — 4 @pa(01(©)y (122 (©) e,

j (£ - "2 @OV ©) - O (r2(02(0) ),

2)'
z(n = f -0 2(1—pz(al@)))ql(s)v(rz(al@))) i,
v T2(01(t)) s
v = % J (€ = " 2(1 = py(0:(9) )4 () dé.

Integrating the last inequality from t; to s we get the following:

A 2011 °
%E;‘lgt)))f =" (1= P () 0 (6) df

Letting s — oo and by using (4) we get a contradiction from the last inequality.

u(s) —u(ty) =

Case 2. x(t) > 0,y(t) < 0 (the case x(t) < 0,y(t) > 0is similar to case 2). Then
u(t) >0, u™(t) <0, and v(t) < 0,v™(t) >0, t=>t =t
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We have only the following possible case:
u™ ) < 0,u™ V() >0..,u'(t) <0,ult) >0,
v® () >0,..,v(t) >0,v(t) <0, t=>t; >t,.
Further, we have
v(t) = y(6) + p2(0)y(72(t)) then v(t) < y(0).
By equation (6), we obtain:

n-— i-k _1\n—k t
w0 = Y - k(( = <l>(t)+% | @-nrerum @

T = t,.Letk = 0 then:

W) > - f (& — Ty 1 u®™ (©)de,

1)r

> _Tl)'f E-T)" 1, (Of (3’(01(5))) dg

b [ - @y

We claim that llm sup y(t) = 0 otherwise llm supy(t) < 0.So there exist ¢; < 0 such that limsup y(t) <c¢, < 0.

t—>oo

Hence there exists t, = t;, y(t) < ¢, for t = t, we get

u(ty) = (E — )" g1 (§)d§.

—A,c
(n 1)'
Letting t — oo in the last inequality we get a contradiction. Hence limsup y(t) = 0.

t—-oo

Then there exists a sequence {t,}such that lim ¢, = o and 11m y(t,) = 0. Since v(t) is monotone bounded

n—-oo

function, let tllm v(t) =L <0,
—00

v(ty) = y(tn) + P2 ()Y (72 (),
> y(t,) + 6,v(12 ().
Asn — oo thenwegetL > §,L or L(1—4,) =0, thisis possible only when L = 0. This implies that: lim,_,, y(t) =
0, since v(t) < y(t) <0.
2- Assume n is even and Sys.(1) has nonoscillatory solution then the following cases must be consider:
Case 1. x(t) > 0,y(t) > 0 (the case x(t) < 0,y(t) < 0is similar).
Then u(t) > 0,v(t) > 0,u™ (@) >0, v™(@) >0, t >t, > t,.
In this case we have only the possible:
u™ () > 0,u™ V() <0...,u'(t) <0,u(t) >0,
™) = 0,v V() <0..,v'1t) <0,v(t) >0, t=>t, >t,.
Further, we have
u(t) = x(t) + p1(Ox(71(0)).

From the equation (6), we obtain:

i—k (t=T) i
V() = B D D00 +

where T > t;.Let k = 0 then:

f(s‘ T v (©)ds,

—k-1)!-T
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v 2 gy f@rwwmmﬁ

1)'

1)|f E-T""q:(Of (x(az(f)))
2

= 31)|f (€ =) q2(E)x(02(9))ds.

We claim that lign inf x(t) = 0 otherwise llgn inf x(t) > 0.So there existc, > 0such that li{n infx(t) =c, > 0.

Hence there exist ¢, = t;, large enough such that x(t) >, for t > ¢t,.

v(t) =

= wf@—M”Wwa

Letting t — oo we get a contradiction. Thus li?lionf x(t) = 0, so there exists a sequence {t,} such thatlim,,_,t, =
oo and lim,_,, x(t,) = 0.
Since u(t) is monotone and bounded then lim,_, u(t) = [ = 0. From the equation,
u(ty) = x(tn) + p1(6)x(11(t4))
it follows that:
u(ty) < x(t) + 81u(r1(ty),

As n — oo we get from the last inequality [ < §;1 that is (1 —6,) < 0, this is possible only, when ! = 0. This
implies to lim;_,,, x(t) = 0, since x(t) < u(t).
Case 2. x(t) > 0,y(t) < 0 (the proof of the case x(t) < 0,y(t) > 0 is similar).
Then u(t) > 0,v(t) < 0,u™(t) <0, v™(t) > 0,t > t, > t,, and we have only the possible case:

u™ () < 0,u™ V() >0...,u'(t) > 0,u(t) >0,

v™(@#)=0,..,v' () <0,v(t) <0, t>t; >t
Further, we have

y(®) = v(t) — po(O)y(72(t)). Then
q:1(©)y(1(t)) = q:(O)v(01(t)) = g1 ()P (01 (£))y (T2 (01(D)))-
0. (0Y(0,(0)) = 02 (OV(0:(1)) = @1 ()P (03 () (22(01 () = 1 (P2 (02 (8))v (T2(02())):

From the equation (6), we obtain:

n-1 i-k —1)nk s
W@ =y HETT a0 + s [ (- e,

Since n is even and let k = 1 then:

WO = g [ €0 u

Z—G;ﬁig=omwﬁwxﬂq@nﬁ

Ay s
> -2 [ - 0 ©Ona©)s

> - DJ@—W%M&@£Dq£m@®w@@@m@
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> - z>| f (¢ = 0" 2@ Ev(@:(D) = @01 (z2(01(D)) e,
. —FZZ)! [ €~ 02 - m(e@)a©v (rl©))

W) > - v((0®)) [ €020 - p(a@)a @) d.

Az
(n—2)!
Integrating the last inequality from ¢; to s.

v T2(01(t1)) Sors
u(s) —u(ty) = —Enfz)!)'[l ) ¢E-nra- pz(ﬂ(f)))‘h(f) dédr.

A v TZ(Ul(tl))

((n— f €~ )" (1~ pa(0: (O ©E.
Letting s — oo we get a contradiction. O

Theorem 2.Suppose that q,(t), g,(t) < 0,and (H1)-(H3) hold and

lim sup t™~ 1f 1 qi(s)lds > 1,
t—oo ® (2’)
lim sup t™~ 1f 1(t)lqz(s)lds > 1,

t—>oo
Then every bounded solution of (1) either oscillates or converges to zero.
Proof. For the sake of contradiction assume that system (1) has bounded nonoscillatory solution, (either eventually

positive or eventually negative). In similar way as in theorem 1 we can show that (2") implies to

f s"Mqi(s)lds =0 and [ " gy(s)lds = o0, 2. (4)
t

1 31

Setting:

u(®) = x() + p(Ox(r, (V)

v(t) = y(®) + P, (Oy((O)
1- Assume thatnis odd and the system (1) has nonoscillatory solution, then we have the following cases to
consider:
Case 1.x(t) > 0,y(t) >0 ( the case x(t) < 0,y(t) < 0can be treat in similar way). Then u(t) > 0,v(t) >
0,u™(t) <0, v™W() <0, t=>t; >t,.
Since n is odd so we have only the following possible case:
u™ () <0,u™ V() >0..,u'(t) <0,u) >0, v™E)<0,..,v'(t) <0,v(t) >0, t >t; >t,.
From the equation (6), we obtain:

- ik _qyn—k
wie) = ) o w00 + . [ € -t s

Let k = 0 then:

u(ty) > - f (€ — e U™ (E)de,

1)'

S — f €~ )" g O1f: (Y(02(©)))
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Z =11 1)| tl(s‘ t)" g1 (O)Ny(01(8))dé.

We claim that lign infy(t) = 0 otherwise hgn infy(t) > 0. So there exist ¢c; > 0 such that li{n infy(t) = ¢, > 0.

Hence there exist t, > t;, y(t) = ¢, for t > t,.

u(ty) > — f (€ — £)" |g, (©)]de.

1)'
Letting t — oo in the last inequality, we get a contradiction. Hence llgn infy(t) = 0.
Then there exists a sequence {t,}such that lim t, = © and lim y(t,) = 0.

n—-oo n—-oo

Since v(t) is monotone bounded function then:

lim v(t) = L = 0. Then by using

00
v(tn) = y(tn) + P2 ()Y (12(t,)) < ¥(t,) + 8,0(7 ().
Asn — oo wegetL < §,L or
L(1 - 6,) < 0, this is possible only when L = 0. Which implies that:
tll)r?o y(t) =0, since v(t) = y(t).
Case 2. x(t) > 0,y(t) < 0 (the case x(t) < 0,y(t) > 0 can be treat in similar way. Then u(t) > 0, v(t) <
0,u™(t) >0, v™W(t) <0, t>t, >t,
We have only the following possible case:
u™ @) = 0,u™ V() <0...,u'(®) >0, u(t) >0, vP(@E)<0,.., v'({t) <0, v(t) <0, t=t; >t,.
Further, we have
y() = v(t) — p2(O)y(72(t)), hence
0 (O)y(01(D) = a1 (O (01(D) — 41 (O)P2(01 ()Y (72 (01 (1)),
AGHCAG)EXAGHGIO)!
~q:(O)v(01(1)) < —q1(O)y(01(1)) — 41 (P2 (011 )v (72 (01(1))) < —q1 ()2 (01.(1))y (z2(02 (D))

From the equation (6), we obtain:

=) O e
(k) — ik (l) s 7 _ n-k-1,,(n)
O I i ey O e ] NG R L2

Let k = 1 then:

ORe f & — "2 UM ()d,

2)'

> o) €~ 0 R (@) as

> 2 [@- o a@y(a,

> f (£ - "2 @) = 4 ©pa(n )y (o) e,

] €0 - @)a©p (no)
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A [
> s | (6= 0 @©Or@©) — 6 ©Op (@) (2O,

A s
w® 2 v (m(00) [ € -0 - p(a@Da@ds

Integrating from t;to s we get the following:

u(s) — u(t) > s

v(r(0@) [ €= - pa@)a ) ds.

Letting s — oo we get a contradiction from the last inequality.
2- Assume n is even and system (1) has nonoscillatory solution in the following cases:
Case 1.x(t) > 0,y(t) > 0 (thecase x(t) < 0,y(t) < 0 can be treated in a similar way). Then
u(t) > 0,v(t) > 0,u™() <0, v™(t) <0, t >t; > t,.We have only the following possible case:
u™ @) <0,u™ V() >0..,u' @) >0, u®) >0, v™E)<0,..,v' () >0, v(t) >0, t>t, >t,.
Further, we have
y(®) = v(t) — p Oy (72(V)),
71Oy (1)) = q:(Ov(01()) — 41 ()2 (01 (1)) y (72 (01 (1)),
AONGIG)EXAGHCAG)
—q1 (O (0:(0)y(12(0, (1)) < —q: ()P (0:(®))v (72 (0:.(1))),

From the equation (6), we obtain:

n-1 —t.)i"k _1\nk t
W) = ) O © + gy [ € e @

Let k = 1 then:

1 N
WO 2~y [ € - 0r P u @,

2)|f E-0" 2l @lfs (y(al(f)))

A1

> B - |q1(f)IY(61(E))dE,

> o | €~ 0 e ©) I ©lp () (raon )i,

2), f (&~ " 20O (0:(O) ~ 10 Olp2 (02O (2202 () e,

> 2), [ o=@ a©(ne)d

u'(t) =

Integrating from t; tos we obtain:

v (72(0:(0)) 7€ = 0" 21 = P02 (D) as (©)] €.

(n—2)!

YR s
u(s) —u(t) 2 v (o (1)) f LG A CIODEAGIES

Letting s — oo in the last inequality we get a contradiction.

Case 2. x(t) > 0,y(t) < 0 (the case x(t) < 0,y(t) > 0 can be treated in a similar way).
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Then u(t) > 0,v(t) < 0,u™(t) > 0,v™(t) <0, t > t, > t,. We have only the following possible :
u™ () > 0,u™ V() <0..,u'(t) <0, u(t) >0, v™W(@) <0,..,v'(t) >0,
v(t) <0, t=>t; >t,.
Further, we have
u(t) = x(t) + p,(t)x(r,(t)) Then u(t) = x(t).

From equation (6), we obtain:

v®(ty) = Zn 1( D k(t(—lk))l, O +

n-k t
S R A3

Let k = 0 then:

v(ty) < ( (E —t)" 1V(n)(f)df

D),

<=1 f €~ 6" @O (x(02(©))) g

== 1)|f (€ = t)" " q2(O)x(02(9))ds,

We claim that lign infx(t) = 0 otherwise lign infx(t) > 0. So there exist ¢; > 0 such that li{n inf x(t) = c¢; > 0. Hence

there exist t, = t;, x(t) = ¢, for t >t,.

v(ty) < (f — )" g, (§)d¢ .

( 1)'

Letting t — oo in the last inequality, we get a contradiction. Hence lim infx(t) = 0. Then there exists a sequence

{t,.} such that lim t, = c0 and 11m x(t,) = 0. Since u(t) is monotone bounded function then: llm u(t)=L =0,

n—oo

u(t,) = x(t,) + P (E)x(T1(t0)) < x(8,) + S1u(Ty (82)).
Asn - oo, we get L < §;L or L(1—68;) <0, this is possible only when L = 0. Which implies that:lim,_,., x(t) = 0,
since u(t) = x(t). o
3. Applications
In this section, two examples of an oscillatory solution are presented, we think that examples of a nonoscillatory
solution tend to zero can be expressed more easily than an oscillatory solution.

Example 1. Consider the system of neutral differential equations
[x(t) + G + écos(Zt)) x(t — 27r)] = (g + écos(Zt)) y(t —m),
[y(t) + G + écos(Zt)) y(t — 27r)] = (g + %cos(Zt)) x(t — 2m),

4 1 17 23
q:(t) = q2(t) = ;1 ECOS(Zt) , Then o< q:(t),q, () < =

t>0. (3)

7,(t) = t — 21, lim, o T, (£) = 00, T,(t) = t — 21, lim,,o T, (t) = 0,

o, (t) =t — 1, limy, e 01(t) = 0, 0,(t) =t — 21, lim,_,o 0, (t) = oo,

p.(t) = §+ %COS(Zt). p,(t) = % + écos(Zt), hence % < pi(), p,(0) < 1_85
f(®) =y®), fo(x(®) = x(t)
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t

t t
¢t f (s)ds =t? f <i +1cos(25)) ds > tzfgds > Hts
" - 35 =t =1t
t1 0 0
Then
t
lim "t fql(s) ds =
t1
According to theorem 1 every solution of Sys.(3) oscillates. For instance the solution

sint cost . .
(x(t),y(®) = (§+%Cos(m ,§+%COS(2t)). Is such an oscillatory solution . o

Example 2. Consider the system of neutral differential equations

rrr

1 1 3 1. 3
[x(t) + (E + Zsm(Zt)) x(t — 271)] = (_E + Zsm(Zt)) y(t — 7)

rmnrr

1 1 3 1. T
[y(t) + (E + Zsm(zo)y(t - Zn)] = (-2 +5sin@)x(t-2),e20 @)

q,(t) = q,(t) = —;+%sin(2t) , then —% < q(t),q.(t) < —Z,
7,(t) =t — 2m, P_}rglo 7,(t) = 00,7,(t) =t — 21 tll_)rg 75(t) = oo,
o, (t) =t—7ﬂ, tlirgal(t) =00,c72(t)=t—g, tli_}rg@(t)z%,
pi(t) = +7sin(2t) ,p,(t) = +7sin(2t), then = <p,(t),p,(t) <2,

A®)=y®), fL&©®)=x@®).

4
gt fttllql(s)l ds =t3 f0t|—%+%sin(25)| ds > t3 fot%ds = 5%.

t
Then tlim gt f|CI1(S)| ds = o,
ty

According to theorem 2 every solution of Sys.(4) oscillates. For instance the solution

sint cost
= i h ill lution.
(x(®),y(®) (g+%sin(2t) , %+%sin(2t)) is such an oscillatory solution

4. Conclusions

In the present paper, we have studied the oscillatory and asymptotic behavior solutions of an nth-order nonlinear
system of neutral differential equation (1). As has been illustrated through two examples, the results obtained show
that under certain conditions, every bounded solutions of Sys.(1) oscillate, or nonoscillatory tend to zero as t goes

to infinity.
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