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A B S T R A C T 

The classical Wilks’ statistic is mostly used to test hypotheses in the two way multivariate 

analysis of variance (MANOVA), which is highly sensitive to the effects of outliers. The non-

robustness of test statistics based on normal theory has lead many researchers to study 

different options. In this paper, we presented a robust version of the Wilks’ test statistic based 

on highly robust and efficient is  reweighted minimum covariance determinant estimates 

(RMCD). Monte Carlo simulations are used to evaluate the performance of the test statistics 

under various distributions. In addition, type I error rate results and test power are 

considered as statistical tools for comparing test statistics.  
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1 . Introduction"" 

 

Two-way multivariate analysis of variance (MANOVA) deals with testing the effects of the two factors on the 
measured observations with or without the effects of interaction between the factors. To formalize the two-way 
multivariate model, it is assumed that  two factors (row and column) R  with r  levels and C  with c  levels and 

i j 1 i j 2 i j n, ,… ,y y y are independent observations of size n  have p -variate normal distribution with mean vector 

i jμ and equal covariance matrix Σ  for all i = 1,2 ,…,r , j = 1,2 ,…,c . The fixed model for two-way 

MANOVA with interactions is 

.

ijk i j ij ijk

ij ijk

= + + + + ,

= + , i = 1 ,2 ,… ,r , j = 1 ,2 ,… ,c, k =1,2 ,… ,n

y μ α β γ ε

μ ε
                                                     (1.1) 
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where μ  is an overall effect, iα  is the 
th

i  level effect of the row factor R , 
jβ  is the 

th
j  level effect of the factor 

C , i jγ  is the interaction effect between the 
th

i  level effect and the 
th

j  level effect, and kjiε  is an error 

random vector that is assumed under classical assumptions to be independent and identically distributed as 

Σ),(N p 0   for all , ,i j and k  . Additionally, we have  

.   
r c r c

i j ij ij
i=1 j=1 i=1 j=1

= = = = 0α β γ γ  

Then, the null and alternative hypotheses for testing the row effects iα , column effects jβ , and interaction effects 

ijγ , can be written respectively as :  







0R 1 2 r

1R i

H : = = ... = = 0

H : at least one of  0

α α α

α
                                                                                                                                                            (1.2) 

 






0C 1 2 c

1C j

H : = = ... = = 0

H : at least one of  0

β β β

β
                                                                                                                                                           (1.3) 







0 RC 1 1 12 r c

1RC i j

H : = = ... = = 0

H : at least one of  0

γ γ γ

γ
                                                                                                                                                         (1.4) 

 
Four test statistics are used for testing the hypothesis in multivariate case[12] : Wilks’ statistic (1932), Lawley – 
Hotelling statistic  (1938-1951), Pillai's  statistic  (1955), and Roy’s statistic (1964).     

The Wilks’ test statistic Λ  (1932) is mostly used, which is defined as: 

    
E

Λ = .
E + H

                                                                                                                                                                                            (1.5) 

where H  and E  "between" and " within" matrices.  

So, the Wilks’ test statistics  for testing  the null hypothesis  0H  in (1.2) ,(1.3), and (1.4) can be define respectively  

as : 

R

R

E
Λ = ,

E + H
                                                                                                                                                                                       (1.6) 

C

C

E
Λ = ,

E + H
                                                                                                                                                                                       (1.7) 

RC

RC

E
Λ = ,

E + H
                                                                                                                                                                                  (1.8) 

where   


r c n

t
ijk ijkij ij

i=1 j=1 k=1

E = ( - )( - ) ,. .y y y y                                                                                                                                            (1.9) 

,
r

t
R i i

i=1

H = c n ( - )( - ). . ... . . ...y y y y                                                                                                                                         (1.10) 

,
c

t
C j j

j=1

H = r n ( - )( - ). . ... . . ...y y y y                                                                                                                                         (1.11) 


r c

t
RC ij i j ij i j

i=1 j=1

H = n ( - - + )( - - + ) ,. .. . . ... . .. . . ...y y y y y y y y                                                                                             (1.12)                                                                                                       

where  



Abdullah A. Ameen   , Aseel A. Jaaze                                                                                                                                                JQCM - Vol.11(3) 2019 , pp stat 1–23     3  

 

 

 

 


c n

ijki
j=1 k=1

1
=. . c n

y y ,   
r n

ijkj
i=1 k=1

1
=. . r n

y y ,    
n

ijkij
k=1

1
=. n

y y ,  .
r c n

ijk
i=1 j=1 k=1

1
=. . . r c n

y y  

The null hypotheses of 0RH , 0CH , and 0RCH  are rejected if 
H ER

R α ,p ,v ,vΛ Λ , 
H EC

C α ,p ,v ,vΛ Λ , and


H ERC

RC α ,p ,v ,vΛ Λ respectively where 
H ER

α ,p ,v ,vΛ ,
H EC

α ,p ,v ,vΛ , and
H ERC

α ,p ,v ,vΛ  the tabulated values with level of  

significance α  and  the degrees of freedom p , 
Ev = rc(n- 1) ,

RHv = r - 1 ,
CHv = c - 1 , and 

R CHv = (r - 1)(c - 1) . 

Alternatively, the two-way MANOVA model without interactions is  

.

ijk i j ijk

ij ijk

= + + + ,

= + , i = 1 ,2 ,… ,r , j = 1 ,2 ,… ,c, k =1,2 ,… ,n

y μ α β ε

μ ε
                                                                             (1.13) 

Using the 
RCH  instead of E  in (1.6) and (1.7). The Wilks’ statistics for testing the row effects 

iα  and the column 

effects 
jβ  are:   

RC
R

RC R

H
Λ = ,

H + H
                                                                                                                                                                              (1.14)   

RC
C

RC C

H
Λ = .

H + H
                                                                                                                                                                               (1.15) 

The null hypotheses of 
0RH , and 

0CH  are rejected if 
CRHRH v,v,p,αR  , and

CRHCH v,v,p,αC   respectively 

where 
CRHRH v,v,p,α , and

CRHCH v,v,p,α  the tabulated values with level of  significance   and  the degrees of 

freedom p , 1 crrcnv
CRH

, 1 rv
RH

, and 1 cv
CH

.  

Most classical statistics are extremely sensitive to the effect of outliers (Beakman and Cook [3]). Several statistics 
that are robust against possible outliers in the data have been presented. In 1985, Nath and Pavur [9] presented an 
alternative statistic for the one-way MANOVA depend on the rank order of the data. In 2010, Todorov and Filzmoser 
[14] introduced a  robust Wilks’ statistic for the one-way MANOVA depend on RMCD estimator. Van Aelst and 
Willems (2011) [15] used S and MM-estimators to construct a  robust Wilks’ statistic for testing the hypotheses in 
the one-way MANOVA. Wilcox (2012)[16] suggested a one way MANOVA testing procedure based on trimmed 
means and Winzorized covariance matrices. Spangl (2018) [13] extended the approach of Todorov and Filzmoser 
(2010) to two-way MANOVA designs and used  robust Wilks’ statistics based on the minimum covariance 
determinant estimator. Ameen and Hadi (2019) [2] presented a robust version of the Wilks’ statistic for the one-way 
MANOVA based on RMCD and constructed its approximate distribution.  To perform the robust Wilks’ test statistic 
that proposed by Spangl, it will take a lot of time . Therefore, in this the present study, the same robust Wilks’ 
statistic, which proposed by Spangl is used but with different weight function. The novel of the study is that, 
construct another an approximate distribution for this statistic. The MCD estimator that proposed by Rousseeuw in 
(1985) [11] is a highly robust location and scatter estimator that is used for this reason. Reweighted MCD estimator 
(RMCD) can be used to increase efficiency while maintaining high robustness in section 2. The robust Wilks’ statistic 
is reviewed in section 3. In section 4, we are constructing the approximation proposed and testing its accuracy. A 
simulation study is used to evaluate the statistical performance proposed and to compare the different test statistics 
in different distribution cases in terms of significance level, test power and robustness. Section 5 describes the 
simulation study and its results. 
 
2. Minimum Covariance Determent (MCD) Estimator  
 
The MCD estimator introduced by Rousseeuw (1985)  looks for a subset of h  observations with the lowest 

determinant of the sample covariance matrix, where the subset size h  is selected between half and the full size of 
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sample. The mean observations of the subset h  represent the MCD location estimate T  and a multiple of its 

covariance matrix is  the MCD scatter estimate C . The effective algorithm for calculating the MCD estimates is found 
in most known statistical software packages such as SASPlusSR ,,  , and Matlab . For computing the MCD and the 

related estimators, the FAST-MCD algorithm of Rousseeuw and Van Driessen (1999) [10] will be used as 
implemented in the R  package. To increase the efficiency of the MCD estimator, a reweighted version is used. 
Several methods have been proposed to estimate the common covariance matrix. The method which was introduced 
by He and Fung (2000) [7] for S  estimates and by Hubert and Van Driessen (2004) [8] for MCD estimates is used. In 

this method, the observations 
ijky  are centered and pooled as a single sample  

ijkZ z  to estimate the covariance 

matrix. First, it starts by computing the location estimates .ijm  for all ri ,,2,1   , and cj ,,2,1   as the  

RMCD location estimates.  These group means .ijm  are swept from the original observations 
ijky for centralized 

observations 

.ijijkijk m yz                                                                                                                                                                                  (2.1) 

Second, the common covariance matrix Z̂  is estimated as the RMCD covariance matrix of the centered 

observations Z . Finally, the location estimate 
Zμ̂  of Z  is used to adjust the group means  

Z
ˆˆ μμ  .ijm.ij .                                                                                                                                                                                   (2.2) 

In order to increase efficiency while retaining high robustness, one can apply the RMCD estimators. By using the 

final obtained estimates .ijμ̂  and Z̂  we can calculate  the Mahalanobis distances as: 

)ˆ(ˆ)ˆ()( 1-

Z .y.yy ijij μμ  ijk

t

ijkijkMD                                                                                                                                                 (2.3) 

With  these initial robust distances, we can define the weight ijkw  for each observation
ijky   computed by the Huber 

weight function defined as: 





 


otherwise

MD
w pijk

ijk

,0

)(,1 2

975.0,y                                                                                                                                                        2.4) 

3. The Robust Wilks’ Statistic 

The effect of outliers on the quality of the hypothesis test, which is based on the classical statistics, makes most of 

the researchers using robust statistics instead of the classical ones. Spangl [13] proposed a robust version of the 

Wilks’ test statistics for two-way MANOVA model with interactions in (1.1) based on the reweighted MCD 

estimator as: 

,RΛ

Rww

w

R

HE

E


                                                                                                                                                                                   (3.1) 

,RΛ

Cww

w

C

HE

E


                                                                                                                                                                                  (3.2) 

,RΛ

CRww

w

RC

HE

E


                                                                                                                                                                               (3.3) 

where   

,)
.

()
.

(
1 1 1


  


r

i

c

j

n

k

t

wijkwijkijkw
ijij

wE yyyy                                                                                                                               (3.4) 

,).....().....(..
1





r

i

t

wwwwiw iiR
wH yyyy                                                                                                                                 (3.5) 



Abdullah A. Ameen   , Aseel A. Jaaze                                                                                                                                                JQCM - Vol.11(3) 2019 , pp stat 1–23     5  

 

 

 

 

,).....().....(..
1





c

j

t

wwwwjw jjC
wH yyyy                                                                                                                                 (3.6) 

,)........)(........(.
1 1


 


r

i

c

j

t

wwwwwwwwijw jiijjiijRC
wH yyyyyyyy                                                                          (3.7)         

where 


 


c

j

n

k

ijkijk

i

w w
wi

1 1..

1
.. yy ,  

 


r

i

n

k

ijkijk

j

w w
wj

1 1..

1
.. yy ,    




n

k

ijkijk

ij

w w
wij

1.

1
. yy , and  

  


r

i

c

j

n

k

ijkijkw w
w 1 1 1...

1
... yy . 

where 


 


c

j

n

k

ijki ww
1 1

.. , 
 


r

i

n

k

ijkj ww
1 1

.. ,   



n

k

ijkij ww
1

. , and   
  


r

i

c

j

n

k

ijkww
1 1 1

...  

Alternatively, the robust Wilks’ test statistics for two-way MANOVA model without interactions in (1.13) are: 

RRC

RC

ww

w

R
HH

H


RΛ                                                                                                                                                                                    (3.8)             

CRC

RC

ww

w

C
HH

H


RΛ                                                                                                                                                                                   (3.9) 

4. The proposed approximation distribution of Wilks' statistic 

The distribution of classical Wilks’ statistic  , which was considered by Anderson (1958) [1] as a ratio of two 

Wishart distributions, is very complicated. Therefore, the asymptotic approximation based on F  or 
2

distributions are used . 

Bartlett introduced a good approximation based on 
2 distribution of the Wilks’ statistic given by (see [4]): 

  2

vpHE H
χvp

2

1
v 








 Λln1- .                                                                                                                                                 (4.1)  

Todorov and Filzmoser are assumed for the robust Wilks’ test statistic ΛR  in one way MANOVA the following 
approximation: 

,Λ)(ln- 2

qdRL                                                                                                                                                                             (4.2) 

where the multiplication factor d  and the degrees of freedom q  of the 
2  distribution defined as: 

)(
1

LE
q

d  ,  
)(

))((2 2

LVar

LE
q  . 

Spangl extends  the  approximation  of Todorov and Filzmoser (2010) [14] for  the robust Wilks’ test statistic ΛR  in 
two way MANOVA : 

The mean )(LE  and variance )(LVar  of the approximation L  are not possible to obtain analytically. So, they are 

determined by simulation after repeated 𝑚 times as follows: 
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For a given dimension p , number of levels cr , , and sample size n  in each factor combination group, samples 

( )

111{ ,..., ,..., }ijk rcny y y y  of size rcnN   from the p -variate standard normal distribution will be generated, 

i.e., Σ),(N~ pijk 0y  for all .,,2,1,,,2,1,,,2,1 nkcjri    For each sample the robust Wilks’ test statistic 

ΛR  based on the weighted MCD will be calculated. After performing 3000m  trials, the sample mean and 

variance of L will be obtained as: 





m

L
m

Lave
1

1
)(



   ,        






m

LaveL
m

Lvar
1

2
)(

1

1
)(



  

To perform the robust Wilks’ statistic that proposed by Spangl   , it will take a lot of time during simulations to find 

d  and q  for approximate distribution. Therefore, in this the present study, the same robust Wilks’ test statistics, 

which proposed by Spangl is used with different weight function, denoted as the modified robust Wilks’ statistic 

ΛM (i.e. RΛM ). The novel of the study is that, is that, construct another an approximate distribution for this 

statistic.   The matrices 
RH , 

CH , 
RCH  , and E  in (1.9)- (1.12) can be written as: 

YJAYH rcn

t

R 









rcn

1 , YJBYH rcn

t

C 









rcn

1 , YJBAMYH rcn

t

RC 









rcn

1 , and 

YMIYH rcn

t

E 









rcn

1 . Where t

rcnijkY ),,,,( 111 yyy   is the data matrix, t

rcnrcnrcnJ 11  ,  







 cnJ

cn
diagA

1
 

is a block diagonal matrix with rr  blocks of size cncn  , 







 rnJ

rn
diagB

1
 is a block diagonal matrix with 

cc  blocks of size rnrn  , 







 nJ

n
diagM

1
  is a block diagonal matrix with rcrc  blocks of size nn .  

Therefore, the degrees of freedom 

1
rcn

1









 rJAtracv rcnH R

, 1
rcn

1









 cJBtracv rcnH C

 , 

  111
rcn

1









 crcrrcJBAMtracv rcnH RC

, and    1 nrcrcrcnMJtracv rcnE
 

Analogously we can be written the matrices
RwH , 

CwH , 
RCwH  , and wE  in (3.4)- (3.7) as formulas: 

YJAYH
rcnR ww

t

w 









rcn

1
, YJBYH

rcnC ww

t

w 









rcn

1
, YJBAMYH

rcnRC wwww

t

w 









rcn

1
,  

and  YMIYH ww

t

w rcnE










rcn

1
 , where 










  kjiijkw ww

w
J

rcn

...

1
 is a matrix of size rcnrcn ,  











  kjiijk

i

w ww
w

diagA
..

1
 is a block diagonal matrix with rr  blocks of size cncn  , 














  kjiijk

j

w ww
w

diagB
..

1
 

is a block diagonal matrix with cc  blocks of size rnrn  , 













  kjiijk

ij

w ww
w

diagM
.

1
  is a block diagonal 

matrix with rcrc  blocks of size nn ,and  
ijkw wdiagI   is a diagonal matrix of size rcnrcn . So, the degrees 

of freedom: 
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wMItracv
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1 1 .
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...

...

..

..

1 w
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v
JAtracv
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wwH
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,  
...

...

..

..

1 w

v

w

v
JBtracv

c
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j

wwH
Cw

 


,  

and    
...

...

..

..

..

..

.

.

111 1 w

v

w

v

w

v

w

v
JBAMtracv

c

j j

j
r

i i

i
r

i

c

j ij

ij

wwwwH
RCw

 
 

. 

where 


 


c

j

n

k

ijki wv
1 1

2

.. , 
 


r

i

n

k

ijkj wv
1 1

2

.. ,   



n

k

ijkij wv
1

2

. , and  
  


r

i

c

j

n

k

ijkwv
1 1 1

2

... . 

Also, the matrices 
RH , 

CH , and 
RCH   in (1.9)- (1.12) of two-way MANOVA without interactions can be written as 

formulas: 

YJAYH rcn

t

R 









rcn

1
, YJBYH rcn

t

C 









rcn

1
,and   YJBAIYH rcnrcn

t

RC 









rcn

1
 with the degrees 

of freedom 1 rv
RH

, 1 cv
CH

, and 1 crrcnv
RCH

. 

Analogously we can be written the matrices
RwH , 

CwH , and 
RCwH  in (3.4)- (3.7) as formulas: 

YJAYH
rcnR ww

t

w 









rcn

1
, YJBYH

rcnC ww

t

w 









rcn

1
,and YJBAIYH

rcnrcnRC wwww

t

w 









rcn

1
 with 

degrees of freedom  

...

...

..

..

1 w

v

w

v
v

r

i i

i
H

Rw




,

...

...

..

..

1 w

v

w

v
v

c

j j

j

H
Cw




, and   

...

...

..

..

..

..
...

11 w

v

w

v

w

v
wv

c

j j

j
r

i i

i
H

RCw
 



.        

The weight ijkw  for each observation ijky   computed by the Hample weight function defined (see Campbell, (1980) 

[5]) as: 





 


otherwiseMDd

dMD
w

ijk

ijk

ijk
,)(/

)(,1

1

0

y

y
                                                                             

 
where 

2

1b
pd0  ,  






















 


2

2

0

0

)(

2

1
exp

b

dMD
dd

ijk

1

y , 2b1  , and 1.25b2  . . 

In similar manner, to the 
2  approximation of the classical Wilks' statistic Λ  in (4.1), we can define for ΛM   the 

following approximations:  

 - 1 ln( Λ)
w w Hw

2

E H pv

1
v p v M χ

2

 
    

 
                                                                                                                                   (4.3) 

  5. Monte Carlo Simulation 

      Monte Carlo study is conducted to  evaluate the performance of the proposed test statistics. The evaluation of  
the performance of any test statistics involves two measures: significance level (the type I error rate) and the power 
of the test. To compute the simulated : significance level and the power of the test for classical statistics and 
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proposed robust statistics  under various distributions( p - variate normal and contaminated distributions),  let us 

consider several dimensions  6,2p , number of levels  5,3,2, cr , and number of samples 

 50,30,20,10n  assuming an equal sample size in each factor combination group. The different designs for  

two-way MANOVA with and without interactions are given in Table 1.  

 

Table 1: Selected designs for the simulation study 
r c p n 

2 
 

3 
 

5 

2 
 

2 
 

2 
 

2 
6 
2 
6 
2 
6 

             10           20          30 
             20           30          50 
             10           20          30 
             20           30          50 
             10           20          30 
             20           30          50 

 
                                                                         the significance level α is set to 0.05.           
 
5.1 Significance level 
To study the attained significance level of the test statistics in two way MANOVA , it is  assumed that the 

observations come from the same multivariate distributions under the null hypotheses of
iα , 

jβ  and  
jiγ being 

zero, i.e., μμμμμ  cr ij211 1
 , with ri ,,2,1  and cj ,,2,1  . Since the considered statistics are 

an affine equivariant, without loss of generality, we can assume that 0μ  t)0,,0,0(  , and the covariance matrix 

to be pI . Thus, for each design listed in Table 1 we generate the observations 
ijky  of size rcnN   have p - 

variate normal distribution ),( pp IN 0 . Thus, the classical Wilks' test statistics   ,  the robust Wilks' test 

statistics R   ,and the proposed  robust Wilks' test statistics M  are calculated . This is repeated 3000m   and 

the percentages of values ˆ ( ) /L T m   , ( )L T  is the number of times of the test statistic rejects the hypothesis 
0H  

when 
0H  is true, of the test statistics which are above the appropriate critical value of the corresponding 

approximate distribution are taken as an estimate of the true significance level. The p -value plots proposed by 

Davidson and MacKinnon (1998) [6] are used ,which give more  complete picture of how test statistics follow the 

approximate distribution under the null hypothesis in the simulated samples. Figure 1 show plots of the empirical 

distribution functions of the p -values of the two-way MANOVA with and without interactions. we considered 

several dimensions p ∈ {2,6}, number of levels ,r c ∈ {2,3,5}, and number of samples n ∈{20,30,50} assuming an 

equal sample size in each factor combination group. It is seen that the test statistics  , and M   are close to the 

45° line, and the robust Wilks’ statistic R is considerably below the 45    line for small sample sizes. 

5.2 Power of test 
       
        In order to evaluate the power of the robust Wilks’ test statistic, we will generate data samples under an 

alternative hypothesis.  It will incorrectly examine the frequency of failures in rejecting the null hypothesis, i.e. the 

frequency of type II errors. The same combinations of dimensions p , number of levels , ,r c and sample sizes n  in 

each factor combination group. We're going to differentiate between the two called MANOVA models. Data samples 

are created from a normal p -dimensional distribution for the two-way MANOVA with interactions, where each 
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factor combination group, ijy  has a different mean ij  and all of them have the same covariance matrix
PI ,

ijk ( , )P ij PN Iy  , 1,..., , 1,..., , 1,...,i r j c k n   with 
11 ( / 4,0,...,0)td ,

1 ( / 4,0,...,0) t

r d  , 

1 ( / 4,0,...,0) t

c d  , ( / 4,0,...,0) t

r c d  , Similarly, the data samples are created from a normal p -dimensional 

distribution for the two-way MANOVA without interactions, where each factor combination group, ijy  has a 

different mean ij  and all of them have the same covariance matrix 
PI , ( , )ijk P ij PN Iy  ,

1,..., , 1,..., , 1,...,i r j c k n   with 1 ( / 2,0,...,0) t

j d , 2 ( / 2,0,...,0) t

j d  , (0,0,...,0)t

ij  ,

3,..., , 1,..., , 1,...,i r j c k n   ,the parameter d again takes the following values:

0.0,0.2,0.5,0.7,1.0,1.5,2.0d   . Thus, the classical Wilks’ test statistics   ,  the robust Wilks’ test statistics R   

,and the proposed  robust Wilks’ test statistics M  are calculated . This is repeated  m = 3000 and the power of test 

ˆ ( ) /K T m  , ( ( )K T  the number of times of rejected the test statistic when the hypothesis 
0H  is false) of 

the test statistics when the statistic exceeds its appropriate critical value it will be the estimate of the power for the 

specific configuration.. The results for the sample size n in each factor combination groups are shown in Figure 2. It 

is clearly seen that the Size-power of two-way MANOVA with and without interaction the classical statistic   and 

the proposed statistic M   are close while the robust Wilks’ statistic R  by Spangl  is less. In Figure 5 show power 

plot of two-way MANOVA with and without interactions the proposed statistic M  and the classical Wilks’ Lambda 

test   are close and while the test R  by Spangl is less. 

5.3 Robustness comparisons 
 
    Now we're going to look at the robustness of the proposed MANOVA two-way test statistic. We will therefore 

construct data samples under the null and alternative, And by adding outliers, we can contaminate them. The same 

cases of dimensions 𝑝, number of levels ,r c and sample sizes n  in each factor combination group will be used. 

 5.3.1 Significance level 

        Here, for each design in Table 1, data samples are generated under empty hypotheses for all combination 

groups of factors , 1,..., , 1,...,ij i r j c y are distributed as ( , )pN I0  . The factor combination group  
rcy  

follows the contamination model, 2 2

,0.001(1 ) ( , ) ( ,0.25 ) / , 0.1 5ij P P P P pN I N I where v p and v       0
* *

y μ μ . 

In these Figure 5 show p -value plot of two-way MANOVA with interactions. Further, Figure 3 show p -value plots 

(actual size) of two-way MANOVA with and without interactions the p -value plots (actual size) based on the test 

statistics M  , is so close to the 45° line compared to the same of the test statistic R  , while the classical statistic

  is very bad for all the different cases of dimension 𝑝 and sample sizes. Figure 7 show observed type I error rates 

of the two-way MANOVA with and without interactions in the presence of outliers. Further. Thus, for the M   test, 
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the type I error rates turn out to be quite robust and close to the nominal value. The test R  and the classical Wilks’ 

Lambda test   are seen to be prone to outliers. Both yield very erroneous type I error rates. 

 5.3.2  Power of test 
 
      Under the alternative hypothesis the data samples will be generated from the following contamination model: 

       
2(1 ) ( , ) ( ,0.25 ) , 1,..., , 1,..., , 1,...,ijk P ij P P PN I N I i r j c k n    *

y μ μ  where ijμ  is the same 

mean groups value as in section (5.1), , 
 is  take the same values as in section (5..3.1). The Figure 4 show the 

size-power plot of two-way MANOVA with interaction . It is clearly seen that the proposed robust Wilks’ M   

statistic is the best compared to the other statistics for all investigated cases of dimension 𝑝 and sample sizes. The 

Figures 6 show the power plot of two-way MANOVA with and without interaction . It is clearly seen that the 

proposed robust Wilks’ R  statistic is the best compared to the other .  

 r=2 , c=2 , p=2 , n=10 

 

r=2 , c=2 , p=6 , n=20 

 

r=3 , c=2 , p=2 , n=30 
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r=2 , c=2 , p=2 , n=10 

 

r=2 , c=2 , p=6 , n=20 

 

r=3 , c=2 , p=2 , n=30 

 

Figure 1: p -values plot for test statistics ( ), ( ), ( )red line R black line and M blue line    of  two-way MANOVA with and 

without interaction with the same combinations of dimensions p , number of levels ,r c , and sample sizes n  in each factor 

combination group of multivariate  normal distribution . The 45 line is given too. 
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r=2 , c=2 , p=2 , n=10 

.  

r=2 , c=2 , p=6 , n=20 

 
r=3 , c=2 , p=2 , n=30 

 
r=2 , c=2 , p=2 , n=10 
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r=2 , c=2 , p=6 , n=20 

 
r=3 , c=2 , p=2 , n=30 

 
Figure 2: Size-power curves for test statistics ( ), ( ), ( )red line R black line and M blue line   of two-way MANOVA with and 

without  interaction with the same combinations of dimensions p , number of levels ,r c , and sample sizes n  in each factor 

combination group of multivariate normal distribution . The 45 line is given too. 
 

r=2 , c=2 , p=2 , n=10 
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r=2 , c=2 , p=6 , n=20 

 
r=3 , c=2 , p=2 , n=30 

 
r=2 , c=2 , p=2 , n=10 

 

r=2 , c=2 , p=6 , n=20 
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r=3 , c=2 , p=2 , n=30 

 

Figure 3: Size-power curves for test statistics ( ), ( ), ( )red line R black line and M blue line   of two-way MANOVA with and 

without interaction with the same combinations of dimensions p , number of levels ,r c , and sample sizes n  in each factor 

combination group of multivariate contaminated distribution . The 45 line is given too.  

 

r=2 , c=2 , p=2 , n=10 

 

r=2 , c=2 , p=6 , n=20 

 

 

 

 



   Abdullah A. Ameen   ,  Aseel A. Jaaze                                                                                                                       JQCM - Vol.12(1) 2020 , pp stat 1–23     16 

 

r=3 , c=2 , p=2 , n=30 

 
r=2 , c=2 , p=2 , n=10 

 
 

 

r=2 , c=2 , p=6 , n=20 

 

r=3 , c=2 , p=2 , n=30 

 
 

Figure 4: Size-power curves for test statistics ( ), ( ), ( )red line R black line and M blue line   of two-way MANOVA with and 

without interaction with the same combinations of dimensions p , number of levels ,r c , and sample sizes n in each factor 

combination group of multivariate contaminated distribution . The 45 line is given too. 
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r=2 , c=2 , p=2 , n=10 

 

r=2 , c=2 , p=6 , n=20 

 

r=3 , c=2 , p=2 , n=30 
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r=2 , c=2 , p=2 , n=10 

 
 

r=2 , c=2 , p=6 , n=20 

 
 

 

r=3 , c=2 , p=2 , n=30 

 

Figure5: power curves for test statistics ( ), ( ), ( )red line R black line and M blue line    of two-way MANOVA with and 

without interaction with the same combinations of dimensions p , number of levels ,r c , and sample sizes n in each factor 

combination group of multivariate normal distribution . The 45 line is given too. 
 

r=2 , c=2 , p=2 , n=10 
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r=2 , c=2 , p=6 , n=20 

 

r=3 , c=2 , p=2 , n=30 

 
r=2 , c=2 , p=2 , n=10 
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r=2 , c=2 , p=6 , n=20 

.  
 

r=3 , c=2 , p=2 , n=30 

.  
Figure 6: power curves for test statistics ( ), ( ), ( )red line R black line and M blue line   of two-way MANOVA with and 

without interaction with the same combinations of dimensions p , number of levels ,r c , and sample sizes n  in each factor 

combination group of multivariate contaminated distribution . The 45 line is given too . 

 

r=2 , c=2 , p=2 , n=10 

 
r=2 , c=2 , p=6 , n=20 
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r=3 , c=2 , p=2 , n=30 

 

r=2 , c=2 , p=2 , n=10 
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r=3 , c=2 , p=2 , n=30 

 
 

 

Figure 7: Type I error for test statistics ( ), ( ), ( )red line R black line and M blue line    of two-way MANOVA with and 

without interaction with the same combinations of dimensions p , number of levels ,r c  , and sample sizes n  in each 

factor combination group of multivariate contaminated distribution . The 45 line is given too. 

 

 

1.6 Conclusions 

 

In this paper, we presented a robust version of the Wilks' statistics and constructed its approximate distribution. The p-

value and size - power of the new proposed statistics were compared with the classical and robust Wilks’ of Spangl 

statistics in Monte Carlo studies. Various simulations were performed considering different dimensions, number of levels, 

and sample sizes of factor combination groups. Therefore it can be concluded that  p-value plots and size-power curves for 

the proposed robust statistic are close to the classical  and the robust Wilks’ statistic of Spangl  in case of normal 

distribution for the data set, while in case of contaminated distribution the proposed robust statistic is the best especially 

with small sample sizes. Although only a selection of the results is presented in the paper these are typical representative 

outcomes.  
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