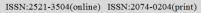


Available online at www.qu.edu.iq/journalcm

JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS



Differential Sandwich Theorems for Univalent Functions Involving a Differential Operator

Waggas Galib Atshan a, Rasha Abbas Hadi b

ARTICLEINFO

Article history:

Received: 21/01/2020 Rrevised form: 25/01/2020 Accepted:10/02/2020 Available online: 20 /03/2020

Keywords:

Analytic function, Univalent function, Differential subordination, Superordination, Sandwich theorems.

ABSTRACT

In the present paper, we obtain some subordination and superordination results involving the differential operator $\mathcal{W}_{\alpha,\beta}^{j,\delta}$ for certain normalized analytic functions in the open unit disk. These results are applied to obtain sandwich results.

MSC: 30C45, 30C50

DOI: https://doi.org/10.29304/jqcm.2020.12.1.682

1. Introduction

Let H = H(U) be the class of analytic functions in the open unit disk $U = \{z \in \mathbb{C} : |z| < 1\}$.

For n a positive integer and $a \in \mathbb{C}$. Let H[a, n] be the subclass of H consisting of functions of the form :

$$f(z) = a + a_n z^n + a_{n+1} z^{n+1} + \dots \qquad (a \in \mathbb{C}).$$
 (1.1)

Also, let *T* be the subclass of *H* consisting of functions of the form:

Corresponding author: Waggas Galib Atshan

Email address: waggas.galib@qu.edu.iq

Communicated by Qusuay Hatim Egaar

a Department of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniyah, Iraq, Email: waggashnd@gmail.com, waggas.galib@gu.edu.iq

b Department of Mathematics, College of Science, University of Al-Qadisiyah, Diwaniyah, Iraq, Email: rasha abbas.d@yahoo.com

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n.$$
 (1.2)

Let $f,g \in T$. The function f is said to be subordinate to g, or g is said to be superordinate to f, if there exists a Schwarz function w analytic in U with w(0) = 0 and |w(z)| < 1 ($z \in U$) such that f(z) = g(w(z)). In such a case we write f < g or f(z) < g(z) ($z \in U$). If g is univalent in U, then f < g if and only if f(0) = g(0) and $f(U) \subset g(U)$.

Let $p, h \in H$ and $\psi(r, s, t; z)$: $\mathbb{C}^3 \times U \to \mathbb{C}$. If p and $\psi(p(z), zp'(z), z^2p''(z); z)$ are univalent functions in U and if p satisfies the second-order differential superordination

$$h(z) < \psi(p(z), zp'(z), z^2p''(z); z),$$
 (1.3)

then p is called a solution of the differential superordination (1.3). (If f is subordinate to g, then g is superordinate to f). An analytic function q is called a subordinant of (1.3), if q < p for all the functions p satisfying (1.3). An univalent subordinant \tilde{q} that satisfies $q < \tilde{q}$ for all the subordinants q of (1.3) is called the best subordinant. Miller and Macanu [12] have obtained conditions on the functions h, q and ψ for which the following implication holds:

$$h(z) < \psi(p(z), zp'(z), z^2p''(z); z) \implies q(z) < p(z). \tag{1.4}$$

For $\alpha \in R$, $\beta \geq 0$ with $\alpha + \beta > 0$, $m, \delta \in \mathbb{N}_0 = \mathbb{N} \cup \{0\}$ and f ϵ \mathcal{A} . The differential operator

$$\mathcal{W}_{\alpha,\beta}^{j,\delta}: T \longrightarrow T \text{ (see[10])}$$
 is defined by

$$\mathcal{W}_{\alpha,\beta}^{j,\delta}f(z) = z + \sum_{n=2}^{\infty} \left[\sum_{m=1}^{j} {j \choose m} (-1)^{m+1} \left(\frac{\alpha^m + n\beta^m}{\alpha^m + \beta^m} \right) \right]^{\delta} a_{n\,z^n}. \tag{1.5}$$

We note from (1.5) that, we have

$$z\left(\mathcal{W}_{\alpha,\beta}^{j,\delta}f(z)\right)' = \left[\!\!\left[\sum_{m=1}^{j}\binom{j}{m}\left(-1\right)^{m+1}\left(\left(\frac{\alpha}{\beta}\right)^{m}+1\right)\right]\!\!\right] \mathcal{W}_{\alpha,\beta}^{j,\delta+1}f(z) - \left[\!\!\left[\sum_{m=1}^{j}\binom{j}{m}\left(-1\right)^{m+1}\left(\frac{\alpha}{\beta}\right)^{m}\right]\!\!\right] \mathcal{W}_{\alpha,\beta}^{j,\delta}f(z) \,. \tag{1.6}$$

Ali et al. [1] obtained sufficient conditions for certain normalized analytic functions to satisfy

$$q_1(z) < \frac{zf'(z)}{f(z)} < q_2(z)$$

where q_1 and q_2 are given univalent functions in U with $q_1(0) = q_2(0) = 1$. Also, Tuneski [15] obtained a sufficient conditions for starlikeness of f in terms of the quantity $\frac{f''(z)f(z)}{(f'(z))^2}$. Recently,

Shanmugam et al. [13,14], Atshan et al. ([2], [3], [4], [5], [6], [7]), Goyal et al. [9] also obtained sandwich results for certain classes of analytic functions. The main object of the present paper is to find sufficient conditions for certain normalized analytic functions f to satisfy

$$q_1(z) \prec \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta}f(z)}{z}\right)^{\gamma} \prec q_2(z)$$

and

$$q_1(z) < \left(\frac{w_{\alpha,\beta}^{j,\delta+1}f(z)}{w_{\alpha,\beta}^{j,\delta}f(z)}\right)^{\gamma} < q_2(z),$$

where q_1 and q_2 are given univalent functions in U with $q_1(0) = q_2(0) = 1$.

2. Preliminaries

In order to prove our subordination and superordination results, we need the following definition and lemmas.

Definition 2.1 [11]. Denote by Q the set of all functions f that are analytic and injective on $\overline{U} \setminus E(f)$, where $\overline{U} = U \cup \{z \in \partial U\}$ and

$$E(f) = \{ \zeta \in \partial U: \lim_{z \to \zeta} f(z) = \infty \}$$
 (2.1)

and are such that $f'(\zeta) \neq 0$ for $\zeta \in \partial U \setminus E(f)$. Further, let the subclass of Q for which f(z) = a be denoted by $Q(a), Q(0) = Q_0$ and $Q(1) = Q_1 = \{f \in Q : f(0) = 1\}$.

Lemma 2.1 [11]. Let q be univalent in the unit disk U and let θ and ϕ be analytic in a domain D containing q(U) with $\phi(w) \neq 0$ when $w \in q(U)$. Set $Q(z) = zq'(z)\phi(q(z))$ and $h(z) = \theta(q(z)) + Q(z)$. Suppose that

(i) Q(z) is starlike univalent in U,

(ii)
$$Re\left\{\frac{zh'(z)}{Q(z)}\right\} > 0$$
 for $z \in U$.

If p is analytic in U, with $p(0) = q(0), p(U) \subset D$ and

$$\theta(p(z)) + zp'(z)\phi(p(z)) < \theta(q(z)) + zq'(z)\phi(q(z)),$$
then $p < q$ and q is the best dominant of (2.2).

Lemma 2.2 [12]. Let q be a convex univalent function in U and let $\alpha \in \mathbb{C}$, $\beta \in \mathbb{C} \setminus \{0\}$ with

$$Re\left\{1+\frac{zq''(z)}{q'(z)}\right\} > \max\left\{0,-Re\left(\frac{\alpha}{\beta}\right)\right\}.$$

If p is analytic in U and

$$\alpha p(z) + \beta z p'(z) < \alpha q(z) + \beta z q'(z), \tag{2.3}$$

then p < q and q is the best dominant of (2.3).

Lemma 2.3 [12]. Let q be convex univalent in U and let $\beta \in \mathbb{C}$. Further assume that $Re(\beta) > 0$.

If $p \in H[q(0),1] \cap Q$ and $p(z) + \beta z p'(z)$ is univalent in U, then

$$q(z) + \beta z q'(z) < p(z) + \beta z p'(z), \tag{2.4}$$

which implies that q < p and q is the best subordinant of (2.4).

Lemma 2.4 [8]. Let q be convex univalent in the unit disk U and let θ and ϕ be analytic in a domain D containing q(U). Suppose that

(i)
$$Re\left\{\frac{\theta'(q(z))}{\phi(q(z))}\right\} > 0 \text{ for } z \in U$$
,

(ii) $Q(z) = zq'(z)\phi(q(z))$ is starlike univalent in U.

If $p \in H[q(0),1] \cap Q$, with $p(U) \subset D$, $\theta(p(z)) + zp'(z)\phi(p(z))$ is univalent in U and

$$\theta(q(z)) + zq'(z)\phi(q(z)) < \theta(p(z)) + zp'(z)\phi(p(z)), \tag{2.5}$$

then q < p and q is the best subordinant of (2.5).

3. Subordination Results

Theorem 3.1. Let q be convex univalent in U with q(0) = 1, $0 \neq \varepsilon \in \mathbb{C}$, $\gamma > 0$ and suppose that q satisfies

$$Re\left\{1 + \frac{zq''(z)}{q'(z)}\right\} > \max\left\{0, -Re\left(\frac{\gamma}{\varepsilon}\right)\right\}.$$
 (3.1)

If $f \in T$ satisfies the subordination

$$\left[1 - \sum_{m=1}^{j} {j \choose m} (-1)^{m+1} \left(\left(\frac{\alpha}{\beta}\right)^{m} + 1\right)\right] \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)}{z}\right)^{\gamma} + \sum_{m=1}^{j} {j \choose m} (-1)^{m+1} \left(\left(\frac{\alpha}{\beta}\right)^{m} + 1\right) \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)}{z}\right)^{\gamma} \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta+1} f(z)}{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)}\right)
< q(z) + \frac{\varepsilon}{\gamma} z q'(z),$$
(3.2)

then

$$\left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta}f(z)}{z}\right)^{\gamma} < q(z) \tag{3.3}$$

and q is the best dominant of (3.2).

Proof. Define the function p by

$$p(z) = \left(\frac{w_{\alpha,\beta}^{j,\delta}f(z)}{z}\right)^{\gamma}.$$
(3.4)

Differentiating (3.4) logarithmically with respect to z, we get

$$\frac{zp'(z)}{p(z)} = \gamma \left(\frac{z \left(w_{\alpha,\beta}^{j,\delta} f(z) \right)'}{w_{\alpha,\beta}^{j,\delta} f(z)} - 1 \right). \tag{3.5}$$

Now, in view of (1.6), we obtain the following subordination

$$\frac{zp'(z)}{p(z)} = \sum_{m=1}^{j} {j \choose m} \left(-1\right)^{m+1} \left(\left(\frac{\alpha}{\beta}\right)^m + 1 \right) \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta+1} f(z)}{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)} - 1 \right).$$

Therefore,

$$\frac{zp'(z)}{\gamma} = \sum_{m=1}^{j} {j \choose m} \left(-1\right)^{m+1} \left(\left(\frac{\alpha}{\beta}\right)^m + 1\right) \left(\frac{w_{\alpha,\beta}^{j,\delta}f(z)}{z}\right)^{\gamma} \left(\frac{w_{\alpha,\beta}^{j,\delta+1}f(z)}{w_{\alpha,\beta}^{j,\delta}f(z)} - 1\right).$$

The subordination (3.2) from the hypothesis becomes

$$p(z) + \frac{\varepsilon}{\gamma} z p'(z) < q(z) + \frac{\varepsilon}{\gamma} z q'(z).$$

An application of Lemma 2.2 with $\beta = \frac{\varepsilon}{\gamma}$ and $\alpha = 1$, we obtain (3.3).

Putting $q(z) = \left(\frac{1+z}{1-z}\right)^{\sigma}$ (0 < $\sigma \le 1$) in Theorem 3.1, we obtain the following corollary:

Corollary 3.1. Let $0 < \sigma \le 1, 0 \ne \varepsilon \in \mathbb{C}, \gamma > 0$ and

$$Re\left\{\frac{1+2\sigma z+z^2}{1-z^2}\right\} > \max\left\{0, -Re\left(\frac{\gamma}{\varepsilon}\right)\right\}.$$

If $f \in T$ satisfies the subordination

$$\begin{split} \left[\!\!\left[1 - \sum_{m=1}^{j} \binom{j}{m} (-1)^{m+1} \left(\left(\frac{\alpha}{\beta}\right)^m + 1 \right) \right] \!\! \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)}{z} \right)^{\gamma} + \sum_{m=1}^{j} \binom{j}{m} \left(-1\right)^{m+1} \left(\left(\frac{\alpha}{\beta}\right)^m + 1 \right) \!\! \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)}{z} \right)^{\gamma} \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)}{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)} \right) \\ & < \left(1 + \frac{2\varepsilon\sigma z}{\gamma(1-z^2)} \right) \!\! \left(\frac{1+z}{1-z} \right)^{\sigma}, \end{split}$$

then

$$\left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta}f(z)}{z}\right)^{\gamma} \prec \left(\frac{1+z}{1-z}\right)^{\sigma}$$

and $q(z) = \left(\frac{1+z}{1-z}\right)^{\sigma}$ is the best dominant.

Theorem 3.2. Let q be convex univalent in U with q(0) = 1, $q(z) \neq 0$ ($z \in U$) and assume that q satisfies

$$Re\left\{1 + \frac{xm}{\varepsilon} + \frac{y(m+1)}{\varepsilon}q(z) + (m-1)\frac{zq'(z)}{q(z)} + \frac{zq''(z)}{q'(z)}\right\} > 0,\tag{3.6}$$

where $x, y, m \in \mathbb{C}$, $\varepsilon \in \mathbb{C} \setminus \{0\}$ and $z \in U$.

Suppose that $z(q(z))^{m-1}q'(z)$ is starlike univalent in U . If $f \in T$ satisfies

$$\Omega(x, y, \gamma, j, \alpha, m, \beta, \varepsilon; z) < (x + yq(z))(q(z))^{m} + \varepsilon z(q(z))^{m-1}q'(z), \tag{3.7}$$

where

$$\Omega(x,y,\gamma,j,\alpha,m,\beta,\varepsilon;z) = x \left(\frac{w_{\alpha,\beta}^{j,\delta+1}f(z)}{w_{\alpha,\beta}^{j,\delta}f(z)}\right)^{\gamma m} + y \left(\frac{w_{\alpha,\beta}^{j,\delta+1}f(z)}{w_{\alpha,\beta}^{j,\delta}f(z)}\right)^{\gamma(m+1)} \\ + \varepsilon \gamma \left(\frac{w_{\alpha,\beta}^{j,\delta+1}f(z)}{w_{\alpha,\beta}^{j,\delta}f(z)}\right) \left(\frac{w_{\alpha,\beta}^{j,\delta}f(z)}{w_{\alpha,\beta}^{j,\delta+1}f(z)}\right)^{\gamma m}, (\gamma > 0, z \in U), (3.8)$$

then

$$\left(\frac{w_{\alpha,\beta}^{j,\delta+1}f(z)}{w_{\alpha,\beta}^{j,\delta}f(z)}\right)^{\gamma} < q(z)$$
(3.9)

and q is the best dominant of (3.7).

Proof. Define the function p by

$$p(z) = \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta+1} f(z)}{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)}\right)^{\gamma}.$$
(3.10)

By setting

$$\theta(w) = (x + vw)w^m$$
 and $\phi(w) = \varepsilon w^{m-1}, w \neq 0$.

we see that $\theta(w)$ is analytic in \mathbb{C} , $\phi(w)$ is analytic in $\mathbb{C}\setminus\{0\}$ and that $\phi(w)\neq 0, w\in\mathbb{C}\setminus\{0\}$. Also, we get

$$Q(z) = zq'(z)\phi(q(z)) = \varepsilon z(q(z))^{m-1}q'(z)$$

and

$$h(z) = \theta(q(z)) + Q(z) = (x + yq(z))(q(z))^m + \varepsilon z(q(z))^{m-1}q'(z).$$

It is clear that Q(z) is starlike univalent in U,

$$Re\left\{\frac{zh'(z)}{Q(z)}\right\} = Re\left\{1 + \frac{xm}{\varepsilon} + \frac{y(m+1)}{\varepsilon}q(z) + (m-1)\frac{zq'(z)}{q(z)} + \frac{zq''(z)}{q'(z)}\right\} > 0.$$

By a straightforward computation, we obtain

$$(x + yp(z))(p(z))^m + \varepsilon z(p(z))^{m-1}p'(z) = \Omega(x, y, \gamma, j, \alpha, m, \beta, \varepsilon; z), \tag{3.11}$$

where is given $\Omega(x, y, \gamma, j, \alpha, m, \beta, \varepsilon; z)$ by (3.8).

From (3.7) and (3.11), we have

$$(x + yp(z))(p(z))^{m} + \varepsilon z(p(z))^{m-1}p'(z) < (x + yq(z))(q(z))^{m} + \varepsilon z(q(z))^{m-1}q'(z).$$
(3.12)

Therefore, by Lemma 2.1, we get p(z) < q(z). By using (3.10), we obtain the result.

Putting $q(z) = \frac{1+Az}{1+Bz}$ ($-1 \le B < A \le 1$) in Theorem 3.2, we obtain the following corollary:

Corollary 3.2. Let $-1 \le B < A \le 1$ and

$$Re\left\{\frac{xm}{\varepsilon} + \frac{y(m+1)(1+Az)}{\varepsilon(1+Bz)} + \frac{1+m(A-B)z-ABz^2}{(1+Az)(1+Bz)}\right\} > 0,$$

where $x, y, m \in \mathbb{C}$, $\varepsilon \in \mathbb{C} \setminus \{0\}$ and $z \in U$. If $f \in T$ satisfies

$$\Omega(x,y,\gamma,j,\alpha,m,\beta,\varepsilon;z) \prec \left(x+y\left(\frac{1+Az}{1+Bz}\right)\right)\left(\frac{1+Az}{1+Bz}\right)^m + \frac{\varepsilon(A-B)(1+Az)^{m-1}z}{(1+Bz)^{m+1}},$$

where is given $\Omega(x, y, \gamma, j, \alpha, m, \beta, \varepsilon; z)$ by (3.8),

then

$$\left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta+1}f(z)}{\mathcal{W}_{\alpha,\beta}^{j,\delta}f(z)}\right)^{\gamma} < \frac{1+Az}{1+Bz}$$

and $q(z) = \frac{1+Az}{1+Bz}$ is the best dominant.

4. Superordination Results

Theorem 4.1. Let q be convex univalent in U with q(0) = 1, $\gamma > 0$ and $Re\{\varepsilon\} > 0$. Let $f \in T$ satisfies

$$\left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta}f(z)}{z}\right)^{\gamma}\in H[q(0),1]\cap Q$$

and

$$\left[\!\left[1-\varepsilon\sum_{m=1}^{j}\binom{j}{m}\left(-1\right)^{m+1}\,\left(\!\left(\frac{\alpha}{\beta}\right)^{m}+1\right)\right]\!\left(\!\frac{w_{\alpha,\beta}^{j,\delta}f(z)}{z}\!\right)^{\gamma} +\varepsilon\sum_{m=1}^{j}\binom{j}{m}\left(-1\right)^{m+1}\,\left(\!\left(\frac{\alpha}{\beta}\right)^{m}+1\right)\!\left(\!\frac{w_{\alpha,\beta}^{j,\delta}f(z)}{z}\!\right)^{\gamma}\,\left(\!\frac{w_{\alpha,\beta}^{j,\delta+1}f(z)}{w_{\alpha,\beta}^{j,\delta}f(z)}\!\right)^{\gamma} +\varepsilon\sum_{m=1}^{j}\binom{j}{m}\left(-1\right)^{m+1}\,\left(\!\left(\frac{\alpha}{\beta}\right)^{m}+1\right)\!\left(\!\frac{w_{\alpha,\beta}^{j,\delta}f(z)}{z}\!\right)^{\gamma}\right)^{\gamma} +\varepsilon\sum_{m=1}^{j}\binom{j}{m}\left(-1\right)^{m+1}\,\left(\!\left(\frac{\alpha}{\beta}\right)^{m}+1\right)\!\left(\!\frac{w_{\alpha,\beta}^{j,\delta}f(z)}{z}\!\right)^{\gamma} +\varepsilon\sum_{m=1}^{j}\binom{j}{m}\left(-1\right)^{m+1}\,\left(\!\frac{\alpha}{\beta}\right)^{m}+1\right)\!\left(\!\frac{w_{\alpha,\beta}^{j,\delta}f(z)}{z}\!\right)^{\gamma} +\varepsilon\sum_{m=1}^{j}\binom{j}{m}\left(-1\right)^{m+1}\,\left(\!\frac{\alpha}{\beta}\right)^{m}+1\right)\!\left(\!\frac{w_{\alpha,\beta}^{j,\delta}f(z)}{z}\!\right)^{\gamma} +\varepsilon\sum_{m=1}^{j}\binom{j}{m}\left(-1\right)^{m+1}\,\left(\!\frac{\alpha}{\beta}\right)^{m}+1\right)\!\left(\!\frac{w_{\alpha,\beta}^{j,\delta}f(z)}{z}\!\right)^{\gamma} +\varepsilon\sum_{m=1}^{j}\binom{j}{m}\left(-1\right)^{m+1}\,\left(\!\frac{\alpha}{\beta}\right)^{m}+1\right)\!\left(\!\frac{w_{\alpha,\beta}^{j,\delta}f(z)}{z}\!\right)^{\gamma} +\varepsilon\sum_{m=1}^{j}\binom{j}{m}\left(-1\right)^{m+1}\,\left(\!\frac{\alpha}{\beta}\right)^{m}+1\right)\!\left(\!\frac{w_{\alpha,\beta}^{j,\delta}f(z)}{z}\!\right)^{\gamma} +\varepsilon\sum_{m=1}^{j}\binom{j}{m}\left(-1\right)^{m+1}\left(\!\frac{\alpha}{\beta}\right)^{m}+1\right)\!\left(\!\frac{w_{\alpha,\beta}^{j,\delta}f(z)}{z}\!\right)^{\gamma} +\varepsilon\sum_{m=1}^{j}\binom{j}{m}\left(-1\right)^{m+1}\left($$

be univalent in *U*. If

$$q(z) + \frac{\varepsilon}{\gamma} z q'(z) < \left[1 - \varepsilon \sum_{m=1}^{j} \binom{j}{m} (-1)^{m+1} \left(\left(\frac{\alpha}{\beta}\right)^m + 1 \right) \right] \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)}{z} \right)^{\gamma} \\ + \varepsilon \sum_{m=1}^{j} \binom{j}{m} (-1)^{m+1} \left(\left(\frac{\alpha}{\beta}\right)^m + 1 \right) \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)}{z} \right)^{\gamma} \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)}{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)} \right), (4.1)$$

then

$$q(z) < \left(\frac{w_{\alpha,\beta}^{j,\delta}f(z)}{z}\right)^{\gamma}$$
 (4.2)

and q is the best subordinant of (4.1).

Proof. Define the function p by

$$p(z) = \left(\frac{w_{\alpha,\beta}^{j,\delta}f(z)}{z}\right)^{\gamma}.$$
(4.3)

Differentiating (4.3) with respect to z logarithmically, we get

$$\frac{zp'(z)}{p(z)} = \gamma \left(\frac{z \left(\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z) \right)'}{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)} - 1 \right). \tag{4.4}$$

After some computations and using (1.6), from (4.4), we obtain

$$\begin{split} & \left[\left[1 - \varepsilon \sum_{m=1}^{j} \binom{j}{m} \left(-1 \right)^{m+1} \, \left(\left(\frac{\alpha}{\beta} \right)^{m} + 1 \right) \right] \left(\frac{W_{\alpha,\beta}^{j,\delta} f(z)}{z} \right)^{\gamma} + \varepsilon \sum_{m=1}^{j} \binom{j}{m} \left(-1 \right)^{m+1} \, \left(\left(\frac{\alpha}{\beta} \right)^{m} + 1 \right) \left(\frac{W_{\alpha,\beta}^{j,\delta} f(z)}{z} \right)^{\gamma} \, \left(\frac{W_{\alpha,\beta}^{j,\delta+1} f(z)}{W_{\alpha,\beta}^{j,\delta} f(z)} \right) \\ &= p(z) + \frac{\varepsilon}{\gamma} z p'(z), \end{split}$$

and now, by using Lemma 2.3, we get the desired result.

Putting $q(z) = \left(\frac{1+z}{1-z}\right)^{\sigma}$ (0 < $\sigma \le 1$) in Theorem 4.1, we obtain the following corollary:

Corollary 4.1. Let $0 < \sigma \le 1, \gamma > 0$ and $Re\{\varepsilon\} > 0$. If $f \in T$ satisfies

$$\left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta}f(z)}{z}\right)^{\gamma}\in H\left[q(0),1\right]\cap Q$$

and

$$\left[1 - \varepsilon \sum_{m=1}^{j} \binom{j}{m} \; (-1)^{m+1} \; \left(\left(\frac{\alpha}{\beta} \right)^m + 1 \right) \right] \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)}{z} \right)^{\gamma} \\ + \varepsilon \sum_{m=1}^{j} \binom{j}{m} \; (-1)^{m+1} \; \left(\left(\frac{\alpha}{\beta} \right)^m + 1 \right) \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)}{z} \right)^{\gamma} \; \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)}{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)} \right)^{\gamma} \\ + \varepsilon \sum_{m=1}^{j} \binom{j}{m} \; (-1)^{m+1} \; \left(\left(\frac{\alpha}{\beta} \right)^m + 1 \right) \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)}{z} \right)^{\gamma} \; \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)}{z} \right)^{\gamma} \\ + \varepsilon \sum_{m=1}^{j} \binom{j}{m} \; (-1)^{m+1} \; \left(\frac{\alpha}{\beta} \right)^m + 1 \right) \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)}{z} \right)^{\gamma} \; \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)}{z} \right)^{\gamma} \; \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)}{z} \right)^{\gamma} \\ + \varepsilon \sum_{m=1}^{j} \binom{j}{m} \; \left(\frac{\alpha}{\beta} \right)^m + 1 \right) \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)}{z} \right)^{\gamma} \; \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)}{z} \right)^{\gamma} \; \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)}{z} \right)^{\gamma} \\ + \varepsilon \sum_{m=1}^{j} \binom{j}{m} \; \left(\frac{\alpha}{\beta} \right)^m + 1 \right) \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)}{z} \right)^{\gamma} \; \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)}{z} \right)^{\gamma} \; \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)}{z} \right)^{\gamma} \\ + \varepsilon \sum_{m=1}^{j} \binom{j}{m} \; \left(\frac{\alpha}{\beta} \right)^m + 1 \right) \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)}{z} \right)^{\gamma} \; \left(\frac{\mathcal{W}_{$$

be univalent in U. If

$$\left(1 + \frac{2\varepsilon\sigma z}{\gamma(1-z^2)}\right) \left(\frac{1+z}{1-z}\right)^{\sigma}
 < \left[1 - \varepsilon \sum_{m=1}^{j} {j \choose m} (-1)^{m+1} \left(\left(\frac{\alpha}{\beta}\right)^m + 1\right)\right] \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)}{z}\right)^{\gamma}
 + \varepsilon \sum_{m=1}^{j} {j \choose m} (-1)^{m+1} \left(\left(\frac{\alpha}{\beta}\right)^m + 1\right) \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)}{z}\right)^{\gamma} \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta+1} f(z)}{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)}\right),$$

then

$$\left(\frac{1+z}{1-z}\right)^{\sigma} \prec \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta}f(z)}{z}\right)^{\gamma}$$

and $q(z) = \left(\frac{1+z}{1-z}\right)^{\sigma}$ is the best subordinant.

Theorem 4.2. Let q be convex univalent in U with q(0) = 1, and assume that q satisfies

$$Re\left\{\frac{xm}{\varepsilon}q'(z) + \frac{y(m+1)}{\varepsilon}q(z)q'(z)\right\} > 0,\tag{4.5}$$

where $x, y, m \in \mathbb{C}$, $\varepsilon \in \mathbb{C} \setminus \{0\}$ and $z \in U$.

Suppose that $z\big(q(z)\big)^{m-1}q'(z)$ is starlike univalent in U . Let $f\in T$ satisfies

$$\left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta+1}f(z)}{\mathcal{W}_{\alpha,\beta}^{j,\delta}f(z)}\right)^{\gamma} \in H\left[q(0),1\right] \cap Q$$

and $\Omega(x, y, \gamma, j, \alpha, m, \beta, \varepsilon; z)$ is univalent in U, where is given $\Omega(x, y, \gamma, j, \alpha, m, \beta, \varepsilon; z)$ by (3.8). If

$$(x + yq(z))(q(z))^{m} + \varepsilon z(q(z))^{m-1}q'(z) < \Omega(x, y, \gamma, j, \alpha, m, \beta, \varepsilon; z), \tag{4.6}$$

then

$$q(z) < \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta+1} f(z)}{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)}\right)^{\gamma} \tag{4.7}$$

and q is the best subordinant of (4.6).

Proof. Define the function p by

$$p(z) = \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta+1} f(z)}{\mathcal{W}_{\alpha,\beta}^{j,\delta} f(z)}\right)^{\gamma}.$$
(4.8)

By setting

$$\theta(w) = (x + yw)w^m$$
 and $\phi(w) = \varepsilon w^{m-1}, w \neq 0$,

we see that $\theta(w)$ is analytic in \mathbb{C} , $\phi(w)$ is analytic in $\mathbb{C}\setminus\{0\}$ and that $\phi(w)\neq 0, w\in\mathbb{C}\setminus\{0\}$. Also, we get

$$Q(z) = zq'(z)\phi(q(z)) = \varepsilon z(q(z))^{m-1}q'(z).$$

It is clear that Q(z) is starlike univalent in U,

$$Re\left\{\frac{\theta'(q(z))}{\phi(q(z))}\right\} = Re\left\{\frac{xm}{\varepsilon}q'(z) + \frac{y(m+1)}{\varepsilon}q(z)q'(z)\right\} > 0.$$

By a straight forward computation, we obtain

$$\Omega(x, y, \gamma, j, \alpha, m, \beta, \varepsilon; z) = \left(u + vp(z)\right) \left(p(z)\right)^m + \eta z \left(p(z)\right)^{m-1} p'(z), \tag{4.9}$$

where $\Omega(x, y, \gamma, j, \alpha, m, \beta, \varepsilon; z)$ is given by (3.8).

From (4.6) and (4.9), we have

$$(x + yq(z))(q(z))^{m} + \varepsilon z(q(z))^{m-1}q'(z) < (x + yp(z))(p(z))^{m} + \varepsilon z(p(z))^{m-1}p'(z).$$
 (4.10)

Therefore, by Lemma 2.4, we get q(z) < p(z). By using (4.8), we obtain the result.

5. Sandwich Results

Concluding the results of differential subordination and superordination, we arrive at the following "sandwich results".

Theorem 5.1. Let q_1 be convex univalent in U with $q_1(0) = 1$, $Re\{\varepsilon\} > 0$ and let q_2 be univalent in U, $q_2(0) = 1$ and satisfies (3.1). Let $f \in T$ satisfies

$$\left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta}f(z)}{z}\right)^{\gamma}\in H\left[1,1\right]\cap Q$$

and

$$\left[\left[1 - \varepsilon \sum_{m=1}^{j} {j \choose m} (-1)^{m+1} \left(\left(\frac{\alpha}{\beta} \right)^m + 1 \right) \right] \left(\frac{w_{\alpha,\beta}^{j,\delta}f(z)}{z} \right)^{\gamma} + \varepsilon \sum_{m=1}^{j} {j \choose m} (-1)^{m+1} \left(\left(\frac{\alpha}{\beta} \right)^m + 1 \right) \left(\frac{w_{\alpha,\beta}^{j,\delta}f(z)}{z} \right)^{\gamma} \left(\frac{w_{\alpha,\beta}^{j,\delta+1}f(z)}{w_{\alpha,\beta}^{j,\delta}f(z)} \right)^{\gamma} \right)$$

be univalent in U. If

$$\begin{split} q_1(z) + \frac{\varepsilon}{\gamma} z q_1{}'(z) &< \left[\left[1 - \varepsilon \sum_{m=1}^j \binom{j}{m} \left(-1 \right)^{m+1} \left(\left(\frac{\alpha}{\beta} \right)^m + 1 \right) \right] \left(\frac{w_{\alpha,\beta}^{j,\delta} f(z)}{z} \right)^{\gamma} + \varepsilon \sum_{m=1}^j \binom{j}{m} \left(-1 \right)^{m+1} \left(\left(\frac{\alpha}{\beta} \right)^m + 1 \right) \left(\frac{w_{\alpha,\beta}^{j,\delta} f(z)}{z} \right)^{\gamma} \left(\frac{w_{\alpha,\beta}^{j,\delta+1} f(z)}{w_{\alpha,\beta}^{j,\delta} f(z)} \right) &< q_2(z) + \frac{\varepsilon}{\gamma} z q_2{}'(z), \end{split}$$

then

$$q_1(z) < \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta}f(z)}{z}\right)^{\gamma} < q_2(z)$$

and q_1 and q_2 are, respectively, the best subordinant and the best dominant.

Theorem 5.2. Let q_1 be convex univalent in U with $q_1(0) = q_2(0) = 1$. suppose q_1 satisfies (4.5) and q_2 satisfies (3.6). Let $f \in T$ satisfies

$$\left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta+1}f(z)}{\mathcal{W}_{\alpha,\beta}^{j,\delta}f(z)}\right)^{\gamma} \in H\left[1,1\right] \cap Q$$

and $\Omega(x, y, \gamma, j, \alpha, m, \beta, \varepsilon; z)$ is univalent in U, where $\Omega(x, y, \gamma, j, \alpha, m, \beta, \varepsilon; z)$ is given by (3.8). If

$$(x + yq_1(z))(q_1(z))^m + \varepsilon z(q_1(z))^{m-1}q_1'(z) < \Omega(x, y, \gamma, j, \alpha, m, \beta, \varepsilon; z)$$

$$< (x + yq_2(z))(q_2(z))^m + \varepsilon z(q_2(z))^{m-1}q_2'(z),$$

then

$$q_1(z) \prec \left(\frac{\mathcal{W}_{\alpha,\beta}^{j,\delta+1}f(z)}{\mathcal{W}_{\alpha,\beta}^{j,\delta}f(z)}\right)^{\gamma} \prec q_2(z)$$

and q_1 and q_2 are, respectively, the best subordinant and the best dominant.

References

[1] R. M. Ali, V. Ravichandran, M. H. Khan and K. G. Subramaniam, Differential sandwich theorems for certain analytic functions, Far East J. Math. Sci., 15(1)(2004), 87-94.

- [2] W. G. Atshan and I. A. Abbas ,Differential subordination for univalent Functions ,European Journal of Scientific Research, 145(4)(2017), 427 - 434.
- [3] W. G. Atshan and E. H. Abd , Differential subordination and superordination of Univalen functions by using generalized integral operator and Bernardi – Libera –Livingston integral operator, American Journal of Scientific Research, 109(2017), 13 – 18.
- [4] W. G. Atshan and E. I. Badawi ,On sandwich theorems for certain univalent functions Defined by a new operator, Journal of Al- Qadisiyah for Computer Science and Mathematics, 11(2)(2019),72-80.
- [5] W. G. Atshan and A. A. J. Husien ,Some results of second order differential subordination for fractional integral of Dziok-Srivastava operator, Analele Universitătii Oradea Fasc. Matematica, Tom XX I (2014), Issue No. 1, 145 – 152.
- [6] W. G. Atshan and K. O. Hussain, Subordination results for certain subclass Of univalent functions, European J. of Scientific Research, 142(1)(2016), 5-11.
- [7] W. G. Atshan and S. A. A. Jawad, On differential sandwich results for analytic functions, Journal of Al-Qadisiyah for Computer Science and Mathematics, 11(1)(2019), 96-101.
- [8] T. Bulboacă, Classes of first order differential superordinations, Demonstratio Math., 35(2)(2002), 287-292.
- [9] S. P. Goyal, P. Goswami and H. Silverman, Subordination and superordination results for a class of analytic multivalent functions, Int. J. Math. Math. Sci., (2008), Article ID 561638, 1-12.
- [10] A. Kwanas, New differential operator for holomorphic functions, Earthline Journal of Mathematical Sciences, 2(2)(2019), 527-537.
- [11] S. S. Miller and P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.
- [12] S. S. Miller and P. T. Mocanu, Subordinants of differential superordinations, Complex Variables, 48(10)(2003), 815-826.
- [13] T. N. Shanmugam, V. Ravichandran and S. Sivasubramanian, Differential sandwich theorems for Some subclasses of analytic functions, Aust. J. Math. Anal. Appl., 3(1)(2006), 1-11.
- [14] T. N. Shanmugam, S. Sivasubramanian and H. Silverman, On sandwich theorems for some classes of analytic functions, Int. J. Math. Math. Sci., (2006), Article ID 29684, 1-13.
- [15] N. Tuneski, On certain sufficient conditions for starlikeness, Int. J. Math. Math. Sci., 23(8)(2000), 521-527.