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A B S T R A C T 

In this paper, a mathematical model consisting of the food chain model with disease in intermediate 

predator is proposed and discussed. The food chain model consists of four types: prey, intermediate 

predator, infected intermediate predator, and top predator. We studied the solutions for the original 

model and positive and bounded solutions in the sub models. Also found equilibrium points with 

sufficient and necessary conditions. By using Jacobian matrix and Lyapunov function to provide 

local and global stability. Can use the harvesting to control the disease and it can be used as tool to 

prevent disease transformation into an epidemic. Finally, some results were illustrated in numerical 

simulations. 
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1 . Introduction" 

" One of the most important prominent issues in ecosystems is the impact of some infectious 

diseases in addition to the environmental aspect point. Thus it gives some scientists and researchers 

in the field of the environment great importance to develop an important tool alongside the 

experimental environment and describe how the disease spreads in most populations and turns 

from susceptible to infected populations. When diseases spread among the population, communities 

compete with other species in the same place for food, survival and predation . This is because no 
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group can survive on its own alone, researchers and scientists have presented numerous studies that 

have been studied in describing population interaction. Researchers first describe Lautka and 

Volterra in modern mathematical sciences, describing the competition between predators and prey. 

But most models involve injury of one type of population originated from the classic movement of 

Kermack and McKendrick [1]. After these two wonderful works, the door become open for 

researchers to offer many studies in epidemiology and environmental science theory. Even in the 

last few decades, these models have become important tools for analyzing and understanding the 

spread of infectious diseases and controlling them. One of the most important studies of the 

predator model was the study presented by researchers [2]. Many researchers [3, 4, 5, 6] also 

studied these models with diseases. Also studied [10, 4, 8, 7] the role of disease in destabilizing the 

system. The atmosphere of the regions is important for biological activities primarily responsible for 

environmental changes. The coexistence of interacting biological species has been very important in 

the past few decades, and has been extensively studied using mathematical models by many 

researchers [11-20] . As a result, many species are extinct and many other extinctions due to the 

presence of many external forces and influences such as over-exploitation. From this basis, we study 

the predatory prey, where the predator is at risk of disease and harvest. [12] Krivan proposed a 

mathematical model and research on the effects of antimicrobial behavior on the predator system. 

Anti-social behavior has been shown to lead to constant fluctuations and low population density. 

Chattobadai et al. [13] prey - predator model with some cover on the prey species. There is the 

observation that the stability of the global system around the positive balance does not necessarily 

mean continuity of the system. More recently, Kar [21] has proposed a model for the study of 

predatory prey and independent harvesting on any species. Has shown that the use of harvest and 

control efforts, it is possible to break the periodic behavior of the system. In the above investigations, 

the dynamics of the predator living in the unprotected area with prey are also not explicitly studied. 

The protected area plays a vital and important role in the aquatic environment to protect resources 

and fisheries from overexploitation [22-26]. In particular, Dubey et al [22] add a proposal from the 

mathematical model to analyze the dynamics of the fisheries resource system in a two-zone aquatic 

environment, the first free fishing zone and the second protected area where strict fishing is 

prohibited. He pointed out that even if the fisheries are continuously exploited in an unprotected 

area, fish are at an appropriate level of habitat balance. Moreover, harvest is one of the best and most 

important means of combating and eradicating the disease and the epidemic and preventing its 

spread among the population. Using this method requires great care and care. Very severe because 
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any misuse may expose species of extinction. There are several important studies that have been 

studied on this important subject, and the harvest [9] in the predator model has been studied to 

create a controlled environment while ensuring species survival and continuous harvesting. 

Continuous harvesting in prey predator model in [5, 29]. This is paper divide into seven sections,  

section two is the  described and  developed of the model, section three contained  nature  of  the  

solutions , section four use a Dynamic of Subsystem to study subsystems of system (1), section five is 

Existence of Equilibrium points  and Stability in  the model, section six Numerical Simulation, for 

Dynamical. Finally, section seven contained Conclusions. 

 

 2. The Food Chain Model with Holling Type II and Harvest  
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The following model describes the relation between food chain function with 0
1

xy

x



 is the 

Michaelis-Menten type (or Holling type II) functional response, intermediate predator become 

infected with relative function 1

1

cyy

y y
. Where 

1, , , 0x y y z     . 1, , ,x y y z denoted susceptible 

prey, intermediate predator ,infected intermediate predator, and top predator respectively. 

Parameters denoted as follows, r  the rate of growth of susceptible prey,   is the half saturation 

constant, rate 
0  is the per capita rate of predation of the intermediate predator, rate 1   

measures the efficiency of biomass conversion from prey to intermediate predator, rate 
2  is the 

per capita rate of predation of the top predator, rate 3  measures the efficiency of biomass 

conversion from intermediate predator to top predator, rate 
4   is the per capita rate of 

predation of the prey, rate 
5  measures the efficiency of biomass conversion from infected 

intermediate predator to top predator. Rate c  is the contact between susceptible intermediate 

predator (S. predator) and infected intermediate predator (I. predator) while rate k  denoted 
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the transformation from I. intermediate predator to S, intermediate predator, as this model 

known SIS, 
1 2,d d  are natural death of intermediate and top predator respectively. Rate q is 

harvesting of I. intermediate predator. 

3. Nature of Solution 

Lemma 1: All the solutions of the system (1) in 4

  are positive and bounded. 

Proof: 
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Since 
0 1 2 3,     and 4 5   [28], then 
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4. Dynamic of Subsystems 
In this section we want to study subsystems of system (1). Subsystems obtained in case of 
extinction one or two population of system (1). Therefore, there are many subsystems, as system 
(1) as classical model contains prey and predator only, system (1) contains prey and infected 
predator, system (1) contain all population without top predator, system (1) without disease, 
finally all population survive.   

4.1 System (1) as Classical Model. 
System (1) without top predator and disease known classical model or Lotka Volterra equations. 
In this subsystem the interaction between prey and predator only without any external 
influence. We describe this interaction as follows: 

0
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4.1.1. Nature of Solution 

Lemma 2: All solutions of subsystem (2) are positive and bounded. 

Proof: As lemma 1, see Figure 1. 
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Figure 1. All solutions of subsystem (2) are positive and bounded 

Lemma 3: In subsystem (2), 1 1d  . 
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Note that ( , )x y  does not change sign and is not identically zero in 2

( , )x y . Therefore 

according to Bendixson-Dulic criterion, there subsystem (2) has no periodic solution. 
 

 

4.1.2 Equilibrium Point and Stability 
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Subsystem (2) has three equilibrium points 2,0 2,1(0,0), (1,0)P P  and 2,2 ( , )P x y , where  
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Figure 2. with 
0 1 10.78, 0.5, 0.4, 0.5, 0.2r d         
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Figure 2. Osculation of prey and predator of subsystem (2). 

 

4.2 Prey and Infected Predator. 
When the disease turns into an epidemic and there is no top predator in this case, system (1) 
becomes follows: 
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4.2.1. Nature of Solution 

Lemma 6: All solutions of sub system (3) are positive and bounded. 
Proof: As lemma 1, see figure 3. 

 
Figure 3. All solutions of subsystem (3) are positive and bounded 
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Proof: Suppose that 5 k q   , then  5 1 1y k q y   . Since the carrying capacity of prey is one 
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4.2.2 Equilibrium Points and Stability 
Subsystem (3) has three equilibrium points 3,0 3,1(0,0), (1,0)P P  and 3,2 1( , )P x y where
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By Routh-Hurwitz criterion this point is stability if 
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Lemma 9: Positive equilibrium point 4,2 1( , )P x y of the subsystem (3) is globally asymptotically 
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Proof: As proof in Lemma 4. 

See figures 4, 5 with fixed parameters as                         
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Figure 4. Global stability of subsystem (3) without harvesting

 

 
Figure 5. Global stability of subsystem (3) with harvesting q=0.1  

 

4.3. In the Absence of Disease 
This subsystem without infected predator, contains three population, prey, intermediate 
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The model in the system (4) has the following equilibrium points: 
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 

 
  

 
with conditions

3 2d   

   1 2 1
ˆ ˆ ˆ1 1y z d y         and 1

1

ˆ

ˆ1

x
d

x







 

The Jacobian matrix is: 

 

   

 

0 02

4 1 1 2 1 22 2

3 3 22

2 0
11

1 11 1

0
11

y x
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y x z y
J d

x yx y
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   
 
 

  

 

Jacobian matrix near positive equilibrium point is 

 

   

 

0 02

4 1 1 2 1 22 2

3 2

ˆ ˆ
ˆ2 0
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ˆ
0 0

ˆ1

y x
r rx

xx

y x z y
J d

x yx y

z

y

 

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

 
   
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1 2

3 4 5
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0
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M M

M M M
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




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

  

Also we will only study the positive point 4,2P , the characteristic equation near this point is

3 2 0A B C      , where 

 1 4 0A M M    if 
1

ˆ
2

x   and 
 

1 2 12

ˆ ˆ

ˆ1 ˆ1

x z
d

x y
 

 
 

 
 

1 4 2 3 5 6

1 5 6 0

B M M M M M M

C M M M

  

 
  

By Routh-Hurwitz criterion its stability if 0AB C  . 

Lemma 11: Equilibrium point  4,2
ˆ ˆ ˆ, ,P x y z  is globally asymptotically stable provided that the 

following conditions hold ˆ ˆyx xy and ˆ ˆyz yz  



     : Ghassan Ezzulddin Arif , Sufyan Abaas Wuhaib and Marwa Fareed Rashad                                                         JQCM - Vol.12(1) 2020 ,  pp Math 120–138  130 

 

Proof: As proof in Lemma 4. 

See figures 6-a and 6-b with fixed parameters as                         

0 1 3 4 1 20.78, 0.5, 0.4, 0.35, 0.3, 0.5, 0.074, 0.07r d d              

 

 

 
Figure 6-a. Global stability of subsystem (4)  

 
 

Figure 6-b. Global stability of subsystem (4)  

 

4.4. In the Absence of Top Predator 
In absence top predator, System (1) becomes prey, susceptible and infected predator. This 
model known classical model with disease. Interaction between these populations describe as 
follows: 
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1
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1
1 1 1

1

1 1 1
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1

(1 )
1 1

(5)
1

1

xydx xy
rx x

dt x x

cyydy xy
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dt y y x
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 


   
 


   

                       

 

 

4.4.1Natural of Solution 

Lemma 12: All the solutions of the sub system (5) in 3  are positive and bounded. 

Proof:  As proof in Lemma 1. 

4.4.2Existence of Equilibrium Points and Stability 
The model in the system (5) has the following equilibrium points: 
  The trivial equilibrium points  5,0 0,0,0P  always exists.  

  The equilibrium points  5,1 1,0,0P   exists on the boundary of the octant. 

The nontrivial equilibrium points  5,2 1, ,P x y y  where 

1
1 1 1 5

1

1
51 1 1

1

1
,

1

cyy x
ky d y y k q

y y x
x y

xcyy
c k qy ky d y

xy y



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

   
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   
       

   

and   

1 0

4

1
(1 )

1

x y
y r x

x




 

 
   

 
 with conditions 

1
1 1 1 5

1

,
1

cyy x
y ky d y c k q

y y x
  



   
        

   
and 0(1 )

1

y
r x

x



 


. The Jacobian matrix 

of subsystem (5) near 5,2P is :   

 

     

       

0 4

2

1
5 1 1 12 2 2

1 1

2 2

1 1
5 52 2 2

1 1

1 2

1 1 1

11

11

rx x x x

x x x

cyy x cy
J d k

xx y y y y

y cy cy x
k q

xx y y y y

 
  

  

  


  


 
   

  
   
 
 

         
 
    

    

 

11 12 13

21 22 23

31 32 33

0

a a a

a a a

a a a









 



 

Also, we will only study the positive point  5,2 1, ,P x y y , the characteristic equation near this 

point is 3 2 0A B C       Where 
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11 22 33

11 22 11 33 22 33 23 32 12 21 13 31

11 22 33 11 23 32 12 21 33 12 23 31 13 21 32 13 31 22

A a a a

B a a a a a a a a a a a a

C a a a a a a a a a a a a a a a a a a

   

     

      

  

By Routh-Hurwitz criterion, and because 0AB C  , its stability 

Lemma 13: Equilibrium point  5 1, ,P x y y of subsystem (5) is globally stability provided that 

the following conditions hold 1 1,xy yx xy y x   and 1 1yy y y  

Proof: As proof in Lemma 4. 

Figures 7-a and 7-b, with fixed parameters as: 
00.6, 0.44,r     

1 4 5 10.309, 0.479, 0.292, 0.406, 0.095, 0.126, 0.202k d c           

 
Figure 7-a: Global stability of subsystem (5) without harvesting 

 
 Figure 7-b: Global stability of subsystem (5) without harvesting 
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Figure 8: global stability of subsystem (5) with harvesting 

 

5. Existence of Equilibrium Points and Stability of Original System 

    Always vanishing equilibrium point  0 0,0,0,0E  exist. 

    Boundary point  1 1,0,0,0E . 

    Finally, positive equilibrium point  2 1, , ,E x y y z    , where 
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 The Jacobian matrix is  

S.I.Predator

Prey

I.I.Predator

0 200 400 600 800 1000

0.0

0.2

0.4

0.6

0.8

Time

P
o
p
u
la
ti
o
n
s

 



     : Ghassan Ezzulddin Arif , Sufyan Abaas Wuhaib and Marwa Fareed Rashad                                                         JQCM - Vol.12(1) 2020 ,  pp Math 120–138  134 

 

   

       

     

 

 

1
0 4 0 42 2

2 2

1
1 1 2 1 22 2 2 2

1 1

2 2

1 1
5 2 2 2

1 1

3 3 22

2 0
1 11 1

1 11 1

0
1

0 0
11

1
2

1

yy x x
r rx

x xx x

cyy x z cy y
d k

x yx y y y y y
J

y cy cy
k q

x y y y y

z y
d

yy

r x
r rx

x

E

   
  

   
  




 











 
        

 
       

     
  
   
   
 
 

 
  


  





 

       

   

 

0 4 2
2

1

** * *2 *

1
1 1 2 1 22 2 2 2* ** * * * *

1 1

* * *

1 1
5 2 2* * * * *

1 1 1

*

3 2
*

0
1 1

1 11 1

0
1

0 0
1

x x

x y

cyy x z cy y
d

x yx y y y y y

y cy cy
k q

y y y y y

z

y

 
 

    
  

 


 


 





 
 

 
 
 

      
     

 
    
   
 
 
 
 
 

 

 

      

11 12 13

21 22 23 24

31 32 33

42

0

0
0

0 0

J J J

J J J J

J J J

J


















  

The stability of these points as follows:       

Then the characteristic equation of  2J E  is given by: 
4 3 2 0A B C D         

11 22 33A J J J     

11 22 11 33 23 32 22 33 12 21 13 31 24 42B J J J J J J J J J J J J J J        

11 22 33 11 24 42 11 23 32 12 21 33 13 21 32 13 22 31 24 33 42 12 23 31C J J J J J J J J J J J J J J J J J J J J J J J J        

11 24 33 42 13 24 31 42D J J J J J J J J    

2 2ABC C A D      

Also, by Routh Hurwitz theorem this is stable if  0, 0, 0A C D     

Lemma 14: Assume that the positive equilibrium point  1, , ,E x y y z   
of system (1) is 

globally provided that the following conditions hold
 

* *

1 1, ,xy yx xy y x y z yz      and 

*

1 1yy y y   

Proof: As proof in Lemma 4. 

 

 

 

 6. Numerical Simulation 
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In this section, we want illustration some results by employ Mathematica Programing in the 
system (1). To discuss the effect of cure rate from the disease and harvesting on the behavior of 
the solution. Above all, by looking at a number of papers and taking advantage of the conditions 

discussed in this paper, we have installed parameters as follows: 
00.88, 0.662,r  

1 2 3 4 50.558, 0.51, 0.413, 0.576, 0.192, 0,247. 0,c k           1 20.109,d 0.077d   .Two        

cases that will be discussed: First case, when the model is the kind of SI. In such model, 
susceptible intermediate predator (S.I. Predator) become infected intermediate predator (I.I. 
Predator) and not able to become susceptible again. Then we employ the harvest to see its 
impact on behavior. Figure (9) the behavior of solution of system (1) as SI model without 
harvesting.  Figure (10) the behavior of solution with harvesting. Note in these two cases how 
employ the harvesting to disease control.  

 

Figure 9: SI model without harvesting (q=0) 
 

 
Figure 10: SI model with harvesting (q=0.067) 

 

The second case, the model is the kind SIS. In such model susceptible intermediate predator 
become infected intermediate predator and become susceptible again. Figure (11) behavior of 
solution of system (1) as SIS model without harvesting, while figure (12) employ the harvesting 
to disease control. Also, we note the effect of harvesting on disease to not become as epidemic. 
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Figure. 11: SIS model without harvesting(k=0.026,q=0) 

 

 
Figure.12: SIS model with harvesting (k=0.026,q=0.067) 

 

7. Consolation 
In this research, we studied the dynamic system of the food chain model when the intermediate 
predator is at risk of disease. All system solutions have proven to be positive and limited, 
including subsystems. Equilibrium points were found in the subsystems and the original system 
and the necessary and sufficient conditions for their existence were found in addition to 
conditions of local and global stability. It turns out that the stability conditions of the subsystems 
are necessary for the stability of the original system. The disease is controlled and prevented 
from becoming as epidemic by numerical simulation.                                                        
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