

Available online at www.qu.edu.iq/journalcm

JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

Weakly Nearly Semiprime Submodules and Some Related Concepts

Haibat Karim Mohammadali^(a)

Ali Sabah Sadiq^(b)

(a) Department of Mathematics, College of Comp. Science and Math. University of Tikrit, Tikrit, Iraq. Email: dr.mohammadali2013@gmail.com (b) Department of Mathematics, College of Comp. Science and Math. University of Tikrit, Tikrit, Iraq. Email: alisabahsadickali@gmail.com

ARTICLEINFO

Article history: Received: 06 /04/2020 Rrevised form: dd /mm/year

Accepted : 16 /04/2020

Available online: 07 /05/2020

Keywords: Weakly semiprime submodules, WNsemiprime submodules, Jacobson radical of submodules, Multiplication R-modules.

DOI: 10.29304/jqcm.2020.12.2.686

1. Introduction

The concept of a weakly semiprime submodule was first introduced by Tavallaee Zalfoghari in 2012, where a proper submodule A of an R-module F is called weakly semiprime, if whenever $0 \neq r^k x \in A$, for $r \in R$, $x \in F$ and $k \in Z^+$, implies that $rx \in A[1]$. Recently the concept of weakly semiprime submodule was generalization to the concept of weakly semi-2-Absorbing submodules in 2018 [2]. The concept of WE-semiprime submodule as a strong from of weakly semiprime submodule was introduced in [3]. In this note we investigate the concept WN-semiprime submodule, where a proper submodule A of an R-module G is called WN-semiprime, if whenever $0 \neq r^n x \in A$, for $r \in R$, $x \in G$ and $n \in Z^+$, implies that $rx \in A + Rad(G)$. Where Rad(G) is the intersection of all maximal submodule of G, Rad(G) is called the Jacobson radical of G. Also the concept of WN-semiprime submodule is a generalization of WN-prime submodule, which introduced in [4]. Recall that an R-module G is faithful, if $ann_R(G) = (0)$, where $aan_R(G) = \{r \in R : rG = (0)\}$ [5]. "An R-

Email address: alisabahsadickali@gmail.com

Communicated by :

ABSTRACT

In present paper the concept of WN-semiprime submodule of unitary left R-module G over a commutative ring R with identity are introduced and studied, as a generalization of weakly semiprime submodules. Numerous basic properties of this concept are investigate. Where a proper submodule A of an R-module G is said to be WN-semiprime, if whenever $0 \neq r^n x \in A$, for $r \in R$, $x \in G$ and $n \in Z^+$, implies that $rx \in A + Rad(G)$. Furthermore many characterizations of WN-semiprime submodule are introduced. Moreover, some properties of WN-semiprime submodules in some classes of modules are given.

MSC:

Corresponding author: Ali sabah sadiq

module *G* is called multiplication if every submodule *A* of *G* is of the form A = IG for some ideal *I* of *R*, in particular $A = [A_{R}^{R} G]G$ [6]".

2. Basic properties of WN-semiprime submodules

In this part of this research we introduce the definition of WN-semiprime submodule and we give some basic properties, characterizations and examples.

Definition 2.1 A proper submodule A of an R-module G is called a weakly nearly semiprime (for short WN-semiprime) submodule of G, if whenever $0 \neq r^n x \in A$, for $r \in R$, $x \in G$ and $n \in Z^+$, implies that $rx \in A + Rad(G)$. And an ideal J of a ring R is called a WN-semiprime ideal of R, if J is a WN-semiprime submodule of an R-module R.

Remarks and Examples 2.2

(1). It is clear that every weakly semiprime submodule of an R-module G is a WN-semiprime submodule, but not conversely, the following example shows that.

Consider the Z-module Z_{24} and the submodule $A = \{\overline{0}, \overline{8}, \overline{16}\}$ of Z_{24} . A is a WN-semiprime submodule of Z_{24} since $Rad(Z_{24}) = \langle \overline{2} \rangle \cap \langle \overline{3} \rangle = \langle \overline{6} \rangle = \{\overline{0}, \overline{6}, \overline{12}, \overline{18}\}$ and whenever $0 \neq r^n x \in A$ for $r \in Z$, $x \in Z_{24}$ and $n \in Z^+$, implies that $rx \in A + Rad(Z_{24}) = \{\overline{0}, \overline{8}, \overline{16}\} + \{\overline{0}, \overline{6}, \overline{12}, \overline{18}\} = \langle \overline{2} \rangle = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}, \overline{8}, \overline{10}, \overline{12}, \overline{14}, \overline{16}, \overline{18}, \overline{20}, \overline{22}\}$. But A is not weakly semiprime submodule of Z_{24} since $0 \neq 2^2 \overline{2} \in A$ for $2 \in Z, \overline{2} \in Z_{24}$, but $2 \overline{2} \notin A$.

(2). The submodule $B = \langle \overline{12} \rangle$ of the Z-module Z_{24} is a WN-semiprime submodule of Z_{24} , since $0 \neq 2^2 \overline{3} \in B$ for $2 \in Z, \overline{3} \in Z_{24}$, implies that $2\overline{3} = \overline{6} \in B + Rad(Z_{24}) = \langle \overline{12} \rangle + \langle \overline{6} \rangle = \langle \overline{6} \rangle$.

(3). It is clear that every WNprime submodule of an R-module G is a WN-semiprime submodule, but not conversely, the following example explains that.

In the Z-module Z_{24} we shows that by (2) the submodule $A = \langle \overline{12} \rangle$ is a WN-semiprime. But A is not WNprime submodule of Z_{24} for $0 \neq 3 \overline{4} \in \langle \overline{12} \rangle$ for $3 \in Z, \overline{4} \in Z_{24}$, but $\overline{4} \notin \langle \overline{12} \rangle + Rad(Z_{24}) = \langle \overline{12} \rangle + \langle \overline{6} \rangle = \langle \overline{6} \rangle$ and $3 \notin [\langle \overline{12} \rangle + Rad(Z_{24}):_{z} Z_{24}] = [\langle \overline{6} \rangle :_{z} Z_{24}] = 6Z$.

The following proposition gives some equivalent characterizations of WN-semiprime submodule.

Proposition 2.3 Let G be an R-module and A be a proper submodule of G. Then the following statements are equivalent.

(1). A is a WN-semiprime submodule of G.

(2). $[A:_G \langle r^n \rangle] \subseteq [\langle 0 \rangle :_G \langle r^n \rangle] \cup [A + Rad(G):_G \langle r \rangle].$

(3). Either $[A:_G \langle r^n \rangle] \subseteq [\langle 0 \rangle:_G \langle r^n \rangle]$ or $[A:_G \langle r^n \rangle] \subseteq [A + Rad(G):_G \langle r \rangle]$.

Proof (1) \Rightarrow (2) Let $x \in [A:_G \langle r^n \rangle]$, implies that $r^n x \in A$, if $0 \neq r^n x \in A$ and A is a WN-semiprime it follows that $rx \in A + Rad(G)$, hence $x \in [A + Rad(G):_G \langle r \rangle]$. Thus $\in [\langle 0 \rangle:_G \langle r^n \rangle] \cup [A + Rad(G):_G \langle r \rangle]$. If $r^n x = 0$, then $x \in [\langle 0 \rangle:_G \langle r^n \rangle]$, it follows that $x \in [\langle 0 \rangle:_G \langle r^n \rangle] \cup [A + Rad(G):_G \langle r \rangle]$. Hence $[A:_G \langle r^n \rangle] \subseteq [\langle 0 \rangle:_G \langle r^n \rangle] \cup [A + Rad(G):_G \langle r \rangle]$.

 $(2) \Longrightarrow (3)$ clearly.

 $(3) \Rightarrow (1)$ Suppose that $0 \neq r^n x \in A$ for $r \in R, x \in G$ and $n \in Z^+$, hence $x \in [A:_G \langle r^n \rangle]$ and $x \notin [\langle 0 \rangle :_G \langle r^n \rangle]$ then by hypothesis $x \in [A + Rad(G):_G \langle r \rangle]$. That is $rx \in A + Rad(G)$, and it gives that A is a WN-semiprime submodule of G.

The following proposition gives another characterization of WN-semiprime submodule of G.

Proposition 2.4 Let G be an R-module and A be a proper submodule of G. Then A is a WNsemiprime submodule of G if and only if $0 \neq \langle r \rangle^n B \subseteq A$ for $r \in R, B$ is a submodule of G and $n \in Z^+$, implies that $\langle r \rangle B \subseteq A + Rad(G)$.

Proof (\Rightarrow) Suppose that $0 \neq \langle r \rangle^n B \subseteq A$ for $r \in R, B$ is a submodule of G and $n \in Z^+$ that is $0 \neq \langle r^n \rangle B \subseteq A$, it follows that $B \subseteq [A:_G \langle r^n \rangle]$ with $B \not\subseteq [\langle 0 \rangle:_G \langle r^n \rangle]$. Thus by Proposition(2.3) $B \subseteq [A + Rad(G):_G \langle r \rangle]$, it follows that $\langle r \rangle B \subseteq A + Rad(G)$.

 (\Leftarrow) Let $0 \neq r^n x \in A$ for $r \in R, x \in G$ and $n \in Z^+$. Implies that $0 \neq \langle r^n \rangle \langle x \rangle \subseteq A$, that is $0 \neq \langle r \rangle^n \langle x \rangle \subseteq A$, so by hypothesis $\langle r \rangle \langle x \rangle \subseteq A + Rad(G)$, implies that $r x \in A + Rad(G)$. Then A is a WN-semiprime submodule of G.

As a direct consequence of Proposition (2.4) we get the following corollaries

Corollary 2.5 Let G be an R-module and A be a proper submodule of G. Then A is a WNsemiprime submodule of G if and only if $0 \neq \langle r \rangle^n G \subseteq A$ for $r \in R$, and $n \in Z^+$, implies that $\langle r \rangle G \subseteq A + Rad(G)$.

Corollary 2.6 Let G be an R-module and A be a proper submodule of G. Then A is a WNsemiprime submodule of G if and only if $0 \neq r^n B \subseteq A$ for $r \in R, B$ is a submodule of G and $n \in Z^+$, implies that $rB \subseteq A + Rad(G)$.

The following proposition gives a condition under which WN-semiprime submodules are weakly semiprime.

Proposition 2.7 Let G be an R-module and A be a WN-semiprime submodule of G with $Rad(G) \subseteq A$. Then A be a weakly semiprime submodule of G.

Proof Let $0 \neq r^n x \in A$ for $r \in R, x \in G$ and $n \in Z^+$. Since A a WN-semiprime submodule, then $rx \in A + Rad(G)$. But $Rad(G) \subseteq A$, it follows that Rad(G) + A = A, hence $rx \in A$. Hence A is a weakly semiprime submodule of G.

It is well-known that if A is a submodule of an R-module G with $Rad\left(\frac{G}{A}\right) = (0)$, then $Rad(G) \subseteq A$ [5, Theo. (9.1.4)(b)]. So we get the following corollary.

Corollary 2.8 Let G be an R-module and A be a WN-semiprime submodule of G with $Rad\left(\frac{G}{A}\right) =$ (0). Then A be a weakly semiprime submodule of G.

Another condition on WN-semiprime submodule of G to be weakly semiprime in the following result.

Proposition 2.9 Let G be an R-module and A be a WN-semiprime submodule of G with Rad(G) = (0). Then A is a weakly semiprime submodule of G.

Proof Clear.

Recall that an R-module G is a semisimple if and only if Rad(G) = (0) [5, Theo. (9.2.2)].

As a direct Application of Proposition 2.9 we get the following result.

Corollary 2.10 Let G be a semisimple R-module and A is a WN-semiprime submodule of G. Then A is a weakly semiprime submodule of G.

Recall that an R-module G is called torsion free if the set $\Im(G) = \{x \in G : rx = 0 \text{ for some nonzero } r \in R\}$ [7].

Proposition 2.11 Let *G* be a torsion free R-module, and *A* is a submodule of *G* with $Rad\left(\frac{G}{A}\right) =$ (0). Then *A* is a WN-semiprime submodule of *G* if and only if for any nonzero ideal *I* of *R*, $[A:_G I]$ is a WN-semiprime submodule of *G*.

Proof (\Rightarrow) Let $0 \neq \langle r \rangle^n x \subseteq [A:_G I]$ for each $r \in R, x \in G$ and $n \in Z^+$, it follows that $\langle r \rangle^n (xI) \subseteq A$. If $0 \neq \langle r \rangle^n (xI) \subseteq A$ and A is a WN-semiprime submodule of G, then by proposition 2.4 we have $\langle r \rangle (xI) \subseteq A + Rad(G)$. But $Rad\left(\frac{G}{A}\right) = (0)$, then $Rad(G) \subseteq A$, it follows that Rad(G) + A = A, hence $\langle r \rangle (xI) \subseteq A$, implies that $\langle r \rangle x \subseteq [A:_G I] \subseteq [A:_G I] + Rad(G)$. Thus $\langle r \rangle x \subseteq [A:_G I] + Rad(G)$. If $(0) = \langle r \rangle^n (xI)$, so $\langle r \rangle^n x i = 0$ for some nonzero $i \in I$, then $\langle r \rangle^n x \subseteq \Im(G) = (0)$ contradiction.

(\Leftarrow) Suppose that $[A:_G I]$ is a WN-semiprime submodule of *G* for any nonzero ideal *I* of *R*. Put I = R we get $[A:_G I] = A$ which is WN-semiprime submodule of *G*.

For next corollary we need to introduce the following lemma.

Lemma 2.12 [8, Lemma 4.11] Every faithful multiplication R-module is torsion free.

Corollary 2.13 Let *G* be a faithful multiplication R-module, and *A* is a proper submodule of *G* with $Rad\left(\frac{G}{A}\right) = (0)$. Then *A* is a WN-semiprime submodule of *G* if and only if for any nonzero ideal *I* of $R\left[A:_{G}I\right]$ is a WN-semiprime submodule of *G*.

Proof Follows by Lemma 2.12 and Proposition 2.11.

Recall that an R-module G is a hollow module if every submodule A of G is small, that is if G = A + B for some submodule B of G, implies that B = G [9].

Proposition 2.14 Let G be an R-module, and A a small submodule of G, such that Rad(G) is a weakly semiprime submodule of G. Then A is a WN-semiprime submodule of G.

Proof Let $0 \neq r^n x \in A$ for $r \in R, x \in G$ and $n \in Z^+$. Since A is a small submodule of G, then $A \subseteq Rad(G)$ that is $0 \neq r^n x \in Rad(G)$, but Rad(G) is a weakly semiprime submodule of G, it follows that $rx \in Rad(G) \subseteq A + Rad(G)$. Hence A is a WN-semiprime submodule of G.

Corollary 2.15 Let G be a hollow R-module with Rad(G) is a weakly semiprime submodule of G, then every proper submodule of G is a WN-semiprime submodule of G.

Recall that a submodule N of an R-module G is called coclosed if for any submodule A of G contained in $N, \frac{N}{4}$ is a small in $\frac{G}{4}$, implies that N = A [9].

We need to recall the following lemma before we introduce the next proposition.

Lemma 2.16 [9, Prop. (1.2.16)] If B is a coclosed submodule of an R-module G, then $Rad(B) = B \cap Rad(G)$.

Proposition 2.17 Let *G* be an R-module , and *B*, *C* are submodules of *G* with $C \not\subseteq B$. If *C* is a coclosed submodule of *G* such that $Rad\left(\frac{G}{C}\right) = (0)$ and *B* is a WN-semiprime submodule of *G*. Then $B \cap C$ is a WN-semiprime submodule of .

Proof It is clear that $B \cap C$ is a proper submodule of C. Let $0 \neq r^n x \in B \cap C$, for $r \in R, x \in C$ and $n \in Z^+$, it follows that $0 \neq r^n x \in B$. Since B is a WN-semiprime submodule of G, implies that $rx \in B + Rad(G)$. It follows that $rx \in (B + Rad(G)) \cap C$. Since $Rad\left(\frac{G}{C}\right) = (0)$, then $Rad(G) \subseteq C$, hence by modular low we have $rx \in (B \cap C) + (C \cap Rad(G))$. But C is a coclosed submodule of G, then by Lemma 2.16 $Rad(C) = C \cap Rad(G)$, hence $rx \in (B \cap C) + Rad(C)$. That is $B \cap C$ is a WN-semiprime submodule of C.

Proposition 2.18 Let $G = G_1 \oplus G_2$ be an R-module for G_1 , G_2 are R-modules, with G_2 is injective R-module and A_1 is a small submodule of G_1 . Then A_1 is a WN-semiprime submodule of G_1 if and only if $A_1 \oplus G_2$ is a WN-semiprime submodule of G.

Proof (\Rightarrow) Let $(0,0) \neq r^n(x_1, x_2) \in A_1 \oplus G_2$ where $r \in R$, $(x_1, x_2) \in G_1 \oplus G_2$ with x_1 is nonzero in G_1 , $x_2 \in G_2$ and $n \in Z^+$, implies that $0 \neq r^n x_1 \in A_1$. But A_1 is a WN-semiprime submodule of G_1 , then $rx_1 \in A_1 + Rad(G_1)$. Since A_1 is a small submodule of G_1 , implies that $A_1 \subseteq Rad(G_1)$, it follows that $rx_1 \in Rad(G_1)$, and since G_2 is injective, then by [10, Lemma 2.3] $Rad(G_2) = G_2$, implies that $rx_2 \in Rad(G_2)$, so $r(x_1, x_2) \in Rad(G_1) \oplus Rad(G_2) = Rad(G_1 \oplus G_2) \subseteq A_1 \oplus G_2 + Rad(G_1 \oplus G_2)$. Hence $A_1 \oplus G_2$ is a WN-semiprime submodule of G.

(\Leftarrow) Suppose that $A_1 \oplus G_2$ is a WN-semiprime submodule of G, and let $0 \neq r^n x_1 \in A_1$ for $r \in R$ and x_1 is nonzero element G_1 and $n \in Z^+$. It follows that for each $x_2 \in G_2$ $(0,0) \neq r^n(x_1,x_2) \in A_1 \oplus G_2$. Since $A_1 \oplus G_2$ is a WN-semiprime submodule of G, implies that so $r(x_1,x_2) \in (A_1 \oplus G_2) + Rad(G_1 \oplus G_2) = (A_1 \oplus G_2) + Rad(G_1) \oplus Rad(G_2)$. Since A_1 is small submodule of G_1 , then $A_1 \subseteq Rad(G_1)$, and G_2 is injective, then by [8, Lemma 2.3] $Rad(G_2) = G_2$. Hence $r(x_1,x_2) \in (A_1 \oplus G_2) + (A_1 \oplus G_2) = (A_1 + Rad(G_1)) \oplus G_2$ (because $A_1 \oplus G_2 \subseteq (A_1 + Rad(G_1) \oplus G_2)$. Thus $r x_1 \in A_1 + Rad(G_1)$. It follows that A_1 is a WN-semiprime submodule of G_1 .

Corollary 2.19 Let $G = G_1 \oplus G_2$ be an R-module where G_1 , G_2 are R-modules, G_1 is a hollow module and G_2 is an injective R-module and A_1 is a proper submodule of G_1 . Then A_1 is a WN-semiprime submodule of G_1 if and only if $A_1 \oplus G_2$ is a WN-semiprime submodule of G.

We end this section by following proposition.

JQCM - Vol.12(2) 2020 pp Math 1-10 6

Proposition 2.20 Let $G = G_1 \oplus G_2$ be an R-module where G_1 , G_2 are R-modules, and $A = A_1 \oplus A_2$ be a submodule of G with $A \subseteq Rad(G)$. If A is a WN-semiprime submodule of G, then A_1, A_2 are WNsemiprime submodule of G_1 , G_2 respectively.

let $0 \neq r^n x_1 \in A_1$ for $r \in R$ and x_1 is nonzero element G_1 and $n \in Z^+$, it follows that Proof $(0,0) \neq r^n(x_1,0) \in A$. Since A is a WN-semiprime submodule of G, then $r(x_1,0) \in A + Rad(G)$. But $A \subseteq Rad(G)$, then $r(x_1, 0) \in Rad(G) = Rad(G_1 \oplus G_2) = Rad(G_1) \oplus Rad(G_2)$. It follows that $rx_1 \in Rad(G_1) \subseteq A_1 + Rad(G_1)$. Hence A_1 is a WN-semiprime submodule of G_1 .

Similarly, we can prove that A_2 is a WN-semiprime submodule of G_2 .

3. More properties of weakly nearly semiprime submodules

Our concern in this section is to give properties of WN-semiprime submodule in class of multiplication R-module characterize by good rings, Artinian rings and local rings before introduce the first proposition.

Recall that a ring R is a good ring if Rad(G) = Rad(R) G for any R-module G[7].

Before we introduce the first proposition we recall the following lemma.

Lemma 3.1 [6, Coro. of Theo. 9] "Let G be a finitely generated multiplication R-module, and I, I are ideals of ring R. Then $IG \subseteq IG$ if and only if $I \subseteq I + ann_R(G)$."

Proposition 3.2 Let G be a finitely generated multiplication R-module over a good ring R and I is a WN-semiprime ideal of R with $ann_R(G) \subseteq I$. Then IG is a WN-semiprime submodule of G.

Let $0 \neq r^n x \in IG$ for $r \in R, 0 \neq x \in G$ and $n \in Z^+$, that is $0 \neq r^n \langle x \rangle \subseteq IG$. Since G is a Proof multiplication then $\langle x \rangle = IM$ for some ideal I of R, that is $0 \neq r^n IG \subseteq IG$. It follows that by Lemma 3.1, $0 \neq r^n I \subseteq I + ann_R(G)$. But $ann_R(G) \subseteq I$, implies that $ann_R(G) + I = I$, hence $0 \neq r^n I \subseteq I$. Since I is a WN-semiprime ideal of R, it follows that $rJ \subseteq I + Rad(R)$, so $rJG \subseteq IG + Rad(R)G$. But R is a good ring, then Rad(G) = Rad(R) G. Hence $r\langle x \rangle \subseteq IG + Rad(G)$, hence $rx \in IG + Rad(G)$ Rad(G). Hence IG is a WN-semiprime submodule of G.

It is well-known that **an** Artinian ring is a good ring [5, Coro. (9.7.3)(10)].

So, we get the following corollary.

Corollary 3.3 Let G be a finitely generated multiplication R-module over an Artinian ring R and I is a WN-semiprime ideal of R with $ann_R(G) \subseteq I$. Then IG is a WN-semiprime submodule of G.

It is well-known that if an R-module G over a local ring, then Rad(G) = Rad(R) G [9, Prop. 1.2].

Proposition 3.4 Let G be a finitely generated multiplication R-module over a local ring R and I is a WN-semiprime ideal of R with $ann_R(G) \subseteq I$. Then IG is a WN-semiprime submodule of G.

Proof Let $0 \neq r^n L \subseteq IG$, for $r \in R$ and L be a nonzero submodule of G, and $n \in Z^+$. Since G is multiplication, implies that $0 \neq r^n JG \subseteq IG$ for some nonzero ideal J of . Hence by Lemma 3.1, $0 \neq r^n J \subseteq I + ann_R(G)$. But $ann_R(G) \subseteq I$, implies that $ann_R(G) + I = I$, that is $0 \neq r^n J \subseteq I$. It follows by Corollary 2.6 $r \subseteq I + Rad(R)$, implies that $r \subseteq I \subseteq I \subseteq Rad(R)G$. But R is a local ring,

then Rad(G) = Rad(R) G. Hence $rL \subseteq IG + Rad(G)$. That is *IG* is a WN-semiprime submodule of *G*.

Proposition 3.5 Let G be a projective finitely generated multiplication R-module and I be a WN-semiprime ideal of R with $ann_R(G) \subseteq I$. Then IG be a WN-semiprime submodule of G.

Proof Let $0 \neq \langle r^n \rangle A \subseteq IG$, for $r \in R$ and A be a nonzero submodule of G, and $n \in Z^+$. Since G is multiplication, then A = JG for some nonzero ideal J of R, that is $0 \neq \langle r^n \rangle JG \subseteq IG$, it follows that by Lemma 3.1, $0 \neq \langle r^n \rangle J \subseteq I + ann_R(G, \text{ implies that } ann_R(G) + I = I$ by hypothesis, hence is $0 \neq \langle r^n \rangle J \subseteq I$. It follows by Proposition 2.4, $\langle r \rangle J \subseteq I + Rad(R)$, it follows that $\langle r \rangle JG \subseteq IG + Rad(R)G$. But G is a projective R-module , then by [3, Prop. 17.10] Rad(G) = Rad(R)G. Thus $\langle r \rangle A \subseteq IG + Rad(G)$. That is IG is a WN-semiprime submodule of G.

Remark 3.6 If *A* is a WN-semiprime subodule of an R-module *G*, then [A : G] need not to be a WN-semiprime ideal of *R*. The following example shows that :

Let $G = Z_8$ as a Z-module and $A = \{\overline{0}, \overline{4}\}$ be a submodule of Z_8 . It is clear that $Rad(Z_8) = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$. The submodule A is a WN-semiprime submodule of Z_8 , since $0 \neq 2^2 \overline{1} \in A$ for $2 \in Z, \overline{1} \in Z_8$, it follows that $2 \overline{1} \in A + Rad(Z_8) = \{\overline{0}, \overline{2}, \overline{4}, \overline{6}\}$. But $[A : Z_8] = 4Z$ is not WN-semiprime ideal of Z, since $0 \neq 2^2 1 \in 4Z$, but $2.1 \notin 4Z + Rad(Z) = 4Z + (0) = 4Z$.

Now we look for conditions under which the result of WN-semiprime is WN-semiprime ideal.

Proposition 3.7 Let *G* be an R-module and *B* be a proper submodule of *G* with $Rad\left(\frac{G}{B}\right) = (0)$ and $Rad(R) \subseteq [B_R G]$. Then *B* is a WN-semiprime submodule of *G* if and only if $[B_R G]$ is a WN-semiprime ideal of *R*.

Proof (\Rightarrow) Let $0 \neq r^n s \in [B_R G]$ for $r \in R$ and s is nonzero element of R, it follows that $0 \neq r^n s G \subseteq B$. Since B is a WN-semiprime submodule of G, then by Corollary 2.5, $rsG \subseteq B + Rad(G)$, but $Rad\left(\frac{G}{B}\right) = (0)$, then $Rad(G) \subseteq B$, it follows that $rsG \subseteq B$, hence $rs \in [B_R G] \subseteq [B_R G] + Rad(R)$. That is $[B_R G]$ is a WN-semiprime ideal of R.

(\Leftarrow) Let $0 \neq r^n G \subseteq B$ for r be nonzero element of R, it follows that $0 \neq r^n . 1 \in [B_R G]$, but $[B_R G]$ is a WN-semiprime ideal of R, implies that $r . 1 \in [B_R G] + Rad(R)$. Since $Rad(R) \subseteq [B_R G]$, it follows that that $r \in [B_R G]$, that is $rG \subseteq B \subseteq B + Rad(G)$. Hence B is a WN-semiprime submodule of G.

Proposition 3.8 Let *G* be multiplication R-module over an Artinian ring *R* and *B* be a proper submodule of *G*. Then *B* is a WN-semiprime submodule of *G* if and only if $[B_{R}G]$ is a WN-semiprime ideal of *R*.

Proof (\Rightarrow) Let $0 \neq r^n$. $I \subseteq [B_{R}G]$ for $r \in R$, and I is nonzero ideal of R, $n \in Z^+$, it follows that $0 \neq r^n$. $IG \subseteq B$. Since B is a WN-semiprime submodule of G, then $rIG \subseteq B + Rad(G)$. But G is a multiplication R-module over an Artinian ring, then $B = [B_{R}G]G$ and Rad(G) = Rad(R)G, it follows that $rIG \subseteq [B_{R}G]G + Rad(R)G$, hence $rI \subseteq [B_{R}G] + Rad(R)$. That is $[B_{R}G]$ is a WN-semiprime ideal of R.

(⇐) $0 \neq r^n L \subseteq B$ for $r \in R$, and L be a submodule of G, $n \in Z^+$. Since G be multiplication R-module then L = IG for some nonzero ideal I of R, that is $0 \neq r^n IG \subseteq B$, it follows that $0 \neq r^n I \subseteq [B_{:R} G]$. But $[B_{:R} G]$ is a WN-semiprime ideal of R, then $rI \subseteq [B_{:R} G] + Rad(R)$, implies that $rIG \subseteq [B_{:R} G]G + Rad(R)G$. But G is a multiplication R-module over an Artinain ring, then $rL \subseteq B + Rad(G)$. That is B is a WN-semiprime submodule of G.

Proposition 3.9 Let *G* be multiplication R-module over a local ring *R* and *B* be a proper submodule of *G*. Then *B* is a WN-semiprime submodule of *G* if and only if $[B_{R}, G]$ is a WN-semiprime ideal of *R*.

Proof It follows that as in Proposition 3.7.

Proposition 3.10 Let *G* be multiplication R-module over a good ring *R* and *B* be a proper submodule of *G*. Then *B* is a WN-semiprime submodule of *G* if and only if $[B_{R}, G]$ is a WN-semiprime ideal of *R*.

Proof It follows that as in Proposition 3.7.

Recall that an R-module G is a cancellation if IG = JG for any ideals I, J of R, implies that I = J [12].

Proposition 3.11 Let *G* be a multiplication faithful finitely generated projective R-module , and *B* be a proper submodule of *G*. Then the following statements are equivalent:

(1). *B* is a WN-semiprime submodule of *G*.

(2). $[B_{:R} G]$ is a WN-semiprime ideal of *R*.

(3). B = IG for some WN-semiprime ideal *I* of *R*.

Proof (1) \Rightarrow (2) Let $0 \neq r^n I \subseteq [B_R^R G]$ for $r \in R, n \in Z^+$ and *I* is nonzero ideal of *R*, then $0 \neq r^n I G \subseteq B$. Since *B* is a WN-semiprime submodule of *G*, then by Corollary 2.6 $rIG \subseteq B + Rad(G)$. But *G* be a multiplication projective R-module ,then $B = [B_R^R G]G$ and Rad(G) = Rad(R)G, it follows that $rIG \subseteq [B_R^R G]G + Rad(R)G$, that is $rI \subseteq [B_R^R G] + Rad(R)$. Thus $[B_R^R G]$ is a WN-semiprime ideal of *R*.

(2) \Rightarrow (1) $0 \neq r^n A \subseteq B$ for $r \in R$, and A be a submodule of G, $n \in Z^+$. Since G be multiplication R-module then A = JG for some nonzero ideal J of R, that is $0 \neq r^n JG \subseteq B$, it follows that $0 \neq r^n J \subseteq [B_R G]$. But $[B_R G]$ is a WN-semiprime ideal of R, implies that $rJ \subseteq [B_R G] + Rad(R)$, it follows that $rJG \subseteq [B_R G]G + Rad(R)G$. Since G is a multiplication projective R-module, then $rA \subseteq B + Rad(G)$. Hence B is a WN-semiprime submodule of G.

(2) \Rightarrow (3) It is given that $[B_R G]$ is a WN-semiprime ideal of R, and since G is a multiplication R-module ,then $B = [B_R G]G = IG$ where $I = [B_R G]$ is a WN-semiprime ideal of R.

(3) \Rightarrow (2) Suppose that B = IG for some WN-semiprime ideal I of R. But $B = [B_R G]G$, hence $[B_R G]G = IG$. Since G is a multiplication faithful finitely generated R-module then by [12, Prop. 3.1] G is a cancellation, that is $[B_R G] = I$ which is a WN-semiprime ideal of R.

From Propositions 3.8, 3.9 and 3.10 we get the following propositions similar to Proposition 3.11.

Proposition 3.12 Let *G* be a multiplication faithful finitely generated R-module over an Artinian ring *R*, and *B* be a proper submodule of *G*. Then the following statements are equivalent:

- (1). *B* is a WN-semiprime submodule of *G*.
- (2). $[B_R G]$ is a WN-semiprime ideal of *R*.
- (3). B = IG for some WN-semiprime ideal *I* of *R*.

Proposition 3.13 Let *G* be a multiplication faithful finitely generated R-module over a local ring *R*, and *B* be a proper submodule of *G*. Then the following statement are equivalent:

(1). *B* is a WN-semiprime submodule of *G*.

- (2). $[B:_R G]$ is a WN-semiprime ideal of *R*.
- (3). B = IG for some WN-semiprime ideal I of R.

Proposition 3.14 Let *G* be a multiplication faithful finitely generated R-module over a good ring *R*, and *B* be a proper submodule of *G*. Then the following statement are equivalent:

(1). *B* is a WN-semiprime submodule of *G*.

- (2). $[B:_R G]$ is a WN-semiprime ideal of *R*.
- (3). B = IG for some WN-semiprime ideal I of R.

References

[1] Tavallaee H. K. and Zalfoghari M., "Some On weakly prime and weakly semiprime submodules", J. of Advanced Research in Pure Math. 2(1)(2012), 19-30.

[2] Haibat K. M. and Khalaf H. A., "Weakly Semi-2-Absorbing Submodules", Journal of Anbar university for Pure Sci. 12(2)(2018), 57-62.

[3] Haibat K. M. and Saif A. H., "WE-prime Subodules and WE-semiprime Submodules", Ibn AL-Haitham J. for Pure and Applied sci. 31(3)(2018), 109-117.

[4] Haibat K. M. and Ali S. S., "Weakly Nearly Prime Submodules", Ibn AL-Haitham J. for Pure and Applied sci. 33(2)(2020), To Appear

[5] Kasch, F., "Modules and Rings", London Math. Soc. Monographs, New York, Academic press, 1982.

[6] Smith P., "Some Remarks on Multiplication Modules", Arch. Math. 50(1988), 223-226.

[7] Goldi A. W., "Torsion free Modules and Rings", Journal of Algbra 1(1964), 266-287.

[8] Nuha H. A., 'The Radicals of Modules", M. Sc. Thesis, university of Baghdad(1996).

[9] Payman M. H., "Hollow Modules and Semi hollw Modules", M. Sc. Thesis, university of Baghdad (2005).

[10] Majid M. A. and Ghafur A., "Generalization Of Generalized Supplemented Modules", International J. of Algebra 6(29)(2012), 1431-1441.

[11] Anderson, F.W. and Fuller, K.R., "Rings and Categories of Modules", Springer-Verlag, New York. 1992.

[12] Ali S. M., "On cancellation Modules", M. Sc. Thesis, university of Baghdad (1992).