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A B S T R A C T 

 The two-layered peristaltic Transport and the heat transfer in the symmetric channel is 
analyzed. The core layer fluid satisfies the power-law fluid characterize and the peripheral 
layer is depicted as the Bingham flow model. The no-slip conditions at the walls are taken into 
consideration. For both zones, small Reynolds number and the long-wavelength 
approximations are used to simplify the governing equations. By using suitable methods, the 
interface equation between the two layers, the velocity, pressure gradient, temperature 
profile, and trapping phenomenon are studied. The influence of the physical parameters of 
the problem are debated and clarified graphically.  

 

MSC.. 

DOI :  https://DOI 10.29304/jqcm.2020.12.2.689  

1. Introduction 

Peristaltic transport is an essential mechanism used to characterize a progressive wave of area expansion or 
contraction which spreads over the length of the channel. Peristalsis is an ingrained property of numerous tubular 
body part of the human. Peristaltic transportation is also used for industrial applications such as corrosive and 
noxious fluids transport, blood pumps in heart-lung device and transport of sanitary fluid. The researches on 
peristaltic flow is now very wide and several researchers already described studies on the peristaltic flow [1–3]. 

A number of the famous biofluids are lymph, intestinal fluid, cerebrospinal fluids, saliva, mother’s milk, perspiration, 
stomach juices.  Not any Newtonian fluid models describe the features of these fluids in detail. Consequently they 
are exhibited as non-Newtonian fluids. Several of the non-Newtonian fluid which are recognized by investigators for 
the survey of these fluids are Casson fluid, Jeffrey fluid, Herschel–Bulkley fluid, Power-law fluid, Bingham fluid, etc. 
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Some theoretical and experimental researches[4-7] have been made on the peristaltic motion of a non-Newtonian 
fluid and also as suspension of solid particles in a Newtonian fluid. 

In several biological channels like the tiny blood vessels, ureter and esophagus, it is noticed that the shape of the 
wall pushing the fluid is covered with a fluid of various features than the fluid being pumped out. Some of the 
investigators [8,9] have displayed practically that for the blood flux in tight blood vessels, there be a peripheral 
stratum (outer) of plasma, as a Newtonian fluid and a core stratum (inner) of containing all the erythrocytes of 
blood, as a non-Newtonian fluid. This stratum owning a viscosity various to the viscosity of the core zone flowing in 
the channel. The fluid characteristics may vary in various channels of a living body. Motivated by this truth, 
numerous practical applications and studies have impart considerable interest in the peristaltic flow of double 
immiscible fluids. Peristaltic motion of Power-law fluid with a Jeffery fluid in an inclined channel with permeable 
wall was analyzed by Sreenadh et al.[10]. Goswami et al. [11] have investigated the impacts of electrokinetic 
peristaltic flow of power-law fluids in a cylindrical elastic tube. Goud et al.[12] analyzed the peristaltic motion of a 
Bingham Flow Model in Contact with a Newtonian fluid. Prasad et al. [13] investigated heat and mass transfer 
impacts of the peristaltic flow of a nanofluid in the peripheral layer in an axisymmetric tube. Vajravelu et al. [14] 
analyzed the two-layered fluid model consisting of a Jeffrey fluid in the core zone and a Newtonian fluid in the 
peripheral zone with the flow and heat transfer effects. Very recently, Ponalagusamy and Selvi [15] addressed the 
combined effects of plasma layer thickness, heat transfer and magnetic field on the flow of blood through stenosed 
arteries. 

Stirred by the above studies, the study of the influence of the peripheral layer on the peristaltic movement of a 
power-law fluid with Bingham fluid in a symmetric horizontal channel under long wavelength and low Reynolds 
number assumptions has been done. Closed expression for interface, velocity, pressure gradient, heat and trapping 
phenomenon is attained. The impacts of different parameters on these flow are calculated and graphically displayed 
by applying Mathematica 11 program. 

2.  Problem Formulation Description 

Consider the peristaltic motion of involving of two incompressible fluids of various viscosities occupying the core 
layer by a power-law fluid and peripheral layer by a Bingham fluid through the symmetric horizontal channel (Fig. 
(1)).  The half-width of the channel is 𝑑. In the Cartesian coordinate system (𝑋, 𝑌), the channel walls are modeled as: 

𝐻(�̅�, 𝑡̅) = 𝑑 + 𝑎 ̅𝑆𝑖𝑛 [
2𝜋

𝜆
(�̅� − 𝑐𝑡̅)]                                                                                                                                                (1) 

where 𝑎 ̅ presents amplitude of peristaltic wave, 𝜆 is the wavelength, 𝑐 is the velocity of the peristaltic wave, 𝑡̅ is the 

time. 
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Fig. 1.   Physical Model 

3. Constitutive Equations  

The equations governing the flow of power-law in the core zone and Bingham fluid in the peripheral zone are 
presented as follows: 

𝜕�̅�1

𝜕�̅�
+
𝜕�̅�1

𝜕�̅�
= 0                                                                                                              0 ≤ 𝑦 ≤ 𝐻1                                         (2) 

𝜌 [
𝜕�̅�1

𝜕𝑡̅
+ �̅�1

𝜕�̅�1

𝜕�̅�
+ �̅�1

𝜕�̅�1

𝜕�̅�
] = −

𝜕�̅�

𝜕�̅�
+
𝜕𝜏�̅��̅�
𝜕�̅�

+
𝜕𝜏�̅��̅�
𝜕�̅�

                                                0 ≤ 𝑦 ≤ 𝐻1                                         (3) 

𝜌 [
𝜕�̅�1

𝜕𝑡̅
+ �̅�1

𝜕�̅�1

𝜕�̅�
+ �̅�1

𝜕�̅�1

𝜕�̅�
] = −

𝜕�̅�

𝜕�̅�
+
𝜕𝜏�̅��̅�
𝜕�̅�

+
𝜕𝜏�̅��̅�
𝜕�̅�

                                                  0 ≤ 𝑦 ≤ 𝐻1                                         (4) 

𝜌𝐶𝑝 [
𝜕�̅�1

𝜕𝑡̅
+ �̅�1

𝜕�̅�1

𝜕�̅�
+ �̅�1

𝜕�̅�1

𝜕�̅�
] = 𝜅1 [

𝜕2�̅�1

𝜕�̅�2
+
𝜕2�̅�1

𝜕�̅�2
] + 𝜏�̅��̅� (

𝜕�̅�1

𝜕�̅�
+
𝜕�̅�1

𝜕�̅�
)                  0 ≤ 𝑦 ≤ 𝐻1                                         (5) 

 

where 𝜏𝑖𝑗  , 𝑖, 𝑗 ={𝑋, 𝑌} appoints the  stress tensor for power-law fluid, it is described as[16] 

 

𝜏𝑖𝑗 = 𝑚1(�̇�)
𝑛−1 �̇�𝑖𝑗                                                                                                                                                                  (6) 

�̇�𝑖𝑗 =
𝜕�̅�𝑖

𝜕�̅�𝑗
+
𝜕�̅�𝑗

𝜕�̅�𝑖
                                                                                                                                                                          (7) 

�̇� = [2 (
𝜕�̅�1

𝜕�̅�
)
2

+ 2(
𝜕�̅�1

𝜕�̅�
)
2

+ (
𝜕�̅�1

𝜕�̅�
+
𝜕�̅�1

𝜕�̅�
)
2

]

1

2

                                                                                                                       (8) 

𝜕�̅�2

𝜕�̅�
+
𝜕�̅�2

𝜕�̅�
= 0                                                                                                            𝐻1 ≤ 𝑦 ≤ 𝐻                                          (9) 

𝜌 [
𝜕�̅�2

𝜕𝑡̅
+ �̅�2

𝜕�̅�2

𝜕�̅�
+ �̅�2

𝜕�̅�2

𝜕�̅�
] = −

𝜕�̅�

𝜕�̅�
+
𝜕𝜏�̅��̅�
𝜕�̅�

+
𝜕𝜏�̅��̅�
𝜕�̅�

                                             𝐻1 ≤ 𝑦 ≤ 𝐻                                        (10) 

𝜌 [
𝜕�̅�2

𝜕𝑡̅
+ �̅�2

𝜕�̅�2

𝜕�̅�
 + �̅�2

𝜕�̅�2

𝜕�̅�
] = −

𝜕�̅�

𝜕�̅�
+
𝜕𝜏�̅��̅�
𝜕�̅�

+
𝜕𝜏�̅��̅�
𝜕�̅�

                                             𝐻1 ≤ 𝑦 ≤ 𝐻                                        (11) 

𝜌𝑐𝑝 [
𝜕�̅�2

𝜕𝑡̅
+ �̅�2

𝜕�̅�2

𝜕�̅�
+ �̅�2

𝜕�̅�2

𝜕�̅�
] = 𝜅2 [

𝜕2�̅�2

𝜕�̅�2
+
𝜕2�̅�2

𝜕�̅�2
] + 𝜏�̅��̅� (

𝜕�̅�2

𝜕�̅�
+
𝜕�̅�2

𝜕�̅�
)              𝐻1 ≤ 𝑦 ≤ 𝐻                                        (12) 

where 𝜏𝑖𝑗  , 𝑖, 𝑗 ={ 𝑋, 𝑌} appoints the  stress tensor for Bingham fluid, it is described as [17] 

 

𝜏𝑖𝑗 = (
𝜏0

�̇�
+ 𝜇2) �̇�𝑖𝑗        𝜏 ≥ 𝜏0                                                                                                                                             (13)   

𝜏𝑖𝑗 = 0                             𝜏 < 𝜏0                                                                                                                                             (14)  

Where  𝑈𝑖 is the axial velocity, Vi̅ is transverse velocity and  𝑇 ̅𝑖is the temperature. 𝜌 is the density, and 𝑛 is the fluid 
behavior index, 𝑚1 is the consistency parameter  P̅ is the pressure and (𝜅1, 𝜅2)  thermal conductivity in core and 
peripheral layer  respectively. 
Actually, the flow is unsteady in the laboratory frame (�̅�, �̅�). However, The flow becomes steady in a frame moving 
with the speed of the wave. Such a frame is famous as a wave frame  (�̅�, �̅�). The conversions  between the two 
frames are: 

                                                                      �̅� = 𝑌 ̅ , �̅� = �̅� − 𝑐𝑡̅ ,  �̅� = �̅� − 𝑐   ,   �̅� = 𝑉,̅ 

                                                                    �̅�(�̅�, �̅�) = �̅�(�̅�, �̅�, �̅�),   𝑇 = 𝑇 ̅, �̅� − 1 = 𝑞1 + 𝑞2                                             (15) 

In which  �̅�, �̅�, �̅�, and 𝑇 designate the velocity components, the pressure and the temperature in the wave frame, 
respectively. 
To facilitate the mathematical problem, we consider the following dimensionless quantities: 



  Rabiha S. Kareem/ Ahmed M Abdulhadi                                                                                                        JQCM - Vol.12(2) 2020 , pp Math.19–29      4  

 

𝑥 =
�̅�

𝜆
 , 𝑦 =

�̅�

𝑑
 , 𝑡 =

𝑐𝑡̅ 

𝜆
, 𝑢𝑖 =

�̅�𝑖

𝑐
 ,  𝑣𝑖 =

𝜆 �̅�𝑖

𝑑𝑐
 ,   𝑝 =

𝑑𝑛+1�̅�

𝑐𝑛𝜆𝑚1
 , �̅� =  

𝑞

𝑑𝑐
     

𝑎 =
�̅�

𝑑
, 𝛿 =

𝑑

𝜆
,  ℎ =

ℎ̅

𝑑
 , ℎ1 =

ℎ̅1

𝑑
,   𝜏𝑖𝑗 =

𝑑𝑛

𝑐𝑛 𝑚1
�̅�𝑖𝑗, 𝜃𝑖 =

𝑇𝑖−𝑇0

∆𝑇
 

  𝑅𝑒 =
𝜌𝑑𝑛

𝑚1𝑐
𝑛−2 ,    𝜇 = {

1               0 ≤ 𝑦 ≤ ℎ1
𝜇2

𝑚1
(
𝑑

𝑐
)
𝑛−1

        ℎ1 ≤ 𝑦 ≤ ℎ             

𝜏0 =
𝑚1𝑐

𝑛

𝑑𝑛
�̅�0,   𝑃𝑟 =

𝑐𝑝𝑚1

𝜅1
(
𝑐

𝑑
)
𝑛−1

, 𝐸𝑐 =
𝑐2

𝑐𝑝 ∆𝑇

 𝐵𝑟 = 𝑃𝑟. 𝐸𝑐  ,   𝜅 = {
1               0 ≤ 𝑦 ≤ ℎ1
𝜅1

𝜅2
          ℎ1 ≤ 𝑦 ≤ ℎ  

 }
 
 
 
 
 

 
 
 
 
 

                                                                  (16) 

The quantities 𝑥, 𝑦  are the components of the dimensionless coordinates, 𝑡  the dimensionless time,  𝑢  is 

dimensionless axial velocity, 𝑣 is a dimensionless transverse component of velocity, 𝑝 is dimensionless pressure, 𝑎 is 

dimensionless the amplitude ratio, 𝛿 is the wavenumber, 𝜏0 is yield stress, 𝑇  is the temperature, ∆𝑇 = (𝑇1 − 𝑇0) is 

temperature difference, 𝐶𝑝 represents the specific heat at constant pressure, 𝜇 is the ratio of the viscosity, 𝜅 is the 

ratio of thermal conductivities, 𝑅𝑒 the Reynolds number,  𝐸𝑐  the Eckert number, 𝑃𝑟 the Prandtl number and Br the 

Brinkman number. 

 

Stream function 𝜓(𝑥, 𝑦, 𝑡) and its relationship with velocity components are defined below     

 𝑢 =
𝜕𝜓

𝜕𝑦
      and         𝑣 = −

𝜕𝜓

𝜕𝑥
                                                                                                                                                             (17) 

Since the flow is steady and using the shifts in Eq. (15) and by introducing non-dimensional quantities Eq.(16) and 

make use of Eq.(17)  into constitutive relations (2)-(14), note that the mass balance represented by eq. (2) and eq. 

(9) are identically satisfied, yields  

 

𝜕𝑝

𝜕𝑥
=

𝜕

𝜕𝑦
(
𝜕2𝜓1

𝜕𝑦2
)
𝑛

                                                    0 ≤ 𝑦 ≤ ℎ1                                                                                            (18) 

𝜕2𝜃1

𝜕𝑦2
+𝐵𝑟 (

𝜕2𝜓1

𝜕𝑦2
)
𝑛+1

= 0                                     0 ≤ 𝑦 ≤ ℎ1                                                                                             (19) 

𝜕𝑝

𝜕𝑥
=

𝜕

𝜕𝑦
(−𝜏0 +

𝜕2𝜓2

𝜕𝑦2
)                                       ℎ1 ≤ 𝑦 ≤ ℎ                                                                                               (20) 

𝜕2𝜃2

𝜕𝑦
+𝜅. 𝐵𝑟 (−𝜏0 +

𝜕2𝜓2

𝜕𝑦2
)
𝜕2𝜓2

𝜕𝑦2
= 0               ℎ1 ≤ 𝑦 ≤ ℎ                                                                                               (21) 

The non-dimensional no-slip conditions are 

 

𝜓1 = 0                  𝑎𝑡        𝑦 = 0                                                                                                                                             (22) 

 
𝜕2𝜓1

𝜕𝑦2
= 0               𝑎𝑡       𝑦 = 0                                                                                                                                             (23) 

𝜓2 = 𝑞                  𝑎𝑡        𝑦 = ℎ                                                                                                                                             (24) 

𝜕𝜓2

𝜕𝑦
= −1             𝑎𝑡        𝑦 = ℎ                                                                                                                                              (25) 

𝜓1 = 𝜓2 = 𝑞1     𝑎𝑡       𝑦 = ℎ1                                                                                                                                            (26) 

𝜕𝜃1

𝜕𝑦
= 0                  𝑎𝑡       𝑦 = 0                                                                                                                                              (27) 

𝜃2 = 1                   𝑎𝑡       𝑦 = ℎ                                                                                                                                              (28) 

𝜃1 = 𝜃2                 𝑎𝑡      𝑦 = ℎ1                                                                                                                                             (29) 
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𝜕𝜃1

𝜕𝑦
=

1

𝜅

𝜕𝜃2

𝜕𝑦
           𝑎𝑡      𝑦 = ℎ1                                                                                                                                             (30) 

Here the flux 𝑞 is the totality of core layer flux 𝑞1 and peripheral layer flux 𝑞2 a cross any cross-section in the wave 

frame (𝑞 = 𝑞1 + 𝑞2 ). Moreover, the shear stress and the velocity are continuous a cross the interface. It takes from 

the incompressibility of the fluids that  the fluxes 𝑞, 𝑞1and 𝑞2are independent of x. The average dimensionless 

volume flow rate over one wavelength 𝑇(=  
𝜆

𝑐
) of the peristaltic wave is defined as 

�̅� = 𝑞 +
1

𝑇
∫ ℎ 𝑑𝑡 = 𝑞 + 1
𝑇

0
                                                                                                                                                                 (31) 

   

4.  Solution of the problem 
 

Resolving Eqs. (18)-(21) together under boundary conditions ( 22) -(30), we get 

 

𝜓1 = 𝑦 [−1 +
(𝑃)

1
𝑛

(
1

𝑛
+1)(

1

𝑛
+2)

(𝑦
1

𝑛
+1 − (

1

𝑛
+ 2)ℎ1

1

𝑛
+1
)−

𝑃

2𝜇
(ℎ2 − ℎ1

2) −
𝜏0

𝜇
(ℎ1 − ℎ)]                                                 (32)  

 

𝜓2 = 𝑞 + ℎ − 𝑦 +
𝑃

6𝜇
(𝑦3 + 2ℎ2 − 3ℎ2𝑦) +

𝜏0

2𝜇
(𝑦2 + ℎ2 − 2ℎ𝑦)                                                                              (33) 

 

𝜃1 = 1 + 𝐵𝑟
(𝑃)

1
𝑛
+1

(
1

𝑛
+2)(

1

𝑛
+3)

(ℎ1
1

𝑛
+3 − 𝑦

1

𝑛
+3) +  𝜅 ∗ 𝐵𝑟(

(𝑃)2

12𝜇
(ℎ4 − ℎ1

4)  

        −
𝜏0(𝑃)

6𝜇
(ℎ1

3 −  ℎ3)) + (−𝐵𝑟
(𝑃)

1
𝑛
+1

 𝜅(
1

𝑛
+2)

ℎ1
2+

1

𝑛 +  𝜅 ∗ 𝐵𝑟(
(𝑃)2

3𝜇
ℎ1

3 +
𝜏0𝑃

2𝜇
ℎ1

2))(ℎ1 − ℎ)                                       (34) 

 

𝜃2 = 1 +
𝐵𝑟𝑘1𝑃(2(ℎ

3−𝑦3)𝜏0+(ℎ
4−𝑦4)𝑃)

12𝜇
+ 

1

6
𝐵𝑟ℎ1

2(−ℎ + 𝑦)𝑃]) (−
6ℎ1

1
𝑛(𝑃)

1
𝑛

 𝜅(2+
1

𝑛
)
+
 𝜅(2ℎ1𝑃+3𝜏0)

𝜇
)                                  (35) 

Where 𝑃 =
𝜕𝑝

𝜕𝑦
   

 

5. The interface solution 

 

The interface equation ℎ1(𝑥) is acquired from the boundary condition (26). substituting in Eq.(32), we obtain the 

following equation 

Q1 =
ℎ1(−ℎ+ℎ1)𝜏0

𝜇
−
ℎ1(ℎ

2−ℎ1
2)𝑃

2𝜇
−
ℎ1

2+
1
𝑛𝑃

1
𝑛

(2+
1

𝑛
)

                                                                                                                                    (36) 

Where 𝑄1 = 𝑞1 + ℎ1 and 𝑄 = 𝑞 + ℎ. To find 𝑃 in Eq. (36), we use the continuity of the stream function at the 

interface, which is given by 𝜓2 = 𝑞1 . 

 

𝑄1 = 𝑄 −
(ℎ2−2ℎℎ1+ℎ1

2)𝜏0

2𝜇
+
(2ℎ3−3ℎ2ℎ1+ℎ1

3)𝑃

6𝜇
                                                                                                                            (37) 

or 

𝑃 =
3(−2𝑄𝜇+2𝑄1𝜇−(ℎ−ℎ1)

2𝜏0)

(ℎ−ℎ1)
2(2ℎ+ℎ1)

                                                                                                                                                                (38) 

 

From Eqs. (36 ) and (37) after Eliminating 𝑃 from these equations, we attain the equation governing the interface  
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𝑄 +
(ℎ−ℎ1)

2𝜏0

2𝜇
−

ℎ1(−ℎ+ℎ1)𝜏0

𝜇
−

−2𝑄𝜇+2𝑄1𝜇+(ℎ−ℎ1)
2

2𝜇
𝜏0 +

3ℎ1(ℎ+ℎ1)(−2𝑄𝜇+2𝑄1𝜇−(ℎ−ℎ1)
2𝜏0)

2(ℎ−ℎ1)(2ℎ+ℎ1)𝜇
−

3
1
𝑛ℎ1

2+
1
𝑛(
−2𝑄𝜇+2𝑄1𝜇+(ℎ−ℎ1)

2

(ℎ−ℎ1)
2(2ℎ+ℎ1)

𝜏0)
1
𝑛

(2+
1

𝑛
)

= 0  

                                                                                                                                                                                                                        (39) 

Eq. (39) reduces to fourth-order algebraic equation for Newtonian fluid  when 𝑛 = 1 and 𝜏0 = 0. The values of  𝑄1 is 

obtained by resolving Eq. (39) iteratively through the conditions ℎ1 = 𝛼  at = 0 . Following, the same equation is 

resolved iteratively for (ℎ1) at every axial station (𝑥).  

 

 

6. Results and discussions 

 

The peristaltic motion of Power-Law fluid in touch with a Bingham Flow Model is studied under the influence of 
heat transfer. The impact of different parameters on the shape of the interface, the velocity profile, temperature 
profiles, pressure gradient and trapping phenomena are noticed.   
 

6.1. Interface 

The interface shape (ℎ1) for diverse values of (μ) is observed in Figure 2 We note  that the deviation of (ℎ1) with 
increases value viscosity ratio cause to a thinner peripheral layer in the widened zone. From Figure 3, we infer that 
the increase in the amplitude ratio results in the thicker core layer in the widened zone. The shape of the interface 
for various yield stress value is shown in Figure 4, We observe that the increase in the (𝜏0) increases the wideness of 
the peripheral layer in the widened zone. 

  

        
              Fig. 2: showing the effect of (𝜇) on interface                            Fig. 3: showing the effect of (𝑏) on interface  

                at  𝑛 = 0.5, 𝜇 = 𝑄 = 0.5, 𝛼 = 0.7, 𝜏0 = 0.1,                                   at  𝑛 = 0.5, 𝑏 = 𝑄 = 0.5, 𝛼 = 0.7, 𝜏0 = 0.1, 
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Fig. 4: showing the effect of (𝜏0) on interface 
at   𝑛 = 0.5, 𝜇 = 𝑄 = 0.5, 𝛼 = 0.7, 𝑏 = 0.5. 

 
6.2. Velocity profile 
 
Axial velocity in core and peripheral layers are calculated from Eqs. (32) and (33) in terms of y. The behaviors of 
several parameters on velocity profiles at (𝑥 = 0.2) and (𝑛 = 0.5) are exhibited in Figures 5-7. Figure 5 is graphed 
to show the influence of viscosity ratio on velocity. A decrease in velocity is observed for an increase in the value 
of  (𝜇). Physically, the viscosity ratio (𝜇) rises and offers more resistance to the flow. Hence, Figure 6 is sketched to 
show the variation of amplitude ratio on the velocity profile. Here velocity profile decreases in the center and 
increases close to channel boundaries with increases value of (𝑏). It is observed from Figure 7 that the magnitude 
value of the velocity profile decreases with an increase in yield stress   (𝜏0) .   
 

 
     Fig.5: showing the effect of (μ) on velocity 

       at    𝑏 = 0.5, 𝑄 = 0.2, 𝛼 = 0.5, 𝜏0 = 0.1. 
 

 
       Fig.6: showing the effect of (b) on velocity 

        at    𝜇 = 0.5, 𝑄 = 0.2, 𝛼 = 0.5, 𝜏0 = 0.2. 
 

 

 
Fig.7: showing the effect of (𝜏0) on velocity 

at    𝜇 = 0.5, 𝑄 = 0.7, 𝛼 = 0.5, 𝑏 = 0.5. 
 

6.3. Temperature profile  

Temperature in core and peripheral regions is deliberate from Eqs. (34) and (35) in terms of y. Temperature 
profiles are calculated in Figures 8-9. Figures 8 and 9 are drawn to study the impact of  Brinkman number and the 
ratio of thermal on the temperature distribution. We see that the temperature increases with increasing (Br) and 
(𝜅). 
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Fig. 8: showing the effect of (Br) on temperature 
at    𝑥 = 𝑛 = 0.5, 𝜇 = 0.7, 𝑄 = 0.5, 𝛼 = 0.4, 𝜏0 =
0.1, 𝑏 = 0.5, 𝜅 = 0.2 

 
Fig. 9: showing the effect of (κ) on temperature 
at  𝑥 = 𝑛 = 0.5, 𝜇 = 0.7, 𝑄 = 0.5, 𝛼 = 0.43, 𝜏0 =

0.1, 𝑏 = 0.5, 𝜀 =
𝜋

4
, 𝐵𝑟 = 0.2  

 
6.4. pressure gradient: 

The impact of relevant parameters in the problem on the pressure gradient in the wave are investigated in Figures 
10-11, where displayed that in the region (0≤ x ≤0.5) ∪ (1≤ x ≤1.5),  influence these parameters on pressure 
gradient are small, which means that the flow can pass simply without imposing a big gradient pressure. Where, in 
the part of the channel (0.5≤ x ≤1), there must be a great pressure gradient to hold the same flow of fluid in the 
channel. Figure. 10 explains that a rise in the yield stress value decreases the pressure gradient. The behavior of 
pressure gradient against axial locations for changing the value of (b) is described in Figure 11. Growth in (𝑏) rises 
the pressure gradient. 

.  

   
Fig. 10: showing the effect of (𝜏0) on pressure gradient 
at 𝜇 = 0.4, 𝑄 = 0.7, 𝛼 = 0.9, 𝑏 = 0.5, 𝑛 = 0.5 

 
Fig. 11: showing the effect of (b) on pressure gradient 
at 𝜇 = 0.4, 𝑄 = 0.7, 𝛼 = 0.9, 𝜏0 = 0.1, 𝑛 = 0.5 

 
  6.5. Trapping phenomenon 
 
Other interesting phenomena of peristalsis is trapping, the shape of an internally circulating bolus of fluid which 
transmits along with the wave. Such a phenomenon has important consequences in engineering and physiological 
flow cases. (( The internal circulation of the trapped fluid may cause thrombosis of blood or obvious undesired 
chemical transformation in reactive fluids)). Figures 12-14 are drawn to observe the influences of different 
parameters on the streamline patterns. From figure 12. It is observed that a rise in the value of yield stress (τ0) 
enhances the size of the trapped bolus and increases the number of bolus. The streamline shapes for various values 
of flow rate and viscosity ratio are displayed in Figures 13 and 14.  it is noticed that the streamlines of the flow are 
influenced identically by growing either (Q) or (μ). It is noted that the trapped bolus seeming in the broader part of 
the channel declines by rising (Q) or (μ). Nonetheless, such a reduction is quicker by increasing (μ). 
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                                     (a) 

 
                                    (b) 

 
                                    (c) 

Fig. 12: showing the effect of (𝜏0) on the streamlines at 𝜇 = 0.2, 𝑄 = 1, 𝛼 = 0.7, 𝑏 = 0.3, 

𝑛 = 0.5. (a)  𝜏0 = 0.1 (b)  𝜏0 = 0.5 (c)  𝜏0 = 0.8. 

 

 
                                  (a) 

 
                                  (b) 

 
                                   (c) 

Fig. 13: showing the effect of (𝑄) on the streamlines at  𝜇 = 0.1, 𝜏0 = 0.1, 𝛼 = 0.7, 𝑏 = 0.3, 𝑛 = 0.5. (a)  𝑄 = 0.5  
(b)  𝑄 = 3 (c)  𝑄 = 5. 

 
                                   (a) 

 
                                  (b) 

 
                                   (c) 

Fig. 14: showing the effect of (𝜇) on the streamlines at  𝜏0 = 0.1, 𝑄 = 1, 𝛼 = 0.7, 𝑏 = 0.3, 

𝑛 = 0.5. (a)  𝜇 = 0.01 (b)  𝜇 = 0.2 (c) 𝜇 = 0.4. 
 

7. Conclusions 

The present problem deals with peristalsis and heat transfer impacts of a  two-fluid model in an inclined symmetric 

channel with the approximations of lengthy wavelength and small Reynold’s number. The obtained results are 
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offered through graphs and are debated in detail. The results of the current study detect that the rise in the viscosity 

ratio and amplitude ratio increases the thickness of the core zone whereas it decreases with increases yield stress. 

The study shows that axial velocity has a decreasing behavior due to a rise in yield stress and viscosity ratio and the 

velocity decreases in the center of the channel while increases at a wall with an increase in the amplitude ratio. 

Brinkman number and the ratio of thermal conductivities. The trapped bolus size and number occurring rising with 

yield stress while its size and numbers decrease with the flow rate and viscosity ratio: 
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