

Available online at www.qu.edu.iq/journalcm JOURNAL OF AL-QADISIYAH FOR COMPUTER SCIENCE AND MATHEMATICS ISSN:2521-3504(online) ISSN:2074-0204(print)

Weakly Approximaitly – Prime Submodules And Related concepts

Haibat Karim Mohammadali^(a)

Shahad Jasim Mahmood^(b)

(a)Department of Mathematics ,College of Comp Science and Math University of Tikrit ,Tikrit ,Iraq .

E-mail dr.mohammadali2013@gmail.com.

(^b)Department of Mathematics, College of Comp Science and Math University of Tikrit, Tikrit, Iraq.

E-mail hasanenjassm@gmail.com MSC: 30C45, 30C50

ARTICLEINFO

Article history: Received: 20 /04/2020 Rrevised form: // Accepted :14/05/2020 Available online: 17/05/2020 Keywords:

Weakly prime submodules, WAPPprime submodules Socal of submodules, multiplication modules.

ABSTRACT

Let R be a commutative ring with identity and P a unital left R-module . The purpose of this paper is to introduce and study the concept of WAPP-prime submodules as a generalization of weakly prime submodules , where a proper submodule L of an R-module P is called a WAPP-prime , if whenever $0 \neq re \in L$ for $r \in R$, $e \in P$, implies that either $e \in L + Soc(P)$ or $r \in [L + Soc(P)]_{R}$ P]. Several examples , characterizations and basic properties of this concept are given .Moreover many characterizations of WAPP-prime submodules in class of multiplication modules are introduced .

MSC:

DOI: https://DOI 10.29304/jqcm.2020.12.2.690

1. Introduction

Throughout this article all ring are commutative rings with identity and all modules are Unital left R-modules . Weakly prime submodules were first introduced in 2004 as a generalization of prime submodules , where a paper submodule L of an Rmodule P is called weakly prime, if whenever $0 \neq r \in L r \in R$, $e \in P$, implies that either $e \in L$ or $r \in [L_{R}, P]$, where $[L_{R}, P] = \{$ $r\in \mathbb{R}$: $rP\subseteq L$ [1], and a proper submodule L of an R-module P is called prime, if whenever re $\in L r\in \mathbb{R}$, $e\in P$, implies that either $e \in L$ or $r \in [L_{R} P]$ [2]. The concept of weakly prime submodule studied extensively in [3,4,5,6]. Several generalization of weakly prime submodule were introduced such as weakly primary, weakly quasi primary and weakly semi prime submodules see [7,8,9]. In this paper we introduce and study a new generalization of weakly prime submodule called WAPP-prime submodule . Recall that a nonzero submodule B of an R-module P is called essential if $B \cap C \neq (0)$ for every nonzero submodule C of V[10]. The socale of an R-module P denoted by Soc(P) is defined to be the intersection of all essential submodules of P [11]. It is well known if a submodule N of P is essential then Soc(P)=Soc(N) [10, P.29]. Multiplication module plays importaint role in this work, where an R-module P is called multiplication if every submodule L of P is the form L=JP for some ideal J of R. Equivalently P is a multiplication if L=[L:_R P]P [12]. Recalled that for any submodules L, K of a multiplication R-module P with L=IP and K=JK for some ideals I and J of R, the product LK=IPJP=IJP, that is LK=IK. In particular LP=IP=IP=L, also for every $e \in P$, L=Ie [13]. Recall that an R-module P is Z-regular if for each $e \in P$ there exists $f \in P^* = Hom_R(P,R)$ such that e=f(e)e[14]. This paper divide into two parts. We introduce in part one the definition of WAPPprime submodules and give examples , characterizations and some properties of this concept to part two deals with introducing many characterizations of WAPP-prime submodules in class of multiplication modules

Corresponding author: Shahad Jasim Mahmood Email address: <u>hasanenjassm@gmail.com</u> Communicated by : Alaa H. H. Al-Ka'bi

Main result :

We introduce in this part of the paper the definition of WAPP-prime submodule and give some basic properties ,also characterizations of this concept .

Definition 2.1

A proper submodule L of an R-module P is called weakly approximaitly prime (Briefly WAPP-prime) submodule of P, if whenever $0 \neq re \in L$ for $r \in R$, $e \in P$, implies that either $e \in L+Soc(P)$ or $r \in [L+Soc(P):_R P]$.

And an ideal J of a ring R is a WAPP-prime ideal of R if and only if J is a WAPP-prime submodule of an R-module R.

There are several examples ,some of which we will mention .

- 1. In the Z-module Z_{24} , the proper submodules are $\langle \overline{2} \rangle$, $\langle \overline{3} \rangle$, $\langle \overline{4} \rangle$, $\langle \overline{6} \rangle$, $\langle \overline{8} \rangle$ and $\langle \overline{12} \rangle$. The only essential submodules of Z_{24} are $\langle \overline{2} \rangle$, $\langle \overline{4} \rangle$ So, Soc $(Z_{24}) = \langle \overline{2} \rangle \cap \langle \overline{4} \rangle = \langle \overline{4} \rangle$.
- 2. It is clear that the submodules $<\overline{2}>,<\overline{3}>$ of the Z-module Z_{24} , are weakly prime, but $<\overline{4}>,<\overline{6}>,<\overline{8}>$ and $<\overline{12}>$ are not weakly prime submodules.
- It is clear that the submodules <6>,<8> of the Z-module Z₂₄ are WAPP-prime, but the submodules <4> and <12> are not WAPP-prime submodules of Z₂₄.
- 4. It is clear that every weakly prime submodule of an R- module P is a WAPP-prime but not conversely .

the following example explains that .

In the Z-module Z_{24} the submodule $\langle \overline{6} \rangle$ is a WAPP-prime submodule of Z_{24} by (3), but $\langle \overline{6} \rangle$ is not weakly prime by (2).

- 5. The submodules $<\overline{2}>,<\overline{3}>$ of the Z-module Z_{24} are WAPP-prime by (4)
- 6. If L is a WAPP-prime submodule of P , then $[L:_RP]$ need not to be a WAPP-prime ideal of R . The following example shows that .

In the Z-module Z_{24} the submodule $\langle \overline{8} \rangle$ is a WAPP-prime by (3), but $[\langle \overline{8} \rangle :_Z Z_{24}]$ =8Z is not a WAPP-prime ideal of Z because $0 \neq 2.4 \in 8Z$, for $2,4 \in Z$ but $4 \notin 8Z + \text{Soc}(Z)$ and $2 \notin [8Z + \text{Soc}(Z) :_Z Z]$ since 8Z + Soc(Z) = 8Z (since Soc(Z) = (0))

 Let A, B be submodules of an R-module P with A⊆B. If B is a WAPPprime submodule of P, then A need not to be a WAPP-prime submodule of P.

For example the submodules $\langle \bar{4} \rangle$ and $\langle \bar{2} \rangle$ of Z-module $Z_{24} \langle \bar{4} \rangle \subseteq \langle \bar{2} \rangle$, we see that $\langle \bar{2} \rangle$ is a WAPP-prime submodule by (5) and $\langle \bar{4} \rangle$ is not WAPP-prime submodule by (3).

Corresponding author: Shahad Jasim Mahmood Email address: <u>hasanenjassm@gmail.com</u> Communicated by : Alaa H. H. Al-Ka'bi

 Let A, B be submodules of an R-module P with A⊆B. If A is a WAPPprime submodule of P ,then B need not to be a WAPP-prime submodule of P.

For example the submodules $<\bar{8}>$ and $<\bar{4}>$ of the Z-module Z_{24} , $<\bar{8}> \subseteq <\bar{4}>$, we see that $<\bar{8}>$ is a WAPP-prime submodule of Z_{24} by (3), but $<\bar{4}>$ is not WAPP-prime submodule of Z_{24} , also by (3)

9. The intersection of two WAPP-prime submodules of P need not to be WAPP-prime submodule of P.

The following example shows that : Let N=<2>,K=<3> are two WAPP-prime submodules of the Z –modules Z (because they are weakly prime). But <2> \cap <3>=<6> is not a WAPP-prime submodule of Z,since 0 \neq 2.3 ϵ <6>, for 2,3 ϵ Z but 2 \notin <6>+Soc(Z) and 3 \notin <6>+Soc(Z).

The following proposition are characterizations of WAPP-prime submodules .

Proposition 2.2 Let P be an R-module , and L a proper submodule of P. Then L is a WAPP-prime submodule of P if and only if $[L:_Re] \subseteq [L+Soc(P):_R P] \cup [0:_Re]$ for all $e \in P$ and $e \notin L+Soc(P)$.

Proof (⇒) Suppose that L is a WAPP-prime submodule of P , and let a∈[L:_R e] and e∉L+Soc(P) , then a∈L . If ae=0 , then a∈[0:_R e] , thus a∈ [L+Soc(P):_R P]∪ [0:_R e] . If 0≠ae ∈L , and L is a WAPP-prime of P and e∉L+Soc(P) , implies that a∈[L+Soc(P):_R P] . Thus a∈ [L+Soc(P):_R P]∪ [0:_R e] . Therefore [L:_Re]⊆ [L+Soc(P):_R P]∪ [0:_R e] .

(⇐) Suppose that $[L:_Re] \subseteq [L+Soc(P):_R P] \cup [0:_R e]$ for all $e \in P$ and $e \notin L+Soc(P)$, and let $0 \neq a \in L$, implies that $a \in [L:_R e]$, it follows by hypothesis $a \in [L+Soc(P):_R P] \cup [0:_R e]$. e]. But $0 \neq a e$, hence $a \notin [0:_R e]$, therefore $a \in [L+Soc(P):_R P]$. Thus L is a WAPP-prime submodule of P.

Proposition 2.3 Let P be an R-module , and L a proper submodule of P. Then L is a WAPP-prime submodule of P if and only if whenever $(0)\neq aK\subseteq L$ for $a\in R$, K is a submodule of P, implies that either $K\subseteq L+Soc(P)$ or $a\in[L+Soc(P):_R P]$.

Proof (\Rightarrow) Let (0) \neq aK \subseteq L for a \in R, K is a submodule of P with K $\not\subset$ L+Soc(P). That is there exists 0 \neq e \in K such that e \notin L+Soc(P). Now, since (0)) \neq aK \subseteq L, then 0 \neq ae \in L. But L is a WAPP-prime submodule of P and e \notin L+Soc(P). It follows that a \in [L+Soc(P):_R P].

Corresponding author: Shahad Jasim Mahmood Email address: <u>hasanenjassm@gmail.com</u> Communicated by : Alaa H. H. Al-Ka'bi

 (\Leftarrow) Let $0\neq a\in L$ for $a\in R$, $e\in P$, that is $0\neq a\leq e\geq \subseteq L$, hence by hypothesis either $\leq e\geq \subseteq L+Soc(P)$ or a $\in [L+Soc(P):_R P]$. That is either $e\in L+Soc(P)$ or a $\in [L+Soc(P):_R P]$. Hence L is a WAPP-prime submodule of P.

Proposition 2.4 Let P be an R-module , and L a proper submodule of P. Then L is a WAPP-prime submodule of P if and only if whenever $(0)\neq JK\subseteq L$ for J is an ideal of R and K is a submodule of P , implies that either $K\subseteq L+Soc(P)$ or $J\subseteq [L+Soc(P):_R P]$.

Proof (⇒) Let (0)≠JK⊆L with K⊄L+Soc(P) , that is there exists 0≠e∈K and e∉L+Soc(P). To prove that J⊆ [L+Soc(P):_R P] . Let r∈J , if 0≠re∈L and L is a WAPP-prime submodule , gives r ∈[L+Soc(P):_R P] , it follows that J⊆ [L+Soc(P):_R P] . Assume that re=0 , and first suppose that rK≠(0) , that is 0≠rd∈L for some d∈K . If d∉L ⊆L+Soc(P) , and L is a WAPP-prime , then r∈ [L+Soc(P):_R P] , hence J⊆ [L+Soc(P):_R P] . If d∈ L ⊆L+Soc(P) , then 0≠rd=r(d+e)∈L and L is a WAPP-prime submodule , so either d+e∈ L+Soc(P) or r ∈ [L+Soc(P):_R P] . Thus J⊆ [L+Soc(P):_R P] . So ,we can assume that rk=0. Suppose that Je≠(0) , that is 0≠se∈L for some s∈J and L is a WAPP-prime submodule of P gives s∈ [L+Soc(P):_R P] . As 0≠se=(r+s)e∈L and L is a WAPP-prime submodule of P ,we get r+s ∈ [L+Soc(P):_R P] , it follows that r ∈ [L+Soc(P):_R P] , so J⊆ [L+Soc(P):_R P]. Therefore we can assume that Je=(0) . Since JK≠(0) , then there exists d₁∈K , b∈J such that 0≠bd₁ ,and 0≠bd₁=b(d₁+e)∈L , so we have two cases :

- If b∈[L+Soc(P):_R P] and d₁ +e∉ L+Soc(P). Since 0≠(r+b)(d₁+e)= bd₁ ∈L and L is a WAPP-prime, it follows that (r+b) ∈ [L+Soc(P):_R P] so r∈[L+Soc(P):_R P].
 P] . Hence J⊆ [L+Soc(P):_R P].
- If b∉ [L+Soc(P):_R P] and d₁ +e∈ L+Soc(P). As ,0≠ bd₁ ∈L , we have d₁∈ L+Soc(P) , so e ∈ L+Soc(P) which is a contradiction . Thus J⊆ [L+Soc(P):_R P].

 (\Leftarrow) Let $0 \neq re \in L$ for $r \in R$, $e \in P$, implies that $0 \neq <r> \subseteq L$, thus by hypothesis either $<e> \subseteq L+Soc(P)$ or $<r> \subseteq [L+Soc(P):_R P]$. That is either $e \in L+Soc(P)$ or $r \in [L+Soc(P):_R P]$. Therefor L is a WAPP-prime submodule of P.

As a direct application of Proposition (2.5), we have the following corollary.

Corollary 2.5 Let P be an R-module , and L a proper submodule of P . Then L is a WAPP-prime submodule of P if and only if whenever $(0)\neq Je\subseteq L$ for J is an ideal of R and $e \in P$, implies that either $e \in L+Soc(P)$ or $J\subseteq [L+Soc(P):_R P]$.

The following propositions are basic properties of WAPP-prime submodules.

Corresponding author: Shahad Jasim Mahmood Email address: <u>hasanenjassm@gmail.com</u> Communicated by : Alaa H. H. Al-Ka'bi

Proposition 2.6 Let P be an R-module , and N,L submodules of P such that L \subseteq N and Nis a WAPP-prime submodule of P. Then $\frac{N}{L}$ is a WAPP-prime submodule of $\frac{P}{L}$.

Proof: Let $0 \neq r(e+L) = re+L\epsilon \frac{N}{L}$ for $r\epsilon R$, $e+L\epsilon \frac{P}{L}$, $e\epsilon P$. Then $r\epsilon\epsilon N$. If re=0, then r(e+L)=0 which is a contradiction. Thus $0 \neq r\epsilon\epsilon N$ and N is a WAPP-prime submodule of P, implies that either $e\epsilon N+Soc(P)$ or $r\epsilon[N+Soc(P):_R P]$, that is either $e\epsilon N+Soc(P)$ or $rP\subseteq N+Soc(P)$. It follows that $e+L\epsilon \frac{N+Soc(P)}{L}$ or $r \frac{P}{L} \subseteq \frac{N+Soc(P)}{L}$, that is either $e+L\epsilon \frac{N}{L} + \frac{N+Soc(P)}{L} \subseteq \frac{N}{L} + Soc(\frac{P}{L})$ or $r \frac{P}{L} \subseteq \frac{N}{L} + \frac{N+Soc(P)}{L} \subseteq \frac{N}{L} + Soc(\frac{P}{L})$. Hence $\frac{N}{L}$ is a WAPP-prime submodule of $\frac{P}{L}$.

Recall that an R-module P is semi simple, if every submodule of P is a direct summand of P[11].Equivalently P is a semi simple if and only if Soc(P)=p [7].

It is well known that an R-module P is semi simple if and only if $Soc(\frac{P}{L}) = \frac{Soc(P)+L}{L}$ for all submodule L of P [11, Ex.(12)c].

Now, we give the converse of proposition (2.7)

Proposition 2.7 Let P be a semi simple R-module , and N,L submodules of P such that $L \subseteq N$ and N is a proper submodule of P. If L and $\frac{N}{L}$ are WAPP-prime submodules of P and $\frac{P}{L}$ respectively ,then N is a WAPP-prime submodule of P.

Proof: Let $0 \neq re \in N$ for $r \in \mathbb{R}$, $e \in \mathbb{P}$, so $0 \neq r(e+L) = re+L \in \frac{N}{L}$. If $0 \neq re \in L$ and L is a WAPP-prime submodule of P, then either $e \in L+Soc(P) \subseteq N+Soc(P)$ or $P \subseteq L+Soc(P) \subseteq N+Soc(P)$. Hence N is a WAPP-prime submodule of P. So, we may assume that $re \notin L$. It follows that $0 \neq r(e+L) \in \frac{N}{L}$, but $\frac{N}{L}$ a WAPP-prime submodule of $\frac{P}{L}$, implies that either $e+L \in \frac{N}{L} + Soc(\frac{P}{L})$ or $r \frac{P}{L} \subseteq \frac{N}{L} + Soc(\frac{P}{L})$. Since P is a semi simple, then $Soc(\frac{P}{L}) = \frac{L+Soc(P)}{L}$, hence either $e+L \in \frac{N}{L} + \frac{L+Soc(P)}{L}$ or $r \frac{P}{L} \subseteq \frac{N}{L} + \frac{L+Soc(P)}{L}$. Since L $\subseteq N$, it follows that $L+Soc(P) \subseteq N+Soc(P)$. Thus, $\frac{N}{L} + \frac{L+Soc(P)}{L} \subseteq \frac{N}{L} + \frac{N+Soc(P)}{L}$ and since $\frac{N}{L} \subseteq \frac{N+Soc(P)}{L}$, implies that $\frac{N}{L} + \frac{N+Soc(P)}{L} = \frac{N+Soc(P)}{L}$. Thus either $e+L \in \frac{N+Soc(P)}{L}$ or $r \frac{P}{L} \subseteq \frac{N+Soc(P)}{L}$. It follows that either $e \in N+Soc(P)$ or $rP \subseteq N+Soc(P)$. Hence N is a WAPP-prime submodule of P.

Recall that an R-module P is compressible if it can be embedded in any of it is nonzero submodules [10].

Corresponding author: Shahad Jasim Mahmood Email address: <u>hasanenjassm@gmail.com</u> Communicated by : Alaa H. H. Al-Ka'bi

Proposition 2.8 Let P be an R- module , and N a proper submodule of P such that $\frac{P}{N}$ is a compressible R-module . Then N is a WAPP-prime of P .

Proof: Suppose that K is a submodule of P such that $N \subseteq K$, and let $(0) \neq rK \subseteq N$ for $r \in \mathbb{R}$ with $K \not\subset \mathbb{N} + \operatorname{Soc}(\mathbb{P})$. Thus $\frac{K}{N}$ is a submodule of $\frac{P}{N}$. But $\frac{P}{N}$ is compressible, then there exists a monomorphism f: $\frac{P}{N} \to \frac{K}{N}$, that is $\operatorname{rf}(\frac{P}{N}) = (0)$, implies that $f(r = \frac{P}{N}) = (0)$. It follows that $r(\frac{P}{N}) = (0)$. That is $rP \subseteq \mathbb{N} \subseteq \mathbb{N} + \operatorname{Soc}(\mathbb{P})$. Hence $r \in [\mathbb{N} + \operatorname{Soc}(\mathbb{P}):_{\mathbb{R}} \mathbb{P}]$. Therefore N is a WAPP-prime submodule of P.

Proposition 2.9 Let P be an R-module , and N,K submodules of P with $N \subseteq K$ and K is an essential in P. If N is a WAPP-prime submodule of P. Then N is a WAPP-prime submodule of K.

Proof : Suppose that N is a WAPP-prime submodule of P , and $(0)\neq rB\subseteq N$ for $r\in R$ and B is a submodule of K , that is B is a submodule of P . But Nis a WAPP-prime submodule of P , then either $B \subseteq N+Soc(P)$ or $r\in[N+Soc(P):_R P]$. Since K is an essential submodule of P , then Soc(K)=Soc(P). Thus either $B\subseteq N+Soc(K)$ or $r\in[N+Soc(K):_R P]\subseteq [N+Soc(K):_R K]$. Therefore N is a WAPP-prime submodule of K

It is well known that if L is a submodule of an R-module P, then $Soc(L)=L \cap Soc(p)$ [11, Lemma(2.3.15)]

Proposition 2.10 Let P be an R-module , and N,K be a submodules of P with $K \not\subset N$ and $Soc(P) \subseteq K$. If N is a WAPP-prime submodule of P. Then $N \cap K$ is a WAPP-prime submodule of K.

Proof: It is clear that $N \cap K$ is a proper submodule of K. Let $(0) \neq IA \subseteq N \cap K$ for I is an ideal of R and A is a submodule of K, that is A is a submodule of P. Thus $IA \subseteq N$ and $IA \subseteq K$. But N is a WAPP-prime submodule of P then either $A \subseteq N+Soc(P)$ or $IP \subseteq N+Soc(P)$. Thus either $A \subseteq (N+Soc(P)) \cap K$ or $IP \subseteq (N+Soc(P)) \cap K$. Since $Soc(P) \subseteq K$ then by modular law either $A \subseteq (N \cap K)$ $+(K \cap Soc(P))$ or $IP \subseteq (N \cap K) + (K \cap Soc(P))$. Hence either $A \subseteq (N \cap K) +$ Soc(K) or $IP \subseteq (N \cap K) + Soc(K)$. Therefore by Proposition (2.5) $N \cap K$ is a WAPP-prime submodule of K.

Proposition 2.11 Let P be an R-module , and N,K are WAPP-prime submodules of P with K is not contained in N and either $Soc(P) \subseteq N$ or $Soc(P) \subseteq K$. Then $N \cap K$ is a WAPP-prime submodule of P.

Proof: It is clear that $N \cap K$ is a proper submodule of K, and K is a proper submodule of P, it follows that $N \cap K$ is a proper submodule of P. Let $0 \neq JA \subseteq N$

Corresponding author: Shahad Jasim Mahmood Email address: <u>hasanenjassm@gmail.com</u> Communicated by : Alaa H. H. Al-Ka'bi

∩ *K* for J is an ideal of R and A is a submodule of P. Then $0 \neq JA \subseteq N$ and $0 \neq JA \subseteq K$. But N and K are WAPP-prime submodules of P, then either $A \subseteq N+Soc(P)$ or $JP \subseteq N+Soc(P)$ and either $A \subseteq K+Soc(P)$ or $JP \subseteq K+Soc(P)$. Thus either $A \subseteq (N+Soc(P)) \cap (K + Soc(P))$ or $JP \subseteq (N+Soc(P)) \cap (K + Soc(P))$. If $Soc(p) \subseteq K$ then K+Soc(P)=K, and if follows that either $A \subseteq (N+Soc(P)) \cap K$ or $JP \subseteq (N+Soc(P)) \cap K$, and so by modular law, we have either $A \subseteq (N \cap K) + Soc(P)$ or $JP \subseteq (N \cap K) + Soc(P)$. If $Soc(P) \subseteq N$, in the same way we get either $A \subseteq (N \cap K) + Soc(P)$ or $JP \subseteq (N \cap K) + Soc(P)$. Therefore $N \cap K$ is a WAPP-prime submodule of P.

Proposition 2.12 Let P be an R-module , and N a submodule of P with $[N+Soc(P):_RP]$ is a maximal ideal of R. Then N is a WAPP-prime submodule of P.

Proof: Let $0 \neq ae \in N$ for $a \in R$, $e \in P$ with $a \notin [N+Soc(P):_RP]$. Since $[N+Soc(P):_RP]$ is a maximal ideal of R, then $R=<a>+[N+Soc(P):_RP]$. That is 1=ar + s for some $r \in R$, $s \in [N+Soc(P):_RP]$. That is $e = are + se \in N+Soc(P)$. Hence N is a WAPP-prime submodule of P.

Proposition 2.13 Let P be an R-module , and J a maximal ideal of R with JP+Soc(P)is a proper submodule of P . Then JP is a WAPP-prime submodule of P.

Proof: Since $JP \subseteq JP+Soc(P)$, it follows that $J \subseteq [JP+Soc(P):_R P]$, that is there exists $r \in [JP+Soc(P):_R P]$ and $r \notin J$. But J is a maximal ideal of R and $r \notin J$ then R=J+<r>, it follows that 1=b+rs for some $s \in R$, $b \in J$, that is e=be +sae for each $e \in P$. Thus $e \in JP + Soc(P)$ for each $e \in P$, that is $P \subseteq JP+Soc(P)$, hence JP+Soc(P)=P which is a contradiction. Thus $r \in J$ and it follows that $[JP+Soc(P):_R P]=J$ hence $[JP+Soc(P):_R P]=J$ which is a maximal ideal of R, it follows by Proposition (2.13) JP is a WAPP-prime submodule of P.

Proposition 2.14 Let P be an R-module and L a proper submodule of P with $[L + Soc(P):_R P] = [L+Soc(P):_R K]$ for each submodule K of P and L+Soc(P) \subseteq K. Then L is a WAPP-prime submodule of P.

Proof: Let $(0)\neq Ie\subseteq L$ for $e\in P$, I is an ideal of R with $e\notin L+Soc(P)$. That is K=L+Soc(P) + <e>. It is clear that $L+Soc(P)\subseteq K$, then $e\in K$. Now since $(0)\neq Ie\subseteq L$ and $e\in K$, implies that $I\subseteq [L:_R K]$. Since $L\subseteq L+Soc(P)$, then $[L:_R K]\subseteq [L+Soc(P):_R K]$. But it is given that $[L+Soc(P):_R K]=[L+Soc(P):_R P]$, implies that $[L:_R K]\subseteq [L+Soc(P):_R P]$, that is $I\subseteq [L+Soc(P):_R P]$. Therefore by Corollary (2.6) L is a WAPP-prime submodule of P.

Corresponding author: Shahad Jasim Mahmood Email address: <u>hasanenjassm@gmail.com</u> Communicated by : Alaa H. H. Al-Ka'bi **Proposition 2.15** Let P be an R-module with Soc(P) a weakly prime submodule of P. If L is a proper submodule of P with $L \subseteq Soc(P)$, then L is a WAPP-prime of P.

Proof: Let $0 \neq JA \subseteq L$ for J is an ideal of R and A a submodule of P. Since $L \subseteq Soc(P)$ then $(0) \neq JA \Longrightarrow Soc(P)$. But Soc(P) is a weakly prime submodule of P, then either $A \subseteq Soc(P) \subseteq L+Soc(P)$ or $JP \subseteq Soc(P) \subseteq L+Soc(P)$. Therefor L is a WAPP-prime submodule of P.

We end this section by the following proposition .

Proposition 2.16 Let P be an R-module and L a submodule of P with $Soc(P) \subseteq L$. Then L is a WAPP-prime submodule of P if and only if $[L:_P I]$ is a WAPP-prime submodule of P, for every nonzero ideal I of R.

Proof Let $(0)\neq Je\subseteq [L:_P I]$ for $e\in P$ and J is an ideal of R, that is $(0)\neq J(Ie)\subseteq L$.Since L is a WAPP-prime submodule of P, then by Proposition (2.5) either Ie $\subseteq L+Soc(P)$ or $JP\subseteq L+Soc(P)$. But $Soc(P)\subseteq L$, implies that L+Soc(P)=L. Hence either Ie $\subseteq L$ or $JP\subseteq L$, implies that either $e\in [L:_P I]$ or $JP\subseteq L\subseteq [L:_P I]$. That is either $e\in [L:_P I]+Soc(P)$ or $JP\subseteq [L:_P I]+Soc(P)$. Thus by Corollary (2.6) $[L:_P I]$ is a WAPP-prime submodule of P.

 (\Leftarrow) Follows by taking I=R.

2. Characterizations in class of multiplication modules .

In this section we give many characterizations of WAPP-prime submodules in the class of multiplication modules .

The first characterization of WAPP-prime submodules was introduced in the next proposition .

Proposition 3.1 Let P be a multiplication R-module , and L a proper submodule of P. Then L is a WAPP-prime submodule of P if and only if , whenever $(0)\neq AB\subseteq L$ for A,B are submodules of P , implies that either $A\subseteq L+Soc(P)$ or $B\subseteq L+Soc(P)$.

Proof(⇒) 0≠AB⊆L for A,B are submodules of P. Since P is multiplication , then A=IP , B=JP , for some ideals I,J of R . That is 0≠I(JP)⊆L , but L is a WAPP-prime submodule of P , then by Proposition (2.5)) either JP ⊆L+Soc(P) or IP⊆L+Soc(P) . It follows that either B ⊆L+Soc(P) or A⊆L+Soc(P) . (⇐) Let 0≠I₁ C⊆L for C is a submodule of P and I₁ is an ideal of R . Since P is a multiplication , then C=I₂P for some ideal I₂ of R , that is 0≠I₁ I₂P ⊆L . Put B=I₁P ,then 0≠B C⊆L , then by hypothesis either B ⊆L+Soc(P) or C⊆L+Soc(P) . That is either C⊆L+Soc(P) or I₁P⊆L+Soc(P) . Hence by Proposition (2.5) L is a WAPPprime submodule of P .

The following corollary is a direct consequence of Proposition (3.1).

Corresponding author: Shahad Jasim Mahmood Email address: <u>hasanenjassm@gmail.com</u>

Communicated by : Alaa H. H. Al-Ka'bi

Corollary(3.2) Let P be a multiplication R-module , and L a proper submodule of P. Then L is a WAPP-prime submodule of P if and only if , whenever $(0)\neq Ae \subseteq L$ for A is a submodule of P and $e \in P$, implies that either $e \in L+Soc(P)$ or $A \subset L+Soc(P)$.

It is well known that in a Z-regular R-module P, Soc(P)=Soc(R)P [15,Prop. (3.25)].

Proposition 3.3 Let P be a multiplication Z-regular R-module , and L a proper submodule of P. Then L is a WAPP-prime submodule of P if and only if $[L:_RP]$ is a WAPP-prime ideal of R.

Proof(⇒) Let $0 \neq IJ \subseteq [L:_R P]$ for I,J are ideals of R ,then $0 \neq IJP \subseteq L$. Since P is a multiplication , then IJP=AB , by taking A=IP ,B=JP are submodule of P , that is $0 \neq AB \subseteq L$. Since L is a WAPP-prime submodule of P, and P is a multiplication , then by Proposition (3.1) either A $\subseteq L+Soc(P)$ or B $\subseteq L+Soc(P)$. Again since P is a multiplication , then L= $[L:_R P]$ P, and since P is a Z-regular then Soc(P)=Soc(R)P. Hence either IP $\subseteq [L:_R P]$ P +Soc(R)P or JP $\subseteq [L:_R P]$ P +Soc(R)P. That is either I $\subseteq [L:_R P]$ +Soc(R) or J $\subseteq [L:_R P]$ +Soc(R). It follows that either J $\subseteq [L:_R P]$ +Soc(R) or I $\subseteq [[L:_R P]$ +Soc(R):_RR]. Thus by

Proposition(2.5) $[L:_RP]$ is a WAPP-prime ideal of R.

 $(\Leftarrow) \text{ Let } (0) \neq I_1 C \subseteq L \text{ for } I_1 \text{ is an ideal of } R \text{ and } C \text{ is a submodule of } P \text{ .Since } P \text{ is a multiplication }, \text{ then } C = I_2 P \text{ for some ideal } I_2 \text{ of } R \text{ , it follows that } 0 \neq I_1 I_2 P \subseteq L, \text{ implies that } 0 \neq I_1 I_2 \subseteq [L:_R P] \text{ .But } [L:_R P] \text{ is a WAPP-prime ideal of } R \text{ , then by proposition } (2.5) \text{ either } I_2 \subseteq [L:_R P] + \text{Soc}(R) \text{ or } I_1 \subseteq [[L:_R P] + \text{Soc}(R):_R R] = [L:_R P] + \text{Soc}(R) \text{ . That is either } I_2 P \subseteq [L:_R P] P + \text{Soc}(R) P \text{ or } I_1 P \subseteq [L:_R P] P + \text{Soc}(R)P \text{ . Since } P \text{ is a } Z \text{ .regular } R \text{ .module }, \text{ then } \text{Soc}(P) = \text{Soc}(R)P \text{ . Thus either } C \subseteq L + \text{Soc}(P) \text{ or } IP \subseteq L + \text{Soc}(P) \text{ . It follows that either } C \subseteq L + \text{Soc}(P) \text{ or } I \subseteq [L + \text{Soc}(P):_R P] \text{ . Hence by Proposition } (2.5) L \text{ is a WAPP-prime submodule of } P \text{ .}$

It is well known that in projective R-module P,Soc(P)=Soc(R)P[15, Prop(3-24)]. **Proposition 3.4** Let P be a projective multiplication R-module, and L a proper submodule of P. Then L is a WAPP-prime submodule of P if and only if $[L:_RP]$ is a WAPP-prime ideal of R.

Proof:(⇒) Let $0 \neq rI \subseteq [L:_R P]$ for r∈R and I ideal of R .It follows that $0 \neq rIP \subseteq L$ since L is a WAPP-prime submodule of P, then by Proposition (2.4) either IP $\subseteq L$ +Soc(P) or rP $\subseteq L$ +Soc(P). But L is a multiplication projective R-module, then either IP $\subseteq [L:_R P] P$ +Soc(R)P or rP $\subseteq [L:_R P] P$ +Soc(R)P. That is either I $\subseteq [L:_R P]$ +Soc(R) or r∈[L:_R P] +Soc(R) =[[L:_R P] +Soc(R):_RR]. Therefore by proposition (2.4) [L:_RP] is a WAPP-prime ideal of R. (\Leftarrow) Let (0) $\neq rB \subset L$ for r∈ R and B is a submodule of P. Since P is a

multiplication , then B=JP for some ideal J of R , that is $0\neq rJP \subseteq L$, it follows that $0\neq rJ \subseteq [L:_RP]$. But $[L:_RP]$ is a WAPP-prime ideal of R , then by Proposition (2.4) either $J \subseteq [L:_RP] + Soc(R)$ or $r\in [[L:_RP] + Soc(R):_RR] = [L:_RP] + Soc(R)$.

Corresponding author: Shahad Jasim Mahmood Email address: <u>hasanenjassm@gmail.com</u> Communicated by : Alaa H. H. Al-Ka'bi

That is either IP \subseteq [L:_R P] P +Soc(R)P or rP \subseteq [L:_R P] P +Soc(R)P .But P is a projective R-module, then either B \subseteq L+Soc(P) or rP \subseteq L+Soc(P).That is either B \subseteq L+Soc(P) or r ϵ [L+Soc(P):_R P]. Therefor by Proposition (2.4) L is a WAPP-prime submodule of P.

It is well known if an R-module P is a finitely generated multiplication , and I,J are ideals of R .Then IP \subseteq JP if and only if I \subseteq J+ann_R(P)[16] .

Proposition 3.5 Let P be a finitely generated multiplication Z-regular R-module , and I a WAPP-prime ideal of R with $ann_R(P) \subseteq I$. Then IP is a WAPP-prime submodule of P.

Proof: Let $(0)\neq LK\subseteq IP$ for L,K are submodules of P. Since P is multiplication ,then L=I₁P, K=I₂P for some ideals I₁,I₂ of R ,that is $(0)\neq I_1I_2P\subseteq IP$. Since P is a finitely generated multiplication ,then $(0)\neq I_1I_2\subseteq I+ann_R(P)$.But $ann_R(P)\subseteq I$,implies that I+ann_R(P)=I ,that is $(0)\neq I_1I_2\subseteq I$. But I is a WAPP-prime ideal of R then by proposition (2.5) either $I_2\subseteq I+Soc(R)$ or $I_1\subseteq [I+Soc(R):_RR]=I+Soc(R)$.Thus either $I_2P\subseteq IP+Soc(R)P$ or $I_1P\subseteq IP+Soc(R)P$, implies that either $K\subseteq IP+Soc(P)$ or $L\subseteq IP+Soc(P)$. Therefore IP is a WAPP-prime submodule of P by Proposition (3.1).

Proposition 3.6 Let P be a finitely generated multiplication projective R-module , and I a WAPP-prime ideal of R with $\operatorname{ann}_{R}(P) \subseteq I$. Then IP is a WAPP-prime submodule of P.

Proof: Let $(0)\neq JB\subseteq IP$ for J is an ideal of R ,and B a submodule of P. Since P is a multiplication ,then $(0)\neq JI_1P\subseteq IP$ for some ideal I_1 of R .But P a finitely generated ,then $(0)\neq JI_1\subseteq I+ann_R(P)$,that is $(0)\neq JI_1\subseteq I$ (for $ann_R\subseteq I$) .But I is a WAPP-prime ideal of R then by Proposition (2.5) either $I_1\subseteq I+Soc(R)$ or $J\subseteq [I+Soc(R):_RR]=I+Soc(R)$. Thus either $I_1P\subseteq IP+Soc(R)P$ or $JP\subseteq IP+Soc(R)P$.But P is a projective then either $B\subseteq IP+Soc(P)$ or $J\subseteq [IP+Soc(P):_RP]$. Therefore by Proposition (2.5) IP is a WAPP-prime submodule of P. It is well known that cyclic R-module is multiplication [12]. Also ,every cyclic R-module a finitely generated[11].We have the following corollaries as direct consequence of Proposition (3.1),Corollary (3.2) and Proposition (3.3,3.4,3.5,3.6)

Corollary3.7 Let P be a cyclic R-module , and L a proper submodule of P .Then L is a WAPP-prime submodule if and only if whenever $(0)\neq AB\subseteq L$, for A,B are submodules of P, implies that either $A\subseteq L+Soc(P)$ or $B\subseteq L+Soc(P)$. **Corollary3.8** Let P be a cyclic R-module , and L a proper submodule of P .Then L is a WAPP-prime submodule if and only if whenever $(0)\neq Ae\subseteq L$, for A is a submodule of P ,eeP , implies that either $e\in L+Soc(P)$ or $A\subseteq L+Soc(P)$. **Corollary3.9** Let P be a cyclic Z-regular R-module , and L a WAPP-prime submodule of P. Then $[L:_RP]$ is a WAPP-prime ideal of R.

Corresponding author: Shahad Jasim Mahmood Email address: <u>hasanenjassm@gmail.com</u> Communicated by : Alaa H. H. Al-Ka'bi

Corollary3.10 Let P be a cyclic projective R-module , and L a WAPP-prime submodule of P if and only if $[L:_RP]$ is a WAPP-prime ideal of R . **Corollary3.11** Let P be a cyclic Z-regular R-module , and I a WAPP-prime ideal of R with $ann_R(P)\subseteq I$. Then IP is a WAPP-prime submodule of P . **Corollary3.12** Let P be a cyclic projective R-module , and I a WAPP-prime ideal of R with $ann_R(P)\subseteq I$. Then IP is a WAPP-prime submodule of P . **Proposition 3.13** Let P be a finitely generated multiplication Z-regular R-module , and L a proper submodule of P with $ann_R(P)\subseteq [L:_RP]$, then the following statements are equivalent :

- 1. L is a WAPP-prime submodule of P.
- 2. $[L:_RP]$ is a WAPP-prime ideal of R.
- 3. L=IP for some WAPP-prime ideal I of R with $ann_R(P) \subseteq I$.

Proof (1) \Leftrightarrow (2) Follows by Proposition (3.3)

(2) \Rightarrow (3) Since P is a multiplication module then L= [L:_RP]P where [L:_RP] is a WAPP-prime ideal of R with ann_R(P)= [0:_RP] \subseteq [L:_RP].Put I=[L:_RP].Thus L=IP where I is a WAPP-prime ideal of R.

 $(3) \Rightarrow (2)$ Suppose L=IP for some WAPP-prime ideal I of R with $ann_R(P) \subseteq I$. But P is a multiplication it follows that L=[L:_RP]P=IP .Since P is a finitely generated then by [16,Prop(3-9)] P is a weak cancellation that is [L:_RP]+ann_R(P)=I+ ann_R(P). But ann_R(P) \subseteq [L:_RP] and ann_R(P) \subseteq I, it follows that [L:_RP]+ann_R(P)= [L:_RP] and ann_R(P)+I=I. Therefor [L:_RP] =I but I is a WAPP-prime ideal of R ,then [L:_RP] is a WAPP-prime ideal of R.

Proposition 3.14 Let P be a finitely generated multiplication projective R-module , and L a proper submodule of P with $ann_R(P) \subseteq [L:_RP]$, then the following statements are equivalent :

- 1. L is a WAPP-prime submodule of P.
- 2. $[L:_RP]$ is a WAPP-prime ideal of R.
- 3. L=IP for some WAPP-prime ideal I of R with $ann_R(P) \subseteq I$.

Proof (1) \Leftrightarrow (2) Follows by Proposition (3.4)

 $(2) \Leftrightarrow (3)$ The same as in Proposition (3.13)

The following corollaries are direct consequence of propositions(3.12 and 3.14). **Corollary 3.15** Let P be a cyclic Z-regular R-module , and L a proper submodule of P with $ann_R(P) \subseteq [L:_RP]$. Then the following statements are equivalent :

1.L is a WAPP-prime submodule of P.

2. $[L:_RP]$ is a WAPP-prime ideal of R.

Corresponding author: Shahad Jasim Mahmood Email address: <u>hasanenjassm@gmail.com</u> Communicated by : Alaa H. H. Al-Ka'bi

3.L=IP for some WAPP-prime ideal I of R with $ann_R(P) \subseteq I$.

Corollary 3.16 Let P be a cyclic projective R-module , and L a proper submodule of P with $ann_R(P) \subseteq [L:_RP]$. Then the following statements are equivalent :

- 1. L is a WAPP-prime submodule of P.
- 2. $[L:_RP]$ is a WAPP-prime ideal of R.
- 3. L=IP for some WAPP-prime ideal I of R with $ann_R(P) \subseteq I$.

We end this section by the following proposition .

Proposition 3.17 Let P be a multiplication R-module and L a proper submodule of P with $[L+Soc(P):_RP]$ is a prime ideal of R, and $L+Soc(P)\subseteq K$ for each submodule K of P. Then P is a WAPP-prime submodule of P.

Proof :Let $0 \neq ae \in L$ for $a \in R$, $e \in P$ with $e \notin L+Soc(P)$, it follows that $L+Soc(P) \subseteq L+Soc(P)+<e>=K$. Since P is a multiplication then $[K:_RP] \not\subset [L+Soc(P):_RP]$, then there exists $r \in [K:_RP]$ and $r \notin [L+Soc(P):_RP]$. That is $rP \subseteq K$ and $rP \not\subset L+Soc(P)$. Thus $rP \subseteq K$, implies that $arP \subseteq a(L+Soc(P)+<e>) \subseteq L+Soc(P)$. That is $ar \in [L+Soc(P):_RP]$. But $[L+Soc(P):_RP]$ is a prime ideal of R and $r \notin [L+Soc(P):_RP]$ then $a \in [L+Soc(P):_RP]$. Thus L is a WAPP- prime submodule of P.

Reference

[1] Behoodi . M ,and Koohi . H . ,Weakly prime Modules ,Veitnam Journal of Math .32(2),(2004) ,185-195

[2] Dauns. J ."Prime Modules "J .Reine Angew, Math .2(1978) ,156-181 .

[3] Azizi A ., Weakly Prime Submodules and Prime Submodules , Glasgow Math Journal 48 (2006), 343-348 .

[4] Ebrahimi .S and Farzalipour. F ., On Weakly Prime Submodules , Tamkang Journal Of Math .38(3) ,(2007), 247-252 .

[5]Azizi A .,On Prime and Weakly Prime Submodules, Veitnam Journal of Math .36(3),(2008),315-325 .

[6] Adil K.J., A generalizations of Prime and Weakly Prime Submodules ,Pure Math .Sci .2(1)(2013) ,1-11 .

[7] Ebrahimi .S. and Farzalipour. F ., On Weakly Primary ideals ,Georgion Math .Journal , 13(2005) ,423-429 .

[8] Waad. K.H ,Weakly Quasi Prime Modules and Weakly Quasi prime Submodules,M. Sc .Thesis , University of Bagdad ,(2013) .

Corresponding author: Shahad Jasim Mahmood Email address: <u>hasanenjassm@gmail.com</u> Communicated by : Alaa H. H. Al-Ka'bi

[9] Farzatipar. F ,On Almost Semi Prime Submodules , Hindawi Publishing Corporation Algebra 31(2014) ,231-237 .

[10] Zelmanowitz. J ,An extension of the Jacobson density theorem "Amer .Math. Sec.,Vol .(82), No.(4) ,(1976),(551-553) .

[11] Kasch. F, Modules and Rings, Academic press, London 1982.

[12] Barnard . A ., Multiplication Modules , J . of Algebra , 71(1981) ,174-178

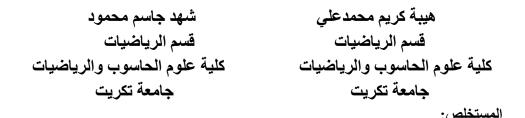
[13] Darani. A.Y .and Soheilmai . F .,2-Absorbing and Weakly 2-Absorbing Submodules , Tahi Journal Math .(9)(2011) ,577-584 .

[14] Zelmanawitz .J .M .,Regular Modules ,Trans . Amer .Math .Soc ,163 (1973) ,341-355 .

[15] Nuha. H.H , The Radicals of Modules , M.Sc. Thesis , University of Bagdad 1996

[16] Ali S. M ,On Cancellation Modules ,M. Sc Thesis , University of Bagdad ,1993

المقاسات الجزئية الاولية من النمط-WAPPومفاهيم ذات العلاقة



Corresponding author: Shahad Jasim Mahmood Email address: <u>hasanenjassm@gmail.com</u> Communicated by : Alaa H. H. Al-Ka'bi