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VARIATIONAL FORMULATION OF NONLINEAR  ORDINARY 

DELAY DIFFERENTIAL EQUATIONS 

 

 

 

 

 

ABSTRACT 

In this paper, the variational formulation of nonlinear problems is considered to find the 

approximate solution of an important type of differential equations which is the nonlinear ordinary 

delay differential equations and illustrated by an example. 

 

1- INTRODUCTION 

The variational calculus gives a method for finding the maximal and minimal values of 

functionals. Problems that consist of finding the maxima or the minima of a functional are called 

variational problems, [Elsgolc, 1962]. As an example, the solution of any problem (such as partial 

differential equations, ordinary differential equations, integral equations, etc.) is equivalent to the 

problem of minimizing a functional that corresponding to this problem, [Magri, 1974]. 

The basic analysis of the subject of calculus of variation depends mainly on minimizing 

some functional with a suitable condition to be satisfied. However, the problem of evaluating this 

functional has some difficulties and therefore, much attention on Tonti’s approach is given for 

every nonlinear operator equation of the form N(u)  0, [Tonti E., 1984].  

In addition, delay differential equations occur as in the works of L. Euler (in the second half 

of the eighteenth century), but systematically the study of such equations was first considered  in 

the twentieth century, to meet the demands of applied science, in particular of control theory, 

[Driver, R. D., 1977]. The significance of these equations lies in their ability to describe processes 

with after effect. The importance of these equations in various branches of technology, economics, 

biology and medical sciences have been recognized recently and has caused mathematicians to 

study with increasing interest. 
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2- BASIC CONCEPTS IN CALCULUS OF VARIATION 

Following are some of the fundamental concepts related to this paper considering the subject 

of calculus of variation and its inverse problem for evaluating the related functional of certain 

problem, these concepts may be summarized as follows: 

A functional F(u, v) is said to be bilinear form if it is linear in both of its arguments (i.e., in 

u and v) which is denoted by (u, v) and may be defined as: 

 

T

0

Tx0,dx)x(v)x(uv,u  …(1) 

(see [Marie, N., 2001] for other types of bilinear forms). 

Also, the bilinear form <u, v> is said to be symmetric if <u, v>  <v, u>,  n  U, v  V, 

where U, is a linear normed space and it is called non degenerate if  

<u, v  > = 0 implies v   0,  n  U (and vise versa follows from the symmetry of  

<u, v>). 

The follows definitions seem to be necessary:  

 

Definition (2.1), [Magri, 1974]: 

A linear operator L is said to be symmetric with respect to the chosen bilinear form <., .> if 

L satisfies: 

1 2 2 1 1 2Lu ,u Lu ,u , u ,u D(L)     . 

and in addition, the linear operator L is said to be invertible (A is called the inverse of L) if there 

exists a bounded linear operator A such that LA  AL  I, when I is the identity operator. 

 

Definition (2.2), [Taylor, 1961]: 

Let L : D(L)  U  R(L)  V be a linear operator. The operator L* is called the adjoint 

operator of L if: 

<v, Lu>  <L*v, u>,  u, v  U. 

 

Definition (2.3), [Ogata, 1967]: 

An operator L is said to be positive definite if the following two conditions are satisfied: 

a- u,Lu 0, u D(L) and u 0      . 
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b- u,Lu 0 if and only if u 0   . 

 

Definition (2.4), [Tonti, 1984]: 

Let V)N(RU)N(D:N  be a nonlinear operator. Then the operator N 

defined by: 

u u 0

d
N (u : ) N ( ) [N(u )] , u D(N),

d 
         


 

is called the Gateaux derivative of N at u, where  is an arbitrary element in D(N). 

Also it is symbolically referred to the gradient of functional as the potential operator.    

 

3- ORDINARY DELAY DIFFERENTIAL EQUATIONS 

An n-th order ordinary delay differential equation may take the following general form: 

(n)
1 k 1 kf (t;y(t), y(t (t)), , y(t (t)), y (t (t)), , y (t (t)), y (t), ,          

(n)
ky (t (t)) g(t)    …(2) 

where F is a given function and 1(t), 2(t), …, k(t) are given real valued functions called “time 

delays” [Bellman and Cooke, 1963]. If in eq.(2) we set 0)t()t()t( k21   , then we 

have an n-th order ordinary differential equation. Also,  

Other literatures writes eq.(2) in the following form: 

F(t, x(t), x(k1(t)), …, x(k2(t)), x(t), x(k1(t)), …, x(kn(t)), …, x
(n)

(t), x
(n)

(k1(t))…, x
(n)

(kn(t))  

g(t) …(3) 

where k1(t), k2(t), …, kn(t) are real valued functions not all of them equals to one. Also we can 

consider the ODE as a special case delay differential equation with either k1  k2  …  kn  1. 

Hence, as a conclusion, one can assume that the theory of delay differential equations is a 

generalization the theory of ordinary differential equations. 

For simplicity, one can write a first order delay differential equation with constant 

coefficients and with one delay as follows, [Abbas, H. J., 1994]: 

0 1 0 1a y (t) a y (t (t)) b y(t) b y(t (t)) g(t)          …(4) 

where g(t) is a given continuous function, (t) is a positive constant and a0, a1, b0 and b1 are 

constants. 
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Equation (4) can be classified into three kinds: the first kind (retarded) occurs when (a0  0 

and a1  0), [Stepan, G., 1989], i.e., the delay comes in x only, and the differential equation takes 

the form:  

0 0 1a y (t) b y(t) b y(t (t)) g(t)        …(5) 

The second kind (neutral) is obtained when (a1  0 and b0  0), i.e., the delay comes in y, 

and the differential equation takes the form: 

0 1 1a y (t) a y (t (t)) b y(t (t)) g(t)         …(6) 

The third kind (mixed) is obtained when (a1  0 and b0  0), i.e., the delay comes in x and y, 

and the differential equation also takes the form:  

0 1 0 1a y (t) a y (t (t)) b y(t) b y(t (t)) g(t)          …(7) 

            

Remark (3.1): 

The main different between delay and ordinary differential equations is the kind of initial 

conditions that should be used in delay differential equations which are different from differential 

equations so that one should specify in delay differential equations an initial function on some 

interval of length  say [y0  , y0] and then try to find the solution of eq.(4) for all y  y0, [Ladde, 

G.S.,1987]. 

 

4- TONTI'S APPROACH, [TONTI, 1984] 

Tonti in 1984 give the variational formulation for every linear or nonlinear equation, with 

ordinary or partial derivatives, of any order (odd or even).This equation may be of an integral or 

integro-differential type, or it may even be a system of differential or integral equations, etc. 

Now, in order to find the variational formulation corresponding to Tonti's approach we 

follow the following steps:  

Step (1): 

Find an integral operator k of the form 

b

a

ku(x) k(x, t)u(t)dt   that transform the given 

problem into another problem, with the following two conditions must be satisfied: 

(1) The integral operator must be invertible to ensure that the new problem has the same solution as 

the original one. 

(2) The operator of the new problem must be a potential operator with respect to the bilinear form. 

Step (2): 
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Find a functional F, such that the operator of the new problem is the gradient of F. 

Now the procedure that Tonti had used to find the variational formulation for every 

nonlinear problem is given in the following theorem: 

Theorem (4.1), [Tonti, 1984]: 

Consider the nonlinear problem: 

N(u)  0 …(8) 

where V)N(RU)N(D:N   is a nonlinear operator such that: 

1- The solution of this problem exists and unique. 

2- D(N) is simply connected. 

3- uN (u,.)  exists. 

4-D( uN ) is dense in U. 

5- uN *(u,.)  is invertible for every )N(Du . 

Then for every operator K that satisfy the following conditions: 

6- K is linear with 
n

uD(k) R(N) and R(k) D(N )  . 

7- K is invertible.  

8- K is symmetric. 

Then the operator N defined by: 

*
uN(u) N (u,kN(u))  …(9) 

has the following properties. 

a- Its domain coincides with that of N. 

b-The problems N(u)  0 and N (u)  0 have the same solution; 

c- It is a potential operator. 

From properties (b) and (c) it follows that the solution of problem (8) is the critical point of 

the functional: 

1
F[u] N(u),KN(u)

2
    

Whose gradient is the operator N . The functional vanishes when the solution is reached. Moreover 

if: 
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9- k is positive definite, then  

d- ]u[F  has its minimum value at the critical point. 

 

5- VARIATIONAL FORMULATION FOR NONLINEAR ORDINARY 

DELAY DIFFERENTIAL EQUATIONS 

Now, we use Tontie's approach to find the variational formulation of nonlinear ordinary 

delay differential equations, which is as follows: 

Now, consider the nonlinear delay differential equation which single constant delay , as: 

0

d
u(t) F(t,u(t),u(t τ)) , t t

dt
    …(10) 

with initial condition 

0 0u(t) g(t) , t t t      …(11) 

where f is a nonlinear function and to solve this problem for all 0tt   using the method of stops in 

connection with Tontie's approach given by theorem (4.1). 

In eq.(1) we have 
1n U C [0,T] and f V C[0,T],    and as a first step we must 

check if the given operator satisfies the conditions of theorem (4.1). 

Now, let: 

1
0 0 0 0

d
N(u) u(t) f (t,u(t),u(t ),u(t) g(t), t t t ,u(t ) g(t ),u C [0,T]

dt

 
           
 

 

0 0

d
u(t) f (t,u(t)),g(t ),u(t ) g(t )

dt

 
     
 

 

and hence: 

1
0 0

d
u(t) f (t,u(t),u(t ) g(t ),u C [0,T]

dt

 
    
 

 

u 0

d
N [N(u )]

d 
    


 

 
0

d d
(u )(t) f (t,(u )(t),(u )(t )

d dt 

 
            
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and for using the method of steps for solving delay differential equations and for the first time step 

0 0t t t    , we have: 

u(t ) g(t),   0 0t t t     

and we may let (u )(t ) g(t)     , with error of order O(). Hence: 

 u

d d
N (u )(t) f (t,(u )(t),g(t))

d dt

 
          

 

 
0

d d
(u )(t) f (t,u )(t)

d dt 

 
      

 

d F
(t) (t)

dt u


   


 

Hence: 

1
u

d F
N (t) (t), (0) 0, C [0,T]

dt u

 
         

 
 

Now, in order to find the ad joint Gateaux derivative, we must satisfy:  

T T
*

u u

0 0

N dt N dt, , U           

or equivalently: 

T T

u

0 0

d F
N dt (t) (t) dt

dt u

 
       

 
   …(12) 

T T

0 0

d F
(t) (t)dt (t) (t)dt

dt u


    

    0 

and using the method of integration by parts to the both integrals in the right hand side of the last 

equation, we get: 

*
u

d F
N (t) (t)

dt u


      


 

Hence: 

* 1
u

d F
N (t) (t), (t) 0, C [0,T]

dt u

 
          

 
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Then, the ad joint homogeneous problem is given by  

d f
(t) (t) 0, (T) 0

dt u


      


 

which is a linear equitation. With variable coefficients and can by solved to have the null solution, 

and thus the operator *
uN is invertible. Therefore conditions (1)-(6) of theorem (3.1) are satisfied. 

Also, choose the integral operator to be: 

T
st

0

KV e (t) (s)V(s)ds    

where  satisfy the homogeneous initial conditions for 
*
uD(N ) , which is(T)  0 and u(0)  0 is 

already satisfied with the operator N, hence (0)  0. Therefore, letting (t)  t
2
  Tt, yields: 

T
st 2 2

0

KV e (t Tt)(s Ts)V(s)ds    

and hence from theorem (3.1), we have the functional: 

1
F(u) N(u),KN(u)

2
    

T T
st 2 2

0 0

1 du du
F(t,u) e (t Tt)(s Ts) F(s,u(s) dsdt

2 dt ds

   
       

   
   …(13) 

which can be minimized using the direct Ritz method to find the critical points of eq.(13) which are 

equivalent to the solution of the nonlinear ordinary delay differential equation given by eq.(10) with 

initial condition (11). 

As an illustration consider the following example: 

 

Example (5.1): 

Consider the nonlinear delay differential equation: 

2 1du
u (t) u(t 1), t [0,1],u(t) U C [ 1,1]

dt
        

with initial condition:  

u(t) g(t) t , 1 t 0      

which can be solved for the first time step [0, 1] and by using the method of steps, we have: 
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2du(t)
u (t) u(t 1)

dt
    

2u (t) g(t 1)    

2u (t) t 1    

F(t,u(t))  

Hence, using the variational formulation (13), we have the functional: 

1 1
ts 2 2

0 0

1 du du
F(u) F(t,u) e (t t)(s s) F(s,u(s) dsdt

2 dt ds

  
         
   

1 1
2 ts 2 2 2

0 0

1 du du
u (t) t 1 e (t t)(s s) u (s) s 1 dsdt

2 dt ds

   
           

   
   …(14) 

and by using the direct Ritz method, let: 

2
1 2 3u(t) a a t a t    

and since u(0), then a1  0 and hence: 

2
2 3u(t) a t a t   …(15) 

Thus, substitute (115) in (14), yields to: 

1 1
2 2 ts 2 2

2 3 2 3 2 3 2 3

0 0

1
F(a ,a ) a 2a t (a t a t ) t 1 [e (t t)(s s)(a 2a s

2
          
    

(a2s + a3s
2
)
2
  s + 1)] dsdt   

which may be minimized and find the critical points 
* *
2 3a , a  for the function which are found to be: 

*
2a 0.997 , 

*
3a 0.607  

Therefore: 

u(t)  0.997t + 0.607t
2
 …(16) 

which is the approximate solution of the problem. 

A comparison between the approximate solution and Euler numerical method is given in 

figure (1). 
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Figure (1) Approximate and Numerical Solutions of Example (5.1). 

 

From the results, one can see the accuracy of the results, which may occur due to the 

application of Euler’s method which is of the first order and/or due to the nonlinearity of the delay 

differential equations. 
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 .موضثا  ذبك ب ثلل  وضاثي


