Vol.5 No.1 year 2013

Page 130-135

QC-Continuous and QC-Quasi-Continuous Modules

Emad Allawi Shallal

Department of Mathematics, College Of Computer Science and Mathematics University of AL-Qadisiya, Diwaniya , Iraq

E-mail: emad_a_shallal@yahoo.com

Received : 15 / 5 /2013 Revised: 26 /5 / 2013 Accepted: 12 /6 / 2013

<u>Abstract</u>

In this work, we introduce the class of QC-Continuous and QC-Quasi-Continuous which are stronger than the class Continuous and Quasi-Continuous modules . where an R-module M is called QC-Continuous if M is fully Extending and has (C2) , an R-module M is called QC-Quasi-Continuous if M is fully Extending and has (C3).

Introduction

Throughout this paper all rings have an identity and modules are unitary. Let R be a ring and M be a left R-module, a submodule N of M is essential in M (denoted by $N \xrightarrow{\sigma} M$) if $N \cap L \neq (0)$ for any non-zero submodule L of M [6]. An R-module M is uniform if every submodule of M is essential in M. Also, a submodule N of M is closed in M if it has no proper essential extensions in M, that is, if $N \xrightarrow{\sigma} K \rightarrow M$, then N = K [6]. A submodule N of an R-module M is quasi-closed (for short qc-submodule) if for each $x \in M$ with $x \notin N$, there exists a closed submodule L of M containing N such that $x \notin L$, an R-module M is called fully Extending if every qc-submodule of M is direct summand of M [7]. An R-module M is semisimple if every submodule of M is direct summand of M [4], a submodule N of an R-module M is called Strongly Extending if every submodule of M is extending if every submodule of M is the every submodule of M is stable if every submodule of M is called fully Extending if every submodule M is called Strongly Extending if every submodule of M is every submodule of M is every submodule of M is stable if every submodule of M is a direct summand of M is stable [1], an R-module M is called Strongly Extending if every submodule of M is a stable direct summand of M, equivalently, every closed submodule of M is a stable direct summand [2]. For a module M consider the following conditions:

 (C_1) : Every closed submodule of M is a direct summand of M.

 (C_1) : Every quasi-closed submodule of M is a direct summand of M.

 (C_2) : For each submodule *N* of M such that $N \approx K \xrightarrow{\oplus} M$, then $N \xrightarrow{\oplus} M$.

Vol.5 No.1 year 2013

 (C_3) : For each submodules N and K such that $N \xrightarrow{\oplus} M$ and $K \xrightarrow{\oplus} M$ with $N \cap K = (0)$, then $N \oplus K \xrightarrow{\oplus} M$.

An R-module M is called Extending or CS if it satisfies the condition (C_1), equivalently, every submodule of M is essential in a direct summand [5]. An Rmodule M is called Continuous if it satisfies the conditions (C_1) and (C_2), an Rmodule M is called Quasi-Continuous, an R-module M is called Continuous if it satisfies the conditions (C_1) and (C_3) [8]. I.M.A.Hadi and M.A.Ahmed introduced the concept of quasi-closed submodule as a proper generalization of closed submodule [7]. We introduce and study the class of QC-Continuous and QC-Quasi-Continuous which are stronger than the class Continuous and Quasi-Continuous modules.

<u>Definition(1)</u>:- An R-module M is called QC-Continuous module if M has (C_1) and (C_2) .

<u>Definition(2)</u>:- An R-module M is called QC-Quasi-Continuous module if M has (C_1) and (C_3) .

Remarks and Examples(3):-

- 1- Every semisimple R-module is QC-Continuous and QC-Quasi-Continuous .
- 2- The Z-module $M = Z \bigoplus Z_2$ is not fully Extending [7], hence neither QC-Continuous nor QC-Quasi-Continuous.
- **3-** The Z-module $M = Z_2 \bigoplus Z_4$ is not fully Extending [7], hence neither QC-Continuous nor QC-Quasi-Continuous.
- 4- Every Uniform R-module is QC-Quasi-Continuous. Since if M is a Uniform R-module, then M is a fully extending module [7,example 3.2]. Let N and K be two submodule of M such that N → M and K → M with N ∩ K = (0), since the only direct summand of M are M and (0), then N ⊕ K → M, hence M has (C₂). However uniform R-module need not be QC-Continuous, for example see (5).
- 5- S. H. Mohamed and B. J. Muller in [8] show that if an R-module M has (C₂), then M has (C₃), therefore every QC-Continuous module is QC-Quasi-Continuous. The converse is not true in general as the following example show: The Z-module Z is QC-Quasi-Continuous but not QC-Continuous because the submodule 2Z isomorphic to Z while 2Z is not a direct summand of Z, therefore Z not QC-Continuous.

Journal of Al-Qadisiyah for computer science and mathematics Vol.5 No.1 year 2013

- 6- Every QC-Quasi-Continuous module is Quasi-Continuous, the converse is not true in general, for example, the Z-module $M = Z \bigoplus Z_2$ is Quasi-Continuous but not QC-Quasi-Continuous (see (1)).
- 7- Every Strongly Extending is fully Extending, the converse is not true in general, for example, the Z-module $M = Z_2 \oplus Z_2$ is semisimple module, hence is fully Extending (QC-Continuous ,QC-Quasi-Continuous), since $N = Z_2 \oplus (\overline{0})$ is closed submodule of M which is not stable direct submodule of M. Hence M is not Strongly Extending.
- 8- Every QC-Continuous module is Continuous, the converse is not true in general. Consider M = Z_p∞⊕Z_p∞ as Z-module. Since Z_p∞ is injective Z-module, then M = Z_p∞⊕Z_p∞ is injective, hence M is Continuous [8], but M is not fully Extending [7], hence M is not QC-Continuous.
- 9- Direct sum of QC-Continuous (QC-Quasi-Continuous) module need not be QC-Continuous (QC-Quasi-Continuous), for example, the Z-module Z_2 and Z_4 are QC-Continuous (QC-Quasi-Continuous) module, but $Z_2 \oplus Z_4$ is not QC-Continuous (QC-Quasi-Continuous) module.

Proposition(4) :- Let N be a direct summand of an R-module M then:

- (1) N is QC-Continuous if M is Continuous.
- (2) N is QC-Quasi-Continuous if M is Quasi-Continuous .

Proof: Direct from [7, proposition 3.3] and [8, proposition 2.7].

<u>Corollary(5)</u> :- If $M \bigoplus M$ is QC-Continuous (QC-Quasi-Continuous) module, then M is QC-Continuous (QC-Quasi-Continuous).

Recall that an R-module M is injective if for each R-monomorphism $f: A \to B$ (where A and B are R-module) and for each R-homomorphism $g: A \to M$, there exists an R-homomorphism $h: B \to M$ such that $h \circ f = g$ [4]. Every injective R-module is Continuous, hence Quasi-continuous [8], but injective module need not be QC-Continuous (QC-Quasi-Continuous), (see Remarks and Examples(3),8), an R-module M is called prime if ann(M) = ann(N) for each nonzero submodule N of M.

<u>Proposition(6)</u> :- Every injective prime module is QC-Continuous(QC-Quasicontinuous).

Proof: Let M be an injective prime module. By [7,proposition 3.16], M is fully Extending. On the other hand, every injective module is Continuous [8], therefore M has (C_2), hence M is QC-Continuous (QC-Quasi-Continuous).

Journal of Al-Qadisiyah for computer science and mathematics Vol.5 No.1 year 2013

We conclude from this paper the following chart of implications:

Injective $Prime \Longrightarrow QC - Continuous \Longrightarrow QC - Quasi - Continuous \Longrightarrow fully Extending$

 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$ Injective \Rightarrow Continuous \Rightarrow Quasi - Continuous \Rightarrow Extending

<u>**Proposition(7)</u>** :- Let M_1 and M_2 be two isomorphic R-modules. Then M_1 is QC-Continuous R-module if and only if M_2 is QC-Continuous R-module.</u>

Proof: Suppose M_1 is QC-Continuous R-module, then M_1 is fully Extending and by [7,example (3.2),3] M_2 is fully Extending. Let N and K two submodule of M_2 such that $N \approx K \xrightarrow{\oplus} M_2$, since M_1 and M_2 isomorphic, there exist R-isomorphism $f: M_2 \to M_1$, then $K \approx f(K) \xrightarrow{\oplus} M_1$ but $N \approx f(N)$, then $f(N) \approx f(K) \xrightarrow{\oplus} M_1$, since M_1 is QC-Continuous, then $f(N) \xrightarrow{\oplus} M_1$, hence $N \xrightarrow{\oplus} M_2$.

<u>**Proposition(8)**</u> :- Let M_1 and M_2 be two isomorphic R-modules. Then M_1 is QC-Quasi-Continuous R-module if and only if M_2 is QC-Quasi-Continuous R-module.

Proof: Suppose M_1 is QC-Continuous R-module, Let N and K are two direct summand M_2 with $N \cap K = (0)$, since M_1 and M_2 isomorphic, there exist Risomorphism $f: M_2 \to M_1$, hence $f(N) \xrightarrow{\oplus} M_1$ and $f(K) \xrightarrow{\oplus} M_1$ with $f(N) \cap f(K) = (0)$, then $f(N) \oplus f(K) \xrightarrow{\oplus} M_1$, so $f(N + K) \xrightarrow{\oplus} M_1$, hence $N \oplus K$ is a direct summand of M_2 .

An R-module M is called non-singular if $Z_M(M) = 0$, where $Z_M(M)$ is the set of all $m \in M$ such that $ann(m) \xrightarrow{e} R$ [6], and M is called polyform module if for each submodule N of M and for each homomorphism $f: N \to M$, ker (f) is closed submodule in N [5].

<u>Proposition(9)</u> :- Let M be a polyform R-module, then:

- (1) M is QC-Continuous if and only if M is Continuous.
- (2) M is QC-Quasi-Continuous if and only if M is Quasi-Continuous.
- (3)

Vol.5 No.1 year 2013

Proof: If M is polyform module, then the intersection of two summands is again a summand [3,lemma 11] and by [7,theorem 3.7], M is fully extending.

<u>Corollary(10)</u> :- Let M be a non-singular R-module, then:

- (1) M is QC-Continuous if and only if M is Continuous.
- (2) M is QC-Quasi-Continuous if and only if M is Quasi-Continuous.

<u>**Proposition(11)</u>** :- For an indecomposable module M, the following are equivalent:</u>

- (1) M is strongly extending.
- (2) M is uniform.
- (3) M is QC-Continuous.
- (4) M is QC-Quasi-Continuous.
- (5) M is fully extending.
- (6) M is extending.

Proof: (1)⇒(2): [2,Remark and Examples 2.1.2]

 $(2) \Rightarrow (3), (3) \Rightarrow (4), (4) \Rightarrow (5) and (5) \Rightarrow (6): Clear from definitions.$

(6) \Rightarrow (1): for every submodule N of M, there exist a direct summand K of M such that N essential of K but the only summand of M are M and (0), then N essential in M.

<u>Proposition(12)</u> :- Let M be a fully stable R-module M, the following are equivalent:

- (1) M is Strongly Extending.
- (2) M is fully Extending.
- (3) M is QC-Continuous.
- (4) M is QC-Quasi-Continuous.
- (5) M is Extending.

Proof:

(1)⇒(2): [7]

 $(2) \Rightarrow (3)$: If M is a fully Extending R-module, since every fully stable has (C_2)

[1], hence M is QC-Continuous.

 $(3) \Rightarrow (4) \text{ and } (4) \Rightarrow (5)$: Clear from definitions.

 $(5) \Rightarrow (1): [7, Corollary 3.11].$

Vol.5 No.1 year 2013

REFERENCES

- [1] M. S. Abbas: On fully stable modules, Ph.D. Thesis, University of Baghdad, Iraq, 1991.
- [2] S. A. Al-Saadi: S-extending Module and related concept, Ph.D. Thesis, Al-Mustansiriya Univ. ,Iraq ,2007.
- [3] N. Alkan and A. Harmansi: On Summand sum and summand intersection property of modules, Turk. J. Math. 26,2002,131-147.
- [4] F. W. Anderson and K. R. Fuller: Rings and Categories of Modules, Springer-Verlag. New York 1973.
- [5] N. V. Dung; D. V. Huynh; P. F. Smith and R.Wisbauer: Extending modules, Pitman Research Notes in Mathematics Series, 313(1994).
- [6] K. R. Goodear: Ring theory, Non-singular rings and modules, Marcel Dekker, INC., New York and Basel, 1976.
- [7] I. M. A. Hadi; M. A. Ahmed: Fully Extending Modules, International Journal of Algebra, Vol.7,2013,no. 3,101-114.
- [8] S. H. Mohamed and B. J. Muller: Continuous and discrete modules, London Math. Soc. Lecture Notes Series 147, Cambridge Univ. Press, 1990.